Dokument: A general model to predict small molecule substrates of enzymes based on machine and deep learning

Titel:A general model to predict small molecule substrates of enzymes based on machine and deep learning
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=67454
URN (NBN):urn:nbn:de:hbz:061-20241111-122438-8
Kollektion:Publikationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Texte » Artikel, Aufsatz
Medientyp:Text
Autoren: Kroll, Alexander [Autor]
Ranjan, Sahasra [Autor]
Engqvist, Martin K.M. [Autor]
Lercher, Martin [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,35 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 11.11.2024 / geändert 11.11.2024
Beschreibung:For most proteins annotated as enzymes, it is unknown which primary and/or secondary reactions they catalyze. Experimental characterizations of potential substrates are time-consuming and costly. Machine learning predictions could provide an efficient alternative, but are hampered by a lack of information regarding enzyme non-substrates, as available training data comprises mainly positive examples. Here, we present ESP, a general machine-learning model for the prediction of enzyme-substrate pairs with an accuracy of over 91% on independent and diverse test data. ESP can be applied successfully across widely different enzymes and a broad range of metabolites included in the training data, outperforming models designed for individual, well-studied enzyme families. ESP represents enzymes through a modified transformer model, and is trained on data augmented with randomly sampled small molecules assigned as non-substrates. By facilitating easy in silico testing of potential substrates, the ESP web server may support both basic and applied science.
Rechtliche Vermerke:Originalveröffentlichung:
Kroll, A., Ranjan, S., Engqvist, M. K. M., & Lercher, M. (2023). A general model to predict small molecule substrates of enzymes based on machine and deep learning [OnlineRessource]. Nature Communications, 14, Article 2787. https://doi.org/10.1038/s41467-023-38347-2
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät
Dokument erstellt am:11.11.2024
Dateien geändert am:11.11.2024
english
Benutzer
Status: Gast
Aktionen