Dokument: Das Mesopankreas und die periampullären Karzinome
Titel: | Das Mesopankreas und die periampullären Karzinome | |||||||
Weiterer Titel: | The mesopancreas and the periampullary carcinomas | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=66941 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20241014-074104-4 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Rug, Falko [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Dr. med. habil Safi, Sami Alexander [Gutachter] Univ.-Prof. Dr. med. Irene Esposito [Gutachter] | |||||||
Stichwörter: | Mesopankreas, periampulläre Karzinome, Gallengangskrebs, ampulläres Karzinom, peripankreatisches Fettgewebe, LEEPP, Cholangiokarzinom, CRM, Mesopancreas, periampullary carcinomas, bile duct cancer, ampullary carcinoma, peripancreatic adipose tissue, cholangiocarcinoma | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Die periampullären Karzinome beinhalten eine Vielzahl von verschiedenen Karzinomen in und um die Ampulla Vateri. Die häufigsten zwei Formen sind die distalen Gallengangskarzinome (dCCC) und die Papillenkarzinome (PC). Die Diagnosestellung erfolgt meistens im fortgeschrittenen Stadium, wenn aufgrund einer Obstruktion der Gallengänge Symptome ausgelöst werden. Die chirurgische Therapie dieser Karzinomgruppen ist die partielle Pankreatoduodenektomie. Die mesopankreatische (MP) Exzision ist ein anatomisch geprägter chirurgischer Ansatz, welcher für das pankreatische duktale Adenokarzinom (PDAC) bereits studiert wurde. Die Implementierung des pathologischen circumferentiellen Resektionsrandes (CRM) zeigt für das PDAC eine unterschätzte Tumorausdehnung, vor allem im dorsalen Resektionsrand, welcher das Mesopankreas beinhaltet. Das Ziel dieser Arbeit ist es, den MP Raum an periampullären Karzinomen mit Blick auf eine vorhandenen Tumorinfiltration durch das jeweilige Karzinom zu studieren. Aus einer konsekutiv therapierten Patientenkohorte wurden die histopathologischen Berichte von Patientinnen und Patienten mit einem periampullären Karzinom in Hinblick auf eine Tumorinfiltration des MP Fettgewebes reevaluiert. Es wurden 91 Patienten mit einem periampullären Karzinom eingeschlossen (50 Patienten mit einem Papillenkarzinom (PC) und 41 mit einem distalen Gallengangskarzinom (dCCC)). Der MP-Infiltrationsstatus bei Patienten mit einem PC oder dCCC war signifikant höher in Patienten mit einer L1-Situation oder synchroner Pankreasparenchyminfiltration. Zusätzlich bestand bei PC-Patienten ein signifikanter Zusammenhang zwischen der MP-Infiltration und einem Tumorstadium ≥T3 oder einer V1-Situation. Die Rate an MP Infiltration war nur in PC-Patienten signifikant geringer, im Vergleich zu dCCC und PDAC-Patienten. Dies ist die erste Studie, welche das Mesopankreas in periampullären Karzinome analysiert hat. Es lässt sich schlussfolgern, dass die mesopankreatische Resektion während der Pankreatoduodenektomie notwendig ist, um eine vollständige chirurgische Resektion dieser Tumoren zu gewährleisten. Weitere multizentrische Studien sind nötig, um die onkologische Relevanz des Mesopankreas in periampullären Karzinome zu studieren.Periampullary carcinomas include a variety of different carcinomas in and around the ampulla of Vater. The two most common forms are distal bile duct carcinoma (dCCC) and papillary carcinoma (PC). These are only rudimentarily studied. The diagnosis is usually made at an advanced stage when symptoms are triggered due to an obstruction of the bile duct. The guideline-based surgical treatment for these three carcinomas is partial pancreatoduodenectomy. Mesopancreatic excision is an anatomically based surgical approach that has already been studied for pancreatic ductal adenocarcinoma (PDAC). The implementation of the pathological circumferential resection margin (CRM) shows an underestimated tumor extent for PDAC, especially in the dorsal resection margin. The aim of this work is to study tumor infiltration of the mesopancreas in periampullary carcinomas. From a consecutively treated cohort of patients, the histopathological reports of patients with dCCC and PC were reevaluated regarding tumor infiltration of the mesopancreatic fatty tissue (MP).
91 patients with periampullary carcinoma were included (50 papillary carcinomas (PC) and 41 distal cholangiocarcinomas (dCCC)). The MP infiltration status in patients with a PC or dCCC was significantly higher in patients with a L1-situation or synchronous pancreatic parenchymal infiltration by the respective tumor. In addition, there was a significant association between MP infiltration and tumor stage ≥T3 or V1-status in PC patients. Only PC patients showed a significantly lower rate of mesopancreatic fat infiltration, when compared to dCCC and PDAC patients. This is the first study to analyze the mesopancreas in periampullary carcinomas. The infiltration status was particularly high in patients with dCCCs. It can be concluded that mesopancreatic resection during pancreatoduodenectomy is necessary to ensure complete surgical resection of the tumor. Further multicenter studies are needed to study the oncological relevance of the mesopancreas in periampullary carcinomas. | |||||||
Quelle: | 1. Khan, S.A., S. Tavolari, and G. Brandi, Cholangiocarcinoma: Epidemiology and risk factors. Liver International, 2019. 39: p. 19-31.
2. DeOliveira, M.L., et al., Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Annals of surgery, 2007. 245(5): p. 755. 3. Nakeeb, A., et al., Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Annals of surgery, 1996. 224(4): p. 463-475. 4. Strijker, M., et al., Treatment and survival of resected and unresected distal cholangiocarcinoma: a nationwide study. Acta Oncol, 2019. 58(7): p. 1048-1055. 5. Khan, S.A., et al., Changing international trends in mortality rates for liver, biliary and pancreatic tumours. Journal of Hepatology, 2002. 37(6): p. 806-813. 6. RAMAI, D., et al., Demographics, tumor characteristics, treatment, and clinical outcomes of patients with ampullary cancer: a Surveillance, Epidemiology, and End Results (SEER) cohort study. Minerva Gastroenterologica e Dietologica, 2019. 65(2): p. 85-90. 7. Petrick, J.L., et al., Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: A population-based study in SEER-Medicare. PloS one, 2017. 12(10): p. e0186643. 8. Abdalla, E.K., et al., Monolobar Caroli's Disease and cholangiocarcinoma. HPB Surgery, 1999. 11(4): p. 271-277. 9. Sastry, A.V., et al., What is the incidence of biliary carcinoma in choledochal cysts, when do they develop, and how should it affect management? World journal of surgery, 2015. 39(2): p. 487-492. 10. Söreide, K., et al., Bile duct cysts in adults. Journal of British Surgery, 2004. 91(12): p. 1538-1548. 11. Kobayashi, S., et al., Risk of bile duct carcinogenesis after excision of extrahepatic bile ducts in pancreaticobiliary maljunction. Surgery, 1999. 126(5): p. 939-944. 12. Vijungco, J.D. and R.A. Prinz, Management of biliary and duodenal complications of chronic pancreatitis. World journal of surgery, 2003. 27(11): p. 1258-1270. 13. Clements, O., et al., Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysis. Journal of Hepatology, 2020. 72(1): p. 95-103. 14. Welzel, T.M., et al., Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based case-control study. Clinical gastroenterology and hepatology, 2007. 5(10): p. 1221-1228. 15. El‐Serag, H.B., et al., Risk of hepatobiliary and pancreatic cancers after hepatitis C virus infection: a population‐based study of US veterans. Hepatology, 2009. 49(1): p. 116-123. 16. Matsumoto, K., et al., Hepatitis B and C virus infection is a risk factor for the development of cholangiocarcinoma. Internal Medicine, 2014. 53(7): p. 651-654. 17. Boonstra, K., et al., Population‐based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. Hepatology, 2013. 58(6): p. 2045-2055. 18. Tyson, G.L. and H.B. El‐Serag, Risk factors for cholangiocarcinoma. Hepatology, 2011. 54(1): p. 173-184. 19. Schlitter, A.M., G. Klöppel, and I. Esposito, Intraduktale papilläre Neoplasien der Gallenwege (IPNB). Der Pathologe, 2013. 34(2): p. 235-240. 20. Ji, Y., et al., Intraductal papillary neoplasms of bile duct. A distinct entity like its counterpart in pancreas. Histol Histopathol, 2008. 23(1): p. 41-50. 21. Kloek, J.J., et al., A comparative study of intraductal papillary neoplasia of the biliary tract and pancreas. Hum Pathol, 2011. 42(6): p. 824-32. 22. Furukawa, T., et al., Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Archiv, 2005. 447(5): p. 794-799. 23. Schlitter, A.M., et al., Intraductal papillary neoplasms of the bile duct: stepwise progression to carcinoma involves common molecular pathways. Modern Pathology, 2014. 27(1): p. 73-86. 24. Kim, K.M., et al., Clinicopathologic features of intraductal papillary neoplasm of the bile duct according to histologic subtype. Am J Gastroenterol, 2012. 107(1): p. 118-25. 25. Kang, M.J., et al., Impact of macroscopic morphology, multifocality, and mucin secretion on survival outcome of intraductal papillary neoplasm of the bile duct. J Gastrointest Surg, 2013. 17(5): p. 931-8. 26. Rocha, F.G., et al., Intraductal papillary neoplasm of the bile duct: a biliary equivalent to intraductal papillary mucinous neoplasm of the pancreas? Hepatology, 2012. 56(4): p. 1352-60. 27. Paik, K.Y., et al., Intraductal papillary neoplasm of the bile ducts: the clinical features and surgical outcome of 25 cases. J Surg Oncol, 2008. 97(6): p. 508-12. 28. Ainechi, S. and H. Lee, Updates on Precancerous Lesions of the Biliary Tract: Biliary Precancerous Lesion. Arch Pathol Lab Med, 2016. 140(11): p. 1285-1289. 29. Nakanuma, Y., et al., Intraductal neoplasms of the bile duct. A new challenge to biliary tract tumor pathology. Histol Histopathol, 2017. 32(10): p. 1001-1015. 30. Zen, Y., et al., Different expression patterns of mucin core proteins and cytokeratins during intrahepatic cholangiocarcinogenesis from biliary intraepithelial neoplasia and intraductal papillary neoplasm of the bile duct—an immunohistochemical study of 110 cases of hepatolithiasis. Journal of Hepatology, 2006. 44(2): p. 350-358. 31. Hermanek, P. Histopathologie kolorektaler Polypen und Karzinome (Adenom-Karzinom-Sequenz). in Prävention und Früherkennung des kolorektalen Karzinoms. 1984. Berlin, Heidelberg: Springer Berlin Heidelberg. 32. Munding, J. and A. Tannapfel, Differenzierte Bewertung der Adenom-Karzinom-Sequenz beim kolorektalen Karzinom. Der Gastroenterologe, 2013. 8(6): p. 495-503. 33. Nakanishi, Y., et al., Expression of cell cycle–related molecules in biliary premalignant lesions: biliary intraepithelial neoplasia and biliary intraductal papillary neoplasm. Human Pathology, 2008. 39(8): p. 1153-1161. 34. Marrs, K.A., THE FUNCTIONS AND REGULATION OF GLUTATHIONE S-TRANSFERASES IN PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 1996. 47(1): p. 127-158. 35. Marahatta, S.B., et al., Polymorphism of glutathione S-transferase Omega gene and risk of cancer. Cancer Letters, 2006. 236(2): p. 276-281. 36. Nishioka, K., et al., Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Molecular biology of the cell, 1999. 10(5): p. 1637-1652. 37. Zeng, L., et al., Combined effects of polymorphisms of DNA-repair protein genes and metabolic enzyme genes on the risk of cholangiocarcinoma. Japanese Journal of Clinical Oncology, 2013. 43(12): p. 1190-1194. 38. Kim, Y.-I., Methylenetetrahydrofolate Reductase Polymorphisms, Folate, and Cancer Risk: a Paradigm of Gene-Nutrient Interactions in Carcinogenesis. Nutrition Reviews, 2000. 58(7): p. 205-209. 39. Yan, L., et al., Association of the maternal MTHFR C677T polymorphism with susceptibility to neural tube defects in offsprings: evidence from 25 case-control studies. PloS one, 2012. 7(10): p. e41689-e41689. 40. Rizzo, A., et al., Ampullary Carcinoma: An Overview of a Rare Entity and Discussion of Current and Future Therapeutic Challenges. Current Oncology, 2021. 28(5): p. 3393-3402. 41. Lee-Six, H., et al., The landscape of somatic mutation in normal colorectal epithelial cells. Nature, 2019. 574(7779): p. 532-537. 42. Leslie, A., et al., The colorectal adenoma–carcinoma sequence. BJS (British Journal of Surgery), 2002. 89(7): p. 845-860. 43. Dhall, D., et al., Early neoplasms of the ampulla and intrapancreatic biliary tract. Diagnostic Histopathology, 2015. 21(8): p. 332-339. 44. Ohike, N., et al., Intra-ampullary Papillary-Tubular Neoplasm (IAPN): Characterization of Tumoral Intraepithelial Neoplasia Occurring Within the Ampulla: A Clinicopathologic Analysis of 82 Cases. The American Journal of Surgical Pathology, 2010. 34(12). 45. Ohike, N. and V. Adsay, Intraductal Papillary Cystic Neoplasm of the Gallbladder and the Ampulla of Vater, in Pathology of the Bile Duct, Y. Nakanuma, Editor. 2017, Springer Singapore: Singapore. p. 201-212. 46. Organization, W.H., WHO classification of tumours: digestive system tumours. 2019: World Health Organization (WHO). 47. Dinarvand, P., et al., Familial adenomatous polyposis syndrome: an update and review of extraintestinal manifestations. Archives of pathology & laboratory medicine, 2019. 143(11): p. 1382-1398. 48. Bridgewater, J., et al., Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. Journal of Hepatology, 2014. 60(6): p. 1268-1289. 49. Vijgen, S., B. Terris, and L. Rubbia-Brandt, Pathology of intrahepatic cholangiocarcinoma. Hepatobiliary Surgery and Nutrition, 2017. 6(1): p. 22. 50. Banales, J.M., et al., Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nature reviews. Gastroenterology & hepatology, 2016. 13(5): p. 261-280. 51. Aishima, S. and Y. Oda, Pathogenesis and classification of intrahepatic cholangiocarcinoma: different characters of perihilar large duct type versus peripheral small duct type. Journal of Hepato‐Biliary‐Pancreatic Sciences, 2015. 22(2): p. 94-100. 52. Yamasaki, S., Intrahepatic cholangiocarcinoma: macroscopic type and stage classification. Journal of Hepato-Biliary-Pancreatic Surgery, 2003. 10(4): p. 288-291. 53. Cardinale, V., et al., Mucin‐producing cholangiocarcinoma might derive from biliary tree stem/progenitor cells located in peribiliary glands. Hepatology, 2012. 55(6): p. 2041-2042. 54. Komuta, M., et al., Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology, 2012. 55(6): p. 1876-1888. 55. Maller, J.L. and E.G. Krebs, Progesterone-stimulated meiotic cell division in Xenopus oocytes. Induction by regulatory subunit and inhibition by catalytic subunit of adenosine 3':5'-monophosphate-dependent protein kinase. Journal of Biological Chemistry, 1977. 252(5): p. 1712-1718. 56. Snyder, E.M., et al., Role for A kinase-anchoring proteins (AKAPS) in glutamate receptor trafficking and long term synaptic depression. The Journal of biological chemistry, 2005. 280(17): p. 16962-16968. 57. Suzuki, M., et al., E74-Like Factor 3 Is a Key Regulator of Epithelial Integrity and Immune Response Genes in Biliary Tract Cancer. Cancer Research, 2021. 81(2): p. 489-500. 58. Yachida, S., et al., Genomic sequencing identifies ELF3 as a driver of ampullary carcinoma. Cancer cell, 2016. 29(2): p. 229-240. 59. Luk, I.Y., C.M. Reehorst, and J.M. Mariadason, ELF3, ELF5, EHF and SPDEF transcription factors in tissue homeostasis and cancer. Molecules, 2018. 23(9): p. 2191. 60. Nakamura, H., et al., Genomic spectra of biliary tract cancer. Nature Genetics, 2015. 47(9): p. 1003-1010. 61. Jones, S.A., Directing Transition from Innate to Acquired Immunity: Defining a Role for IL-6. The Journal of Immunology, 2005. 175(6): p. 3463-3468. 62. Meng, F., et al., Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene, 2008. 27(3): p. 378-386. 63. Wangyang, Z., et al., NcRNAs and Cholangiocarcinoma. Journal of Cancer, 2018. 9(1): p. 100-107. 64. Meng, F., et al., Involvement of Human Micro-RNA in Growth and Response to Chemotherapy in Human Cholangiocarcinoma Cell Lines. Gastroenterology, 2006. 130(7): p. 2113-2129. 65. Kimura, W., et al., Different clinicopathologic findings in two histologic types of carcinoma of papilla of Vater. Jpn J Cancer Res, 1994. 85(2): p. 161-6. 66. Avisse, C., J.B. Flament, and J.F. Delattre, Ampulla of Vater. Anatomic, embryologic, and surgical aspects. Surg Clin North Am, 2000. 80(1): p. 201-12. 67. Asano, E., et al., Phenotypic characterization and clinical outcome in ampullary adenocarcinoma. J Surg Oncol, 2016. 114(1): p. 119-27. 68. Ang, D.C., et al., The utility of immunohistochemistry in subtyping adenocarcinoma of the ampulla of vater. Am J Surg Pathol, 2014. 38(10): p. 1371-9. 69. Gingras, M.-C., et al., Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation. Cell reports, 2016. 14(4): p. 907-919. 70. Morini, S., et al., Carcinoma of the ampulla of Vater: morphological and immunophenotypical classification predicts overall survival. Pancreas, 2013. 42(1): p. 60-66. 71. Amin, M., et al., AJCC Cancer Staging Manual. 8th edn Springer. New York, NY, 2017. 72. Glanemann, M., R.M. Eisele, and G. Gäbelein, Gallengangs-und Gallenblasenkarzinom. Allgemein-und Viszeralchirurgie up2date, 2017. 11(05): p. 485-505. 73. Treitschke, F. and H. Beger, Local resection of benign periampullary tumors. Annals of oncology, 1999. 10: p. S212-S214. 74. Desilets, D.J., et al., Endoscopic management of tumors of the major duodenal papilla: refined techniques to improve outcome and avoid complications. Gastrointestinal endoscopy, 2001. 54(2): p. 202-208. 75. Sharp, K. and J. Brandes, Local resection of tumors of the ampulla of Vater. The American Surgeon, 1990. 56(4): p. 214-217. 76. Tischoff, I., C. Wittekind, and A. Tannapfel, Ampulla Vateri, in Pathologie: Leber, Gallenwege und Pankreas, A. Tannapfel and G. Klöppel, Editors. 2020, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 609-628. 77. Koh, J., et al., Intrahepatic mass-forming cholangiocarcinoma: prognostic value of preoperative gadoxetic acid-enhanced MRI. European radiology, 2016. 26(2): p. 407-416. 78. Kang, Y., et al., Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid–enhanced MR images. Radiology, 2012. 264(3): p. 751-760. 79. Park, H.J., et al., The role of diffusion-weighted MR imaging for differentiating benign from malignant bile duct strictures. European radiology, 2014. 24(4): p. 947-958. 80. Vosshenrich, J., D.T. Boll, and C.J. Zech, Passive und aktive Magnetresonanz-Cholangiopankreatikographie. Der Radiologe, 2019. 59(4): p. 306-314. 81. Kim, J.Y., et al., Clinical Role of 18F-FDG PET-CT in Suspected and Potentially Operable Cholangiocarcinoma: A Prospective Study Compared With Conventional Imaging. Official journal of the American College of Gastroenterology | ACG, 2008. 103(5): p. 1145-1151. 82. Moon, C.M., et al., Usefulness of 18F‐fluorodeoxyglucose positron emission tomography in differential diagnosis and staging of cholangiocarcinomas. Journal of gastroenterology and hepatology, 2008. 23(5): p. 759-765. 83. Joo, I., J.M. Lee, and J.H. Yoon, Imaging Diagnosis of Intrahepatic and Perihilar Cholangiocarcinoma: Recent Advances and Challenges. Radiology, 2018. 288(1): p. 7-13. 84. Ramchandani, M., et al., Per oral cholangiopancreatoscopy in pancreatico biliary diseases-Expert consensus statements. World Journal of Gastroenterology: WJG, 2015. 21(15): p. 4722. 85. Gerges, C., et al., Cholangioskopie. Der Gastroenterologe, 2021. 16(5): p. 391-400. 86. Takagi, K., et al., Endoscopic diagnosis of pancreatic diseases; with special reference to radiography of the pancreas and the bile ducts. Naika. Internal medicine, 1970. 26(2): p. 237-246. 87. Navaneethan, U., et al., Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: a systematic review and meta-analysis. Gastrointestinal Endoscopy, 2015. 81(1): p. 168-176. 88. Navaneethan, U., et al., Single-operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate biliary strictures: a systematic review. Gastrointestinal Endoscopy, 2015. 82(4): p. 608-614.e2. 89. Manekeller, S. and J.C. Kalff, Therapeutisches Vorgehen bei Gallenblasen- und extrahepatischen Gallengangskarzinomen. Der Chirurg, 2018. 89(11): p. 880-886. 90. Fang, Y., et al., Meta-analysis of randomized clinical trials on safety and efficacy of biliary drainage before surgery for obstructive jaundice. British Journal of Surgery, 2013. 100(12): p. 1589-1596. 91. Cannon, M.E., et al., EUS compared with CT, magnetic resonance imaging, and angiography and the influence of biliary stenting on staging accuracy of ampullary neoplasms. Gastrointestinal endoscopy, 1999. 50(1): p. 27-33. 92. Mukai, H., et al., Evaluation of endoscopic ultrasonography in the pre-operative staging of carcinoma of the ampulla of Vater and common bile duct. Gastrointestinal endoscopy, 1992. 38(6): p. 676-683. 93. Rösch, T., et al., Staging of pancreatic and ampullary carcinoma by endoscopic ultrasonography: comparison with conventional sonography, computed tomography, and angiography. Gastroenterology, 1992. 102(1): p. 188-199. 94. Chen, W.-X., et al., Multiple imaging techniques in the diagnosis of ampullary carcinoma. Hepatobiliary & Pancreatic Diseases International: HBPD INT, 2008. 7(6): p. 649-653. 95. Guo, Z.-J., et al., CT virtual endoscopy of the ampulla of Vater: preliminary report. Abdominal imaging, 2011. 36(5): p. 514-519. 96. Ito, K., et al., Diagnosis of ampullary cancer. Digestive surgery, 2010. 27(2): p. 115-118. 97. Chini, P. and P.V. Draganov, Diagnosis and management of ampullary adenoma: The expanding role of endoscopy. World Journal of Gastrointestinal Endoscopy, 2011. 3(12): p. 241. 98. Manta, R., et al., Linear endoscopic ultrasonography vs magnetic resonance imaging in ampullary tumors. World Journal of Gastroenterology: WJG, 2010. 16(44): p. 5592. 99. Ye, X., L. Wang, and Z. Jin, Diagnostic accuracy of endoscopic ultrasound and intraductal ultrasonography for assessment of ampullary tumors: a meta-analysis. Scandinavian Journal of Gastroenterology, 2022: p. 1-11. 100. Vanbiervliet, G., et al., Endoscopic management of ampullary tumors: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy, 2021. 53(04): p. 429-448. 101. Elek, G., et al., Histological evaluation of preoperative biopsies from ampulla Vateri. Pathology Oncology Research, 2003. 9(1): p. 32-41. 102. Menzel, J., et al., Tumors of the papilla of Vater – inadequate diagnostic impact of endoscopic forceps biopsies taken prior to and following sphincterotomy. Annals of Oncology, 1999. 10(10): p. 1227-1231. 103. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Diagnostik und Therapie des Hepatozellulären Karzinoms und biliärer Karzi- nome, Langversion 4.01, 2023, AWMF-Registernummer: 032-053OL https://www.leit-linienprogramm-onkologie.de/leitlinien/hcc-und-biliaere-karzinome/; Zugriff am [18.07.2023]. . 104. Qiu, Y., et al., The diagnostic value of five serum tumor markers for patients with cholangiocarcinoma. Clinica Chimica Acta, 2018. 480: p. 186-192. 105. Hahn, F., et al., Survival prediction for patients with non-resectable intrahepatic cholangiocarcinoma undergoing chemotherapy: a retrospective analysis comparing the tumor marker CA 19-9 with cross-sectional imaging. Journal of Cancer Research and Clinical Oncology, 2020. 146(7): p. 1883-1890. 106. Ding, H., et al., Combining endoscopic ultrasound and tumor markers improves the diagnostic yield on the etiology of common bile duct dilation secondary to periampullary pathologies. Annals of Translational Medicine, 2019. 7(14). 107. Smith, R.A., et al., Prognosis of resected ampullary adenocarcinoma by preoperative serum CA19-9 levels and platelet-lymphocyte ratio. Journal of Gastrointestinal Surgery, 2008. 12(8): p. 1422-1428. 108. Kurihara, C., et al., Clinical value of serum CA19-9 as a prognostic factor for the ampulla of Vater carcinoma. Hepato-gastroenterology, 2013. 60(127): p. 1588-1591. 109. Piantino, P., et al., Increased levels of Ca 19-9, Ca 50 and Ca 125 in patients with benign diseases of the biliary tract and the pancreas. The Journal of Nuclear Medicine and Allied Sciences, 1990. 34(4 Suppl): p. 97-102. 110. NICHOLS, J.C., et al. Diagnostic role of serum CA 19-9 for cholangiocarcinoma in patients with primary sclerosing cholangitis. in Mayo Clinic Proceedings. 1993. Elsevier. 111. Patel, A.H., et al., The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. The American journal of gastroenterology, 2000. 95(1): p. 204-207. 112. Tsukada, K., et al., Diagnosis of biliary tract and ampullary carcinomas. Journal of hepato-biliary-pancreatic surgery, 2008. 15(1): p. 31-40. 113. Zheng-Pywell, R. and S. Reddy, Ampullary cancer. Surgical Clinics, 2019. 99(2): p. 357-367. 114. Brown, K.M., et al., Pancreaticoduodenectomy is curative in the majority of patients with node-negative ampullary cancer. Archives of surgery, 2005. 140(6): p. 529-533. 115. Radtke, A. and A. Königsrainer, Surgical Therapy of Cholangiocarcinoma. Visceral Medicine, 2016. 32(6): p. 422-426. 116. Seeger, N., L.F. Grochola, and S. Breitenstein, Gallenblasenkarzinome und Tumore der extrahepatischen Gallenwege. Therapeutische Umschau, 2021. 78(10): p. 589-596. 117. Whipple, A.O., W.B. Parsons, and C.R. Mullins, TREATMENT OF CARCINOMA OF THE AMPULLA OF VATER. Ann Surg, 1935. 102(4): p. 763-79. 118. Kausch, W., Das Carcinom der Papilla duodeni und seine radikale Entfernung, in Erste Operationen Berliner Chirurgen 1817–1931, S. Heinz-Peter, R. Winau, and H. Rudolf, Editors. 2015, De Gruyter. p. 40-51. 119. Cameron, J.L., et al., One hundred and forty-five consecutive pancreaticoduodenectomies without mortality. Ann Surg, 1993. 217(5): p. 430-5; discussion 435-8. 120. Trede, M., G. Schwall, and H.D. Saeger, Survival after pancreatoduodenectomy. 118 consecutive resections without an operative mortality. Ann Surg, 1990. 211(4): p. 447-58. 121. Zhou, Y., et al., Survival after surgical resection of distal cholangiocarcinoma: A systematic review and meta-analysis of prognostic factors. Asian Journal of Surgery, 2017. 40(2): p. 129-138. 122. Zhou, Y.-M., et al., Prognostic factors and benefits of adjuvant therapy for ampullary cancer following pancreatoduodenectomy: A systematic review and meta-analysis. Asian Journal of Surgery, 2020. 43(12): p. 1133-1141. 123. Beger, H.G., et al., Treatment of Pancreatic Cancer: Challenge of the Facts. World Journal of Surgery, 2003. 27(10): p. 1075-1084. 124. Traverso, L.W., The Longmire I, II, and III operations. Am J Surg, 2003. 185(5): p. 399-406. 125. Müller, M. and D. Meyer, OP nach Traverso-Longmire: die pyloruserhaltende Whipple-OP. Im OP, 2020. 10(04): p. 141-146. 126. Bruns, C. and K.-W. Jauch, Chirurgische Therapie des Pankreaskarzinoms. DMW-Deutsche Medizinische Wochenschrift, 2007. 132(15): p. 798-802. 127. Chin, K.M., et al., Re-appraising the role of lymph node status in predicting survival in resected distal cholangiocarcinoma – A meta-analysis and systematic review. European Journal of Surgical Oncology, 2021. 47(6): p. 1267-1277. 128. Ebata, T., et al., Hepatopancreatoduodenectomy for cholangiocarcinoma: a single-center review of 85 consecutive patients. Ann Surg, 2012. 256(2): p. 297-305. 129. Schneider, L., et al., Surgical ampullectomy: an underestimated operation in the era of endoscopy. HPB, 2016. 18(1): p. 65-71. 130. Jung, Y.K., et al., Transduodenal ampullectomy for ampullary tumor. Asian Journal of Surgery, 2021. 44(5): p. 723-729. 131. Shroff, R.T., et al., Gemcitabine, Cisplatin, and nab-Paclitaxel for the Treatment of Advanced Biliary Tract Cancers: A Phase 2 Clinical Trial. JAMA Oncology, 2019. 5(6): p. 824-830. 132. Yoshimachi, S., et al., Mixed adenoneuroendocrine carcinoma of the ampulla of Vater: a case report and literature review. Clinical Journal of Gastroenterology, 2020. 13(1): p. 37-45. 133. Aburjania, N., et al., Ampulla of Vater Adenocarcinoma in a BRCA2 Germline Mutation Carrier. Journal of Gastrointestinal Cancer, 2014. 45(1): p. 87-90. 134. Palta, M., et al., Carcinoma of the Ampulla of Vater: Patterns of Failure Following Resection and Benefit of Chemoradiotherapy. Annals of Surgical Oncology, 2012. 19(5): p. 1535-1540. 135. Vogel, A., et al., The diagnosis and treatment of cholangiocarcinoma. Dtsch Arztebl Int, 2014. 111(44): p. 748-54. 136. Horgan, A.M., et al., Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. J Clin Oncol, 2012. 30(16): p. 1934-40. 137. Edeline, J., et al., Gemcitabine and Oxaliplatin Chemotherapy or Surveillance in Resected Biliary Tract Cancer (PRODIGE 12-ACCORD 18-UNICANCER GI): A Randomized Phase III Study. J Clin Oncol, 2019. 37(8): p. 658-667. 138. Stein, A., et al., Adjuvant chemotherapy with gemcitabine and cisplatin compared to observation after curative intent resection of cholangiocarcinoma and muscle invasive gallbladder carcinoma (ACTICCA-1 trial) - a randomized, multidisciplinary, multinational phase III trial. BMC Cancer, 2015. 15: p. 564. 139. Primrose, J.N., et al., Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol, 2019. 20(5): p. 663-673. 140. Wang, M.-L., et al., The effect of adjuvant chemotherapy in resectable cholangiocarcinoma: A meta-analysis and systematic review. Hepatobiliary & Pancreatic Diseases International, 2019. 18(2): p. 110-116. 141. Akhoundova Sanoyan, D., et al., Adjuvant chemotherapy in biliary tract cancer: state of the art and future perspectives. Current Opinion in Oncology, 2020. 32(4). 142. Lamarca, A., et al., Current standards and future perspectives in adjuvant treatment for biliary tract cancers. Cancer Treatment Reviews, 2020. 84: p. 101936. 143. Allen, M.J. and J.J. Knox, A review of current adjuvant and neoadjuvant systemic treatments for cholangiocarcinoma and gallbladder carcinoma. Hepatoma Research, 2021. 7: p. 73. 144. Vo, N.-P., et al., Efficacy and safety of adjuvant therapy after curative surgery for ampullary carcinoma: A systematic review and meta-analysis. Surgery, 2021. 170(4): p. 1205-1214. 145. Bonet, M., et al., Adjuvant therapy for true ampullary cancer: a systematic review. Clinical and Translational Oncology, 2020. 22(8): p. 1407-1413. 146. Valle, J., et al., Cisplatin plus Gemcitabine versus Gemcitabine for Biliary Tract Cancer. New England Journal of Medicine, 2010. 362(14): p. 1273-1281. 147. Valle, J.W., et al., Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Annals of Oncology, 2014. 25(2): p. 391-398. 148. Zimmermann, C., et al., The pathohistological subtype strongly predicts survival in patients with ampullary carcinoma. Sci Rep, 2019. 9(1): p. 12676. 149. Luchini, C., et al., Perineural Invasion is a Strong Prognostic Moderator in Ampulla of Vater Carcinoma: A Meta-analysis. Pancreas, 2019. 48(1): p. 70-76. 150. Carter, J.T., et al., Tumors of the ampulla of vater: histopathologic classification and predictors of survival. J Am Coll Surg, 2008. 207(2): p. 210-8. 151. Roh, Y.H., et al., The clinicopathologic and immunohistochemical characteristics of ampulla of Vater carcinoma: the intestinal type is associated with a better prognosis. Hepatogastroenterology, 2007. 54(78): p. 1641-4. 152. Kawaida, H., et al., Stratification of prognosis in patients with ampullary carcinoma after surgery by preoperative platelet-to-lymphocyte ratio and conventional tumor markers. Anticancer Research, 2019. 39(12): p. 6923-6929. 153. Demirci, N., et al., Preoperative platelet-to-lymphocyte ratio is a predictor of prognosis in patients with ampullary carcinoma. Bratislava Medical Journal, 2018. 119(3). 154. Esposito, I., et al., Most pancreatic cancer resections are R1 resections. Ann Surg Oncol, 2008. 15(6): p. 1651-60. 155. Hinrichsen, K.V., Intestinaltrakt, in Humanembryologie: Lehrbuch und Atlas der vorgeburtlichen Entwicklung des Menschen, K.V. Hinrichsen, et al., Editors. 1990, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 516-570. 156. Witt, H., Physiologie und Embryologie des Pankreas, in Pädiatrische Gastroenterologie, Hepatologie und Ernährung, B. Rodeck and K.-P. Zimmer, Editors. 2008, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 451-457. 157. Bockman, D.E., Anatomy of the pancreas. The exocrine pancreas: biology, pathobiology and disease. Raven Press, New York, 1993: p. 1-8. 158. Welsch, T., et al., Top‐down approach to the superior mesenteric artery and the mesopancreas during pancreatoduodenectomy for pancreatic cancer. Journal of surgical oncology, 2016. 113(6): p. 668-671. 159. Verbeke, C.S., et al., Redefining the R1 resection in pancreatic cancer. British Journal of Surgery, 2006. 93(10): p. 1232-1237. 160. Esposito, I., et al., Most pancreatic cancer resections are R1 resections. Annals of surgical oncology, 2008. 15(6): p. 1651-1660. 161. Heald, R. and B. Moran. Embryology and anatomy of the rectum. in Seminars in surgical oncology. 1998. Wiley Online Library. 162. Irving, M. and B. Catchpole, ABC of colorectal diseases. Anatomy and physiology of the colon, rectum, and anus. BMJ: British Medical Journal, 1992. 304(6834): p. 1106. 163. Enker, W.E., et al., Total mesorectal excision in the operative treatment of carcinoma of the rectum. Journal of the American College of Surgeons, 1995. 181(4): p. 335-346. 164. Heald, R.J., et al., Rectal cancer: the Basingstoke experience of total mesorectal excision, 1978-1997. Archives of surgery, 1998. 133(8): p. 894-898. 165. McLoughlin, M., et al., 825 Local Excision Versus Total Mesorectal Excision Following Neoadjuvant Chemoradiotherapy for Rectal Cancer. a Systematic Review and Meta-Analysis. British Journal of Surgery, 2022. 109(Supplement_6): p. znac268. 024. 166. Hohenberger, W., et al., Standardized surgery for colonic cancer: complete mesocolic excision and central ligation–technical notes and outcome. Colorectal disease, 2009. 11(4): p. 354-364. 167. Wang, C., et al., Safety, quality and effect of complete mesocolic excision vs non‐complete mesocolic excision in patients with colon cancer: a systemic review and meta‐analysis. Colorectal Disease, 2017. 19(11): p. 962-972. 168. Brown, G. and I.R. Daniels. Preoperative Staging of Rectal Cancer: The MERCURY Research Project. 2005. Berlin, Heidelberg: Springer Berlin Heidelberg. 169. Extramural depth of tumor invasion at thin-section MR in patients with rectal cancer: results of the MERCURY study. Radiology, 2007. 243(1): p. 132-9. 170. Patel, U.B., et al., Magnetic resonance imaging–detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience. Journal of Clinical Oncology, 2011. 29(28): p. 3753-3760. 171. Safi, S.-A., et al., Mesopancreatic excision for pancreatic ductal adenocarcinoma improves local disease control and survival. Pancreatology, 2021. 21(4): p. 787-795. 172. Safi, S.A., „The Mesopancreas and the Ductal Adenocarcinoma of the Head of the Pancreas’’Implications for Prognosis and Therapy. 173. Wagner, M., et al., Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Journal of British Surgery, 2004. 91(5): p. 586-594. 174. Haeberle, L. and I. Esposito, Pathology of pancreatic cancer. Transl Gastroenterol Hepatol, 2019. 4: p. 50. 175. Leonhardt, C.S., et al., Prognostic relevance of the revised R status definition in pancreatic cancer: meta-analysis. BJS open, 2022. 6(2): p. zrac010. 176. Menon, K.V., et al., Impact of margin status on survival following pancreatoduodenectomy for cancer: the Leeds Pathology Protocol (LEEPP). Hpb, 2009. 11(1): p. 18-24. 177. Khaled, Y.S., et al., 10-year outcome of the leeds pathology protocol (LEEPP) following pancreatoduodenectomy for periampullary pancreatic cancer. HPB, 2016. 18: p. e30-e31. 178. Verbeke, C. and I. Gladhaug, Resection margin involvement and tumour origin in pancreatic head cancer. Journal of British Surgery, 2012. 99(8): p. 1036-1049. 179. Schlitter, A.M. and I. Esposito, Definition of microscopic tumor clearance (r0) in pancreatic cancer resections. Cancers, 2010. 2(4): p. 2001-2010. 180. Häberle, L. and I. Esposito, Circumferential resection margin (CRM) in pancreatic cancer. Surgery in Practice and Science, 2020. 1: p. 100006. 181. Langer, K. and C. Toldt, Lehrbuch der systematischen und topographischen Anatomie: Mit 3 lithographirten Tafeln u. 6. Holzschnitten. 1893: W. Braumüller. 182. Rouvière, H., Anatomie Humaine Tome 1 Tete, cou et tronc. (1924). 183. Barthlen, W. and D. von Schweinitz, Embryologie und Anatomie des Pankreas, in Kinderchirurgie: Viszerale und allgemeine Chirurgie des Kindesalters, D. von Schweinitz and B. Ure, Editors. 2019, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 589-590. 184. Gockel, I., et al., Resection of the mesopancreas (RMP): a new surgical classification of a known anatomical space. World Journal of Surgical Oncology, 2007. 5(1): p. 44. 185. Adham, M. and J. Singhirunnusorn, Surgical technique and results of total mesopancreas excision (TMpE) in pancreatic tumors. European Journal of Surgical Oncology (EJSO), 2012. 38(4): p. 340-345. 186. Yi, S.Q., et al., The mesopancreas and pancreatic head plexus: morphological, developmental, and clinical perspectives. Surgical and Radiologic Anatomy, 2020. 42(12): p. 1501-1508. 187. Mike, M., Laparoscopic Right Colectomy, in Laparoscopic Colorectal Cancer Surgery: Operative Procedures Based on the Embryological Anatomy of the Fascial Composition. 2017, Springer Singapore: Singapore. p. 71-83. 188. Reich, P., H.W. Schreiber, and W. Lierse, [The mesoduodenum]. Langenbecks Arch Chir, 1988. 373(3): p. 182-8. 189. Wu, W., et al., Total mesopancreas excision for pancreatic head cancer: analysis of 120 cases. Chin J Cancer Res, 2016. 28(4): p. 423-8. 190. Ramia, J.M., et al., Systematic review of the mesopancreas: concept and clinical implications. Clinical and Translational Oncology, 2018. 20(11): p. 1385-1391. 191. Safi, S.-A., et al., Neoadjuvant Treatment Lowers the Risk of Mesopancreatic Fat Infiltration and Local Recurrence in Patients with Pancreatic Cancer. Cancers, 2021. 14(1): p. 68. 192. exakter Test, F., Wie prüfe ich Unterschiedshypothesen bei nominalskalierten Messwerten? Statistik und quantitative Methoden für Gesundheitsfachberufe, 2015: p. 135. 193. Frost, I., Statistische Testverfahren, Signifikanz und p-Werte. 2017: Springer. 194. Gebauer, F., et al., Resection margin clearance in pancreatic cancer after implementation of the Leeds Pathology Protocol (LEEPP): clinically relevant or just academic? World journal of surgery, 2015. 39(2): p. 493-499. 195. Nappo, G., et al., The Role of Pathological Method and Clearance Definition for the Evaluation of Margin Status after Pancreatoduodenectomy for Periampullary Cancer. Results of a Multicenter Prospective Randomized Trial. Cancers, 2021. 13(9): p. 2097. 196. Fong, Y., et al., Outcome of treatment for distal bile duct cancer. British journal of surgery, 1996. 83(12): p. 1712-1715. 197. Zerbi, A., et al., Clinical presentation, diagnosis and survival of resected distal bile duct cancer. Digestive Surgery, 1998. 15(5): p. 410-416. 198. Kayahara, M., et al., Role of nodal involvement and the periductal soft-tissue margin in middle and distal bile duct cancer. Annals of surgery, 1999. 229(1): p. 76. 199. Bortolasi, L., et al., Adenocarcinoma of the distal bile duct: a clinicopathologic outcome analysis after curative resection. Digestive Surgery, 2000. 17(1): p. 36-41. 200. Yoshida, T., et al., Prognostic factors after pancreatoduodenectomy with extended lymphadenectomy for distal bile duct cancer. Archives of Surgery, 2002. 137(1): p. 69-73. 201. Sakamoto, Y., et al., Prognostic factors of surgical resection in middle and distal bile duct cancer: an analysis of 55 patients concerning the significance of ductal and radial margins. Surgery, 2005. 137(4): p. 396-402. 202. Cheng, Q., et al., Distal bile duct carcinoma: prognostic factors after curative surgery. A series of 112 cases. Annals of Surgical Oncology, 2007. 14: p. 1212-1219. 203. Ebata, T., et al., Pancreatic and duodenal invasion in distal bile duct cancer: paradox in the tumor classification of the American Joint Committee on Cancer. World journal of surgery, 2007. 31: p. 2008-2015. 204. Murakami, Y., et al., Prognostic significance of lymph node metastasis and surgical margin status for distal cholangiocarcinoma. Journal of surgical oncology, 2007. 95(3): p. 207-212. 205. Allen, P.J., et al., Extrahepatic cholangiocarcinoma: a comparison of patients with resected proximal and distal lesions. HPB, 2008. 10(5): p. 341-346. 206. van Roest, M.H., et al., Results of pancreaticoduodenectomy in patients with periampullary adenocarcinoma: perineural growth more important prognostic factor than tumor localization. Annals of surgery, 2008. 248(1): p. 97-103. 207. Hong, S.-M., et al., Depth of tumor invasion better predicts prognosis than the current American Joint Committee on Cancer T classification for distal bile duct carcinoma. Surgery, 2009. 146(2): p. 250-257. 208. jp, N.S.O.G.K.M.E.T.A.T.K.Y.A.T.S.Y.N.M.n.m.n.-u.a., et al., Prognostic impact of lymph node metastasis in distal cholangiocarcinoma. Journal of British Surgery, 2015. 102(4): p. 399-406. 209. Chung, Y.J., et al., Prognostic factors following surgical resection of distal bile duct cancer. Journal of the Korean Surgical Society, 2013. 85(5): p. 212-218. 210. Iso, Y., et al., When hepatic-side ductal margin is positive in N+ cases, additional resection of the bile duct is not necessary to render the negative hepatic-side ductal margin during surgery for extrahepatic distal bile duct carcinoma. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2014. 20: p. 471. 211. Kwon, H.J., et al., Prognostic factors in patients with middle and distal bile duct cancers. World Journal of Gastroenterology: WJG, 2014. 20(21): p. 6658. 212. Heise, C., et al., Systematic review with meta-analysis: endoscopic and surgical resection for ampullary lesions. Journal of clinical medicine, 2020. 9(11): p. 3622. 213. Gao, Y., et al., Transduodenal ampullectomy provides a less invasive technique to cure early ampullary cancer. BMC surgery, 2016. 16(1): p. 1-8. 214. Lee, H., et al., Transduodenal ampullectomy for the treatment of early-stage ampulla of vater cancer. World journal of surgery, 2016. 40: p. 967-973. 215. Stiles, Z.E., et al., Ampullary adenocarcinoma: defining predictors of survival and the impact of adjuvant therapy following surgical resection for stage I disease. Journal of Surgical Oncology, 2018. 117(7): p. 1500-1508. 216. Yoon, Y.-S., et al., Clinicopathologic analysis of early ampullary cancers with a focus on the feasibility of ampullectomy. Annals of surgery, 2005. 242(1): p. 92. 217. Amini, A., et al., Is local resection adequate for T1 stage ampullary cancer? HPB, 2015. 17(1): p. 66-71. 218. Woo, S.M., et al., Recurrence and Prognostic Factors of Ampullary Carcinoma after Radical Resection: Comparison with Distal Extrahepatic Cholangiocarcinoma. Annals of Surgical Oncology, 2007. 14(11): p. 3195-3201. 219. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, D.K., AWMF): S3-Leitlinie Exokrines Pankreaskarzinom, Langversion 2.0, 2021, AWMF Registernummer: 032-010OL, https://www.leitlinienprogramm-onkologie.de/leitlinien/pankreaskarzinom/. 220. Persigehl, T., et al. Structured reporting of solid and cystic pancreatic lesions in CT and MRI: consensus-based structured report templates of the German Society of Radiology (DRG). in RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. 2020. © Georg Thieme Verlag KG Stuttgart· New York. 221. Safi, S.A., et al., Pre-Operative MDCT Staging Predicts Mesopancreatic Fat Infiltration-A Novel Marker for Neoadjuvant Treatment? Cancers (Basel), 2021. 13(17). 222. van Ophoven, A. and S. Roth, Die Denonvilliers' sche Faszie. Aktuelle Urologie, 1996. 27(01): p. 50-51. 223. Lindsey, I., et al., Anatomy of Denonvilliers' fascia and pelvic nerves, impotence, and implications for the colorectal surgeon. BJS (British Journal of Surgery), 2000. 87(10): p. 1288-1299. 224. Waldeyer, W., Das Becken: Topografisch-anatomisch, mit besonderer Berücksichtigung der Chrurgie und Gynäkologie dargestellt. 2013: BoD–Books on Demand. 225. Frierson Jr, H.F., The gross anatomy and histology of the gallbladder, extrahepatic bile ducts, Vaterian system, and minor papilla. The American journal of surgical pathology, 1989. 13(2): p. 146-162. 226. Strazzabosco, M. and L. Fabris, Functional anatomy of normal bile ducts. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology: Advances in Integrative Anatomy and Evolutionary Biology, 2008. 291(6): p. 653-660. 227. Mahour, G.H., K.G. Wakim, and D.O. Ferris, The common bile duct in man: its diameter and circumference. Annals of surgery, 1967. 165(3): p. 415. 228. Charels, K. and G. Klöppel, The bile duct system and its anatomical variations. Endoscopy, 1989. 21(S 1): p. 300-308. 229. HAND, B.H., Anatomy and function of the extrahepatic biliary system. Clinics in gastroenterology, 1973. 2(1): p. 3-29. 230. Adkins, R.B., W.C. Chapman, and V.S. Reddy, Embryology, anatomy, and surgical applications of the extrahepatic biliary system. Surgical Clinics, 2000. 80(1): p. 363-379. 231. Isaji, S., et al., International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology, 2018. 18(1): p. 2-11. 232. Park, W., A. Chawla, and E.M. O'Reilly, Pancreatic Cancer: A Review. Jama, 2021. 326(9): p. 851-862. 233. Strassburg, J., et al., Optimised surgery (so-called TME surgery) and high-resolution MRI in the planning of treatment of rectal carcinoma. Langenbecks Arch Surg, 2007. 392(2): p. 179-88. | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Bezug: | Zeitraum der Erstellung der Dissertation ca. 2 Jahre
Untersuchter Zeitraum 2003 - 2023 | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 14.10.2024 | |||||||
Dateien geändert am: | 14.10.2024 | |||||||
Promotionsantrag am: | 15.12.2022 | |||||||
Datum der Promotion: | 26.09.2024 |