Dokument: A New Nomogram-Based Prediction Model for Postoperative Outcome after Sigmoid Resection for Diverticular Disease

Titel:A New Nomogram-Based Prediction Model for Postoperative Outcome after Sigmoid Resection for Diverticular Disease
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=67093
URN (NBN):urn:nbn:de:hbz:061-20241017-135347-8
Kollektion:Publikationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Texte » Artikel, Aufsatz
Medientyp:Text
Autoren: Vaghiri, Sascha [Autor]
Krieg, Sarah [Autor]
Prassas, Dimitrios [Autor]
Loosen, Sven H. [Autor]
Roderburg, Christoph [Autor]
Luedde, Tom [Autor]
Knoefel, Wolfram Trudo [Autor]
Krieg, Andreas [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]888,4 KB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 17.10.2024 / geändert 17.10.2024
Stichwörter:sigmoid diverticulitis, nomogram-based prediction, postoperative length of stay, morbidity and mortality
Beschreibung:Background and Objectives: Sigmoid resection still bears a considerable risk of complications. The primary aim was to evaluate and incorporate influencing factors of adverse perioperative outcomes following sigmoid resection into a nomogram-based prediction model.
Materials and Methods: Patients from a prospectively maintained database (2004–2022) who underwent either elective or emergency sigmoidectomy for diverticular disease were enrolled. A multivariate logistic regression model was constructed to identify patient-specific, disease-related, or surgical factors and preoperative laboratory results that may predict postoperative outcome.
Results: Overall morbidity and mortality rates were 41.3% and 3.55%, respectively, in 282 included patients. Logistic regression analysis revealed preoperative hemoglobin levels (p = 0.042), ASA classification (p = 0.040), type of surgical access (p = 0.014), and operative time (p = 0.049) as significant predictors of an eventful postoperative course and enabled the establishment of a dynamic nomogram. Postoperative length of hospital stay was influenced by low preoperative hemoglobin (p = 0.018), ASA class 4 (p = 0.002), immunosuppression (p = 0.010), emergency intervention (p = 0.024), and operative time (p = 0.010).
Conclusions: A nomogram-based scoring tool will help stratify risk and reduce preventable complications.
Rechtliche Vermerke:Originalveröffentlichung:
Vaghiri, S., Krieg, S., Prassas, D., Loosen, S. H., Roderburg, C., Lüdde, T., Knoefel, W. T., & Krieg, A. (2023). A New Nomogram-Based Prediction Model for Postoperative Outcome after Sigmoid Resection for Diverticular Disease [OnlineRessource]. Medicina, 59(6), Article 1083. https://doi.org/10.3390/medicina59061083
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:17.10.2024
Dateien geändert am:17.10.2024
english
Benutzer
Status: Gast
Aktionen