Dokument: Accurate sex prediction of cisgender and transgender individuals without brain size bias

Titel:Accurate sex prediction of cisgender and transgender individuals without brain size bias
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=67508
URN (NBN):urn:nbn:de:hbz:061-20241114-104532-4
Kollektion:Publikationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Texte » Artikel, Aufsatz
Medientyp:Text
Autoren: Wiersch, Lisa [Autor]
Hamdan, Sami [Autor]
Hoffstaedter, Felix [Autor]
Votinov, Mikhail [Autor]
Habel, Ute [Autor]
Clemens, Benjamin [Autor]
Derntl, Birgit [Autor]
Eickhoff, Simon [Autor]
Patil, Kaustubh R. [Autor]
Weis, Susanne [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]2,68 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 14.11.2024 / geändert 14.11.2024
Beschreibung:The increasing use of machine learning approaches on neuroimaging data comes with the important concern of confounding variables which might lead to biased predictions and in turn spurious conclusions about the relationship between the features and the target. A prominent example is the brain size difference between women and men. This difference in total intracranial volume (TIV) can cause bias when employing machine learning approaches for the investigation of sex differences in brain morphology. A TIV-biased model will not capture qualitative sex differences in brain organization but rather learn to classify an individual’s sex based on brain size differences, thus leading to spurious and misleading conclusions, for example when comparing brain morphology between cisgender- and transgender individuals. In this study, TIV bias in sex classification models applied to cis- and transgender individuals was systematically investigated by controlling for TIV either through featurewise confound removal or by matching the training samples for TIV. Our results provide strong evidence that models not biased by TIV can classify the sex of both cis- and transgender individuals with high accuracy, highlighting the importance of appropriate modeling to avoid bias in automated decision making.
Rechtliche Vermerke:Originalveröffentlichung:
Wiersch, L., Hamdan, S., Hoffstaedter, F., Votinov, M., Habel, U., Clemens, B., Derntl, B., Eickhoff, S. B., Patil, K., & Weis, S. (2023). Accurate sex prediction of cisgender and transgender individuals without brain size bias. Scientific Reports, 13, Article 13868. https://doi.org/10.1038/s41598-023-37508-z
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:14.11.2024
Dateien geändert am:14.11.2024
english
Benutzer
Status: Gast
Aktionen