Dokument: Efficient gene–environment interaction testing through bootstrap aggregating

Titel:Efficient gene–environment interaction testing through bootstrap aggregating
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=67358
URN (NBN):urn:nbn:de:hbz:061-20241105-130822-9
Kollektion:Publikationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Texte » Artikel, Aufsatz
Medientyp:Text
Autoren: Lau, Michael [Autor]
Kress, Sara [Autor]
Schikowski, Tamara [Autor]
Schwender, Holger [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,35 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 05.11.2024 / geändert 05.11.2024
Stichwörter:Computational science, Statistics, Software, Mathematics and computing, Genetics, Environmental sciences, Risk factors, Diseases
Beschreibung:Gene–environment (GxE) interactions are an important and sophisticated component in the manifestation of complex phenotypes. Simple univariate tests lack statistical power due to the need for multiple testing adjustment and not incorporating potential interplay between several genetic loci. Approaches based on internally constructed genetic risk scores (GRS) require the partitioning of the available sample into training and testing data sets, thus, lowering the effective sample size for testing the GxE interaction itself. To overcome these issues, we propose a statistical test that employs bagging (bootstrap aggregating) in the GRS construction step and utilizes its out-of-bag prediction mechanism. This approach has the key advantage that the full available data set can be used for both constructing the GRS and testing the GxE interaction. To also incorporate interactions between genetic loci, we, furthermore, investigate if using random forests as the GRS construction method in GxE interaction testing further increases the statistical power. In a simulation study, we show that both novel procedures lead to a higher statistical power for detecting GxE interactions, while still controlling the type I error. The random-forests-based test outperforms a bagging-based test that uses the elastic net as its base learner in most scenarios. An application of the testing procedures to a real data set from a German cohort study suggests that there might be a GxE interaction involving exposure to air pollution regarding rheumatoid arthritis.
Rechtliche Vermerke:Originalveröffentlichung:
Lau, M., Kress, S., Schikowski, T., & Schwender, H. (2023). Efficient gene–environment interaction testing through bootstrap aggregating [OnlineRessource]. Scientific Reports, 13, Article 937. https://doi.org/10.1038/s41598-023-28172-4
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät
Dokument erstellt am:05.11.2024
Dateien geändert am:05.11.2024
english
Benutzer
Status: Gast
Aktionen