Dokument: Epigenetische Analyse von Biomarkerkandidaten auf ihre Methylierungsmuster im Prostatakarzinom

Titel:Epigenetische Analyse von Biomarkerkandidaten auf ihre Methylierungsmuster im Prostatakarzinom
Weiterer Titel:Epigenetic analysis of biomarker candidates for their methylation patterns in prostate cancer
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=66679
URN (NBN):urn:nbn:de:hbz:061-20240909-112941-0
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Sheikh, Jamal [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]2,25 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 04.09.2024 / geändert 04.09.2024
Beitragende:Prof. Dr. rer. nat. Santourlidis, Simeon [Gutachter]
Prof. Dr. med. Krieg, Andreas [Gutachter]
Stichwörter:Epigenetik, Biomarker, Kandidatengene, Prostatakarzinom, DNA-Methylierung
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Das Prostatakarzinom stellt in den entwickelten Ländern den häufigsten und weltweit den zweithäufigsten Tumor des Mannes dar. Die Diagnostik umfasst u.a. die Bestimmung des PSA-Werts. Dieser ist jedoch vermindert sensitiv und wenig spezifisch für das Prostatakarzinom. Aus den genannten Tatsachen erwächst eine besondere Wichtigkeit für die gezielte Diagnostik, um eine Überdiagnostik und -therapie abzuwenden. Ein vielversprechender Ansatz stellt hierbei das Feld der Epigenetik dar. Epigenetik meint dabei alle Mechanismen, die die Genexpression beeinflussen, ohne dabei die Basenabfolge der DNA selbst zu verändern. Unter anderem ist die Methylierung von CpG-Inseln in Promotorregionen ein Mechanismus, welcher diagnostisches Potenzial birgt. Es wurde bereits in methylierungsspezifischen Arrays beobachtet, dass bestimmte CpG-Inseln in pathologisch begutachteten gesunden Gewebeproben der Prostata eher hypermethyliert sind, während sie beim Prostatakarzinom hypomethyliert sind. Für die vorliegende Arbeit wurde je ein Genlocus des XIST-Gens (x inactivation specific transcript) und des KIR2DL3-Gens (transmembranäres Protein auf der Oberfläche von Natürlichen Killerzellen) auf ihren Methylierungsstatus in mehreren frei verkäuflichen, prostataassoziierten Zelllinien sowie in der DNA, isoliert aus insgesamt sechs Primärproben aus Prostatatumorgeweben, analysiert. Ziel war es, den Methylierungsstatus von Prostatatumorzellen und pathologischen nicht-malignen Zellen der Prostata graphisch abzubilden und zu quantifizieren.
Die wesentlichen Schritte umfassten dabei zunächst die Bisulfitkonvertierung der aus Zellkulturen isolierten Zelllinien-DNA. Die relevanten Abschnitte der genannten Genloci wurden in vitro amplifiziert und mittels TA-Klonierung in chemisch kompetenten E. coli eingeführt und vervielfältigt. Nach weiterer Vervielfältigung in Flüssigmedien wurden die Genloci sequenziert, um ein detailliertes Methylierungsprofil dieser Regionen zu erstellen. Ergebnis war, dass im KIR2DL3-Gen ein vorhandener Unterschied zwischen Tumor-DNA und Nicht-Tumor-DNA in sechs von elf Proben festgestellt werden konnte, während im XIST-Genlocus lediglich ein subtiler Unterschied nachweisbar war. Die genauen DNA-Methylierungsprofile dieser Regionen wurden erstmalig für das Prostatakarzinom erhoben. Diese Studie könnte einen ersten Schritt darstellen, um der Entwicklung eines potenten Biomarkers näherzukommen, jedoch sind hierfür weitere langfristig angelegte Studien notwendig. Ein vorhandener Unterschied in einer einzelnen CpG-Position könnte sich diagnostisch zunutze gemacht werden und wäre mittels Idiolokaler Normierung durch eine Methylierungsspezifische PCR (MSPCR) verlässlich und schnell nachweisbar.

Prostate cancer is the most common male tumour in developed countries and the second most common tumour worldwide. Diagnostics include the determination of PSA levels. However, this is reduced sensitive and not very specific for prostate cancer. These facts make targeted diagnostics particularly important in order to avoid overdiagnosis and overtreatment. The field of epigenetics represents a promising approach in this matter. Epigenetics refers to all mechanisms that influence gene expression without changing the base sequence of the DNA itself. Among other things, the methylation of CpG islands in promoter regions is a mechanism with diagnostic potential.
It has already been observed in methylation-specific arrays that certain CpG islands tend to be hypermethylated in pathologically reviewed non.-malignant prostate tissue samples, whereas they are rather hypomethylated in prostate carcinoma. For the present study, one gene locus each of the XIST gene (x inactivation specific transcript, important for X inactivation) and the KIR2DL3 gene (transmembrane protein found on the surface of natural killer cells) were analyzed for their methylation status in several freely available prostate-associated cell lines and DNA isolated from a total of six primary samples of prostate tumor tissue. The aim was to graphically depict and quantify the methylation status of prostate tumour cells and non-malignant cells of the prostate.
The individual steps involved the bisulphite conversion of cell line DNA isolated from cell cultures. The relevant segments of these gene loci were amplified in vitro and amplified by TA cloning in chemically competent E. coli. After further amplification in liquid media, the gene loci were sequenced to generate a detailed methylation profile of these regions. The result was that a difference between tumour DNA and non-tumour DNA could be detected in six out of eleven DNA samples in the gene KIR2DL3, while a subtle difference was detectable in the XIST gene locus. The exact DNA methylation profiles of these regions were collected for the first time for prostate cancer. This study could be a first step towards the development of a potent biomarker, but further long-term studies are needed. An existing difference in a single CpG position could be used diagnostically and could be easily and quickly determined by means of idiolocal normalization of Methylation Specific PCR.
Quelle:Algarra, I., Collado, A., Garrido, F., 1997. Altered MHC class I antigens in tumors. Int. J. Clin. Lab. Res. 27, 95–102. https://doi.org/10.1007/BF02912442

Ambrosi, C., Manzo, M., Baubec, T., 2017. Dynamics and Context-Dependent Roles of DNA Methylation. J. Mol. Biol. 429, 1459–1475. https://doi.org/10.1016/j.jmb.2017.02.008

Angelopoulou, R., Lavranos, G., Manolakou, P., 2008. Regulatory RNAs and chromatin modification in dosage compensation: A continuous path from flies to humans? Reprod. Biol. Endocrinol. 6, 12. https://doi.org/10.1186/1477-7827-6-12

Araúzo-Bravo, M.J., Erichsen, L., Ott, P., Beermann, A., Sheikh, J., Gerovska, D., Thimm, C., Bendhack, M.L., Santourlidis, S., 2023. Consistent DNA Hypomethylations in Prostate Cancer. Int. J. Mol. Sci. 24, 386. https://doi.org/10.3390/ijms24010386

Ayyıldız, S.N., Ayyıldız, A., 2014. PSA, PSA derivatives, proPSA and prostate health index in the diagnosis of prostate cancer. Turk. J. Urol. 40, 82–88. https://doi.org/10.5152/tud.2014.94547

Bjartell, A., Montironi, R., Berney, D.M., Egevad, L., 2011. Tumour markers in prostate cancer II: diagnostic and prognostic cellular biomarkers. Acta Oncol. Stockh. Swed. 50 Suppl 1, 76–84. https://doi.org/10.3109/0284186X.2010.531284

Boddy, J.L., Gal, S., Mallone, P.R., Harris, A.L., Wainscoat, J.S., 2005. Prospective Study of Quantitation of Plasma DNA Levels in the Diagnosis of Malignant versus Benign Prostate Disease | Clinical Cancer Research | American Association for Cancer Research [WWW Document]. URL https://aacrjournals.org/clincancerres/article/11/4/1394/188858/Prospective-Study-of-Quantitation-of-Plasma-DNA (accessed 12.26.23).

Bothur-Nowacka, J., Jezela-Stanek, A., Zaniuk, K., Goryluk-Kozakiewicz, B., Krajewska-Walasek, M., Dobrzańska, A., 2013. Tetraploidy in the era of molecular karyotyping – What we need to remember. Pediatr. Pol. 88, 467–471. https://doi.org/10.1016/j.pepo.2013.06.002

Bott, S.R.J., Birtle, A.J., Taylor, C.J., Kirby, R.S., 2003. Prostate cancer management: (1) an update on localised disease. Postgrad. Med. J. 79, 575–580. https://doi.org/10.1136/pmj.79.936.575

Brockdorff, N., 2019. Localized accumulation of Xist RNA in X chromosome inactivation. Open Biol. 9, 190213. https://doi.org/10.1098/rsob.190213

Brockdorff, N., Ashworth, A., Kay, G.F., McCabe, V.M., Norris, D.P., Cooper, P.J., Swift, S., Rastan, S., 1992. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526. https://doi.org/10.1016/0092-8674(92)90519-I

Castanares, M.A., Copeland, B.T., Chowdhury, W.H., Liu, M.M., Rodriguez, R., Pomper, M.G., Lupold, S.E., Foss, C.A., 2016. Characterization of a novel metastatic prostate cancer cell line of LNCaP origin. The Prostate 76, 215–225. https://doi.org/10.1002/pros.23115

Catalona, W.J., 2018. Prostate Cancer Screening. Med. Clin. North Am. 102, 199–214. https://doi.org/10.1016/j.mcna.2017.11.001

Cedar, H., Bergman, Y., 2009. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304. https://doi.org/10.1038/nrg2540

Chadwick, B.P., 2003. Chromatin of the Barr body: histone and non-histone proteins associated with or excluded from the inactive X chromosome. Hum. Mol. Genet. 12, 2167–2178. https://doi.org/10.1093/hmg/ddg229

Chan, H.-W., Kurago, Z.B., Stewart, C.A., Wilson, M.J., Martin, M.P., Mace, B.E., Carrington, M., Trowsdale, J., Lutz, C.T., 2003. DNA Methylation Maintains Allele-specific KIR Gene Expression in Human Natural Killer Cells. J. Exp. Med. 197, 245–255. https://doi.org/10.1084/jem.20021127

Chan, H.-W., Miller, J.S., Moore, M.B., Lutz, C.T., 2005. Epigenetic Control of Highly Homologous Killer Ig-Like Receptor Gene Alleles1. J. Immunol. 175, 5966–5974. https://doi.org/10.4049/jimmunol.175.9.5966

Chiam, K., Ricciardelli, C., Bianco-Miotto, T., 2014. Epigenetic biomarkers in prostate cancer: Current and future uses. Cancer Lett. 342, 248–256. https://doi.org/10.1016/j.canlet.2012.02.011

Costa-Pinheiro, P., Montezuma, D., Henrique, R., Jerónimo, C., 2015. Diagnostic and prognostic epigenetic biomarkers in cancer. Epigenomics 7, 1003–1015. https://doi.org/10.2217/epi.15.56


de Vos, L., Gevensleben, H., Schröck, A., Franzen, A., Kristiansen, G., Bootz, F., Dietrich, D., 2017. Comparison of quantification algorithms for circulating cell-free DNA methylation biomarkers in blood plasma from cancer patients. Clin. Epigenetics 9, 125. https://doi.org/10.1186/s13148-017-0425-4

Deaton, A.M., Bird, A., 2011. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022. https://doi.org/10.1101/gad.2037511

Djulbegovic, M., Beyth, R.J., Neuberger, M.M., Stoffs, T.L., Vieweg, J., Djulbegovic, B., Dahm, P., 2010. Screening for prostate cancer: systematic review and meta-analysis of randomised controlled trials. BMJ 341, c4543. https://doi.org/10.1136/bmj.c4543

Egevad, L., Delahunt, B., Furusato, B., Tsuzuki, T., Yaxley, J., Samaratunga, H., 2021. Benign mimics of prostate cancer. Pathology (Phila.) 53, 26–35. https://doi.org/10.1016/j.pathol.2020.08.006

Ehrlich, M., 2002. DNA Hypomethylation, Cancer, the Immunodeficiency, Centromeric Region Instability, Facial Anomalies Syndrome and Chromosomal Rearrangements - ScienceDirect [WWW Document]. URL https://www.sciencedirect.com/science/article/pii/S0022316622153976?via%3Dihub (accessed 12.24.23).

Ehrlich, M., Gama-Sosa, M.A., Huang, L.H., Midgett, R.M., Kuo, K.C., McCune, R.A., Gehrke, C., 1982. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 10, 2709–2721. https://doi.org/10.1093/nar/10.8.2709

Engreitz, J.M., Pandya-Jones, A., McDonel, P., Shishkin, A., Sirokman, K., Surka, C., Kadri, S., Xing, J., Goren, A., Lander, E.S., Plath, K., Guttman, M., 2013. The Xist lncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome. Science 341, 1237973. https://doi.org/10.1126/science.1237973

Fang, H., Disteche, C.M., Berletch, J.B., 2019. X Inactivation and Escape: Epigenetic and Structural Features. Front. Cell Dev. Biol. 7.

Feener, C.A., Koenig, M., Kunkel, L.M., 1989. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus. Nature 338, 509–511. https://doi.org/10.1038/338509a0

Ficarra, V., Novara, G., Zattoni, F., 2010. The Role of the Prostate Cancer Antigen 3 (PCA3) Test for the Diagnosis of Prostate Cancer in the Era of Opportunistic Prostate-Specific Antigen Screening. Eur. Urol. 58, 482–484. https://doi.org/10.1016/j.eururo.2010.07.025
Grehl, C., Kuhlmann, M., Becker, C., Glaser, B., Grosse, I., 2018. How to Design a Whole-Genome Bisulfite Sequencing Experiment. Epigenomes 2, 21. https://doi.org/10.3390/epigenomes2040021

Groden, J., Lieberman, M.A., 2001. Overview of Genetics for the Clinician. Epilepsia 42, 2–10. https://doi.org/10.1111/j.1528-1167.2001.0s001.x

Habbit, N.L., Anbiah, B., Suresh, J., Tian, Y., Anderson, L.S., Davies, M.L., Hassani, I., Ghosh, T.M., Prabhakarpandian, B., Arnold, R.D., Lipke, E.A., 2022. Abstract 3856: Elucidating the role of fibroblasts in CRPC and ADPC progression using 3D engineered prostate cancer tissues. Cancer Res. 82, 3856. https://doi.org/10.1158/1538-7445.AM2022-3856

Hayward, S.W., Wang, Y., Cao, M., Hom, Y.K., Zhang, B., Grossfeld, G.D., Sudilovsky, D., Cunha, G.R., 2001. Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res. 61, 8135–8142.

Henrique, R., Jerónimo, C., 2004. Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur. Urol. 46, 660–669; discussion 669. https://doi.org/10.1016/j.eururo.2004.06.014

Höglund, P., Sundbäck, J., Olsson-Alheim, M.Y., Johansson, M., Salcedo, M., Öhién, C., Ljunggren, H.-G., Sentman, C.L., Kärre, K., 1997. Host MHC class I gene control of NK-cell specificity in the mouse. Immunol. Rev. 155, 11–28. https://doi.org/10.1111/j.1600-065X.1997.tb00936.x

Klutstein, M., Nejman, D., Greenfield, R., Cedar, H., 2016. DNA Methylation in Cancer and Aging. Cancer Res. 76, 3446–3450. https://doi.org/10.1158/0008-5472.CAN-15-3278

Kouzarides, T., 2007. Chromatin modifications and their function. Cell 128, 693–705. https://doi.org/10.1016/j.cell.2007.02.005

Kristensen, L.S., Hansen, L.L., 2009. PCR-Based Methods for Detecting Single-Locus DNA Methylation Biomarkers in Cancer Diagnostics, Prognostics, and Response to Treatment. Clin. Chem. 55, 1471–1483. https://doi.org/10.1373/clinchem.2008.121962

Laner, T., Schulz, W., Engers, R., Müller, M., Florl, A., 2005. Hypomethylation of the XIST Gene Promoter in Prostate Cancer. Oncol. Res. 15, 257–64. https://doi.org/10.3727/096504005776404607

Le Luduec, J.-B., Kudva, A., Boudreau, J.E., Hsu, K.C., 2018. Novel multiplex PCR-SSP method for centromeric KIR allele discrimination. Sci. Rep. 8, 14853. https://doi.org/10.1038/s41598-018-33135-1

Liu, Y., Kuick, R., Hanash, S., Richardson, B., 2009. DNA methylation inhibition increases T cell KIR expression through effects on both promoter methylation and transcription factors. Clin. Immunol. 130, 213–224. https://doi.org/10.1016/j.clim.2008.08.009

Logozzi, M., Angelini, D.F., Iessi, E., Mizzoni, D., Di Raimo, R., Federici, C., Lugini, L., Borsellino, G., Gentilucci, A., Pierella, F., Marzio, V., Sciarra, A., Battistini, L., Fais, S., 2017. Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Lett. 403, 318–329. https://doi.org/10.1016/j.canlet.2017.06.036

Lucchesi, J.C., Kelly, W.G., Panning, B., 2005. Chromatin Remodeling in Dosage Compensation. Annu. Rev. Genet. 39, 615–651. https://doi.org/10.1146/annurev.genet.39.073003.094210

Lumbreras, B., Parker, L.A., Caballero-Romeu, J.P., Gómez-Pérez, L., Puig-García, M., López-Garrigós, M., García, N., Hernández-Aguado, I., 2023. Variables Associated with False-Positive PSA Results: A Cohort Study with Real-World Data. Cancers 15, 261. https://doi.org/10.3390/cancers15010261

Magi-Galluzzi, C., 2018. Prostate cancer: diagnostic criteria and role of immunohistochemistry. Mod. Pathol. 31, 12–21. https://doi.org/10.1038/modpathol.2017.139

Mao, R., Chou, L.-S., 2010. Methylation Analysis by Restriction Endonuclease Digestion and Real-Time PCR. Clin. Chem. 56, 1050–1052. https://doi.org/10.1373/clinchem.2010.146654

Martin, E.M., Fry, R.C., 2018. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu. Rev. Public Health 39, 309–333. https://doi.org/10.1146/annurev-publhealth-040617-014629

Moretta, L., Moretta, A., 2004. Killer immunoglobulin-like receptors. Curr. Opin. Immunol. 16, 626–633. https://doi.org/10.1016/j.coi.2004.07.010

Nakao, M., 2001. Epigenetics: interaction of DNA methylation and chromatin. Gene 278, 25–31. https://doi.org/10.1016/s0378-1119(01)00721-1

Neal, D.E., Donovan, J.L., 2000. Prostate cancer: to screen or not to screen? Lancet Oncol. 1, 17–24. https://doi.org/10.1016/S1470-2045(00)00005-X
Otter, M., Schrander-Stumpel, C.T., Curfs, L.M., 2010. Triple X syndrome: a review of the literature. Eur. J. Hum. Genet. 18, 265–271. https://doi.org/10.1038/ejhg.2009.109

Perry, A.S., Foley, R., Woodson, K., Lawler, M., 2006. The emerging roles of DNA methylation in the clinical management of prostate cancer. Endocr. Relat. Cancer 13, 357–377. https://doi.org/10.1677/erc.1.01184

Peschansky, V.J., Wahlestedt, C., 2014. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9, 3–12. https://doi.org/10.4161/epi.27473

Phillips, J.L., Sinha, A.A., 2009. Patterns, Art, and Context: Donald Floyd Gleason and the Development of the Gleason Grading System. Urology 74, 497–503. https://doi.org/10.1016/j.urology.2009.01.012

Raaijmakers, R., Blijenberg, B.G., Finlay, J.A., Rittenhouse, H.G., Wildhagen, M.F., Roobol, M.J., Schr, Ö.F.H., 2004. Prostate cancer detection in the prostate specific antigen range of 2.0 to 3.9 ng/ml: value of percent free prostate specific antigen on tumor detection and tumor aggressiveness. J. Urol. 171, 2245–2249. https://doi.org/10.1097/01.ju.0000127731.56103.50

Romero-Garcia, S., Prado-Garcia, H., Carlos-Reyes, A., 2020. Role of DNA Methylation in the Resistance to Therapy in Solid Tumors. Front. Oncol. 10.

Roobol, M.J., Haese, A., Bjartell, A., 2011. Tumour markers in prostate cancer III: biomarkers in urine. Acta Oncol. Stockh. Swed. 50 Suppl 1, 85–89. https://doi.org/10.3109/0284186X.2010.524935

Roobol, M.J., Schröder, F.H., van Leeuwen, P., Wolters, T., van den Bergh, R.C.N., van Leenders, G.J.L.H., Hessels, D., 2010. Performance of the Prostate Cancer Antigen 3 (PCA3) Gene and Prostate-Specific Antigen in Prescreened Men: Exploring the Value of PCA3 for a First-line Diagnostic Test. Eur. Urol. 58, 475–481. https://doi.org/10.1016/j.eururo.2010.06.039

Ross, M.T., Grafham, D.V., Coffey, A.J., Scherer, S., McLay, K., Muzny, D., 2005. The DNA sequence of the human X chromosome. Nature 434, 325–337. https://doi.org/10.1038/nature03440

Salozhin, S.V., Prokhorchuk, E.B., Georgiev, G.P., 2005. Methylation of DNA--one of the major epigenetic markers. Biochem. Biokhimiia 70, 525–532. https://doi.org/10.1007/s10541-005-0146-8

Santourlidis, S., Ghanjati, F., Beermann, A., Hermanns, T., Poyet, C., 2016. IDLN-MSP: Idiolocal normalization of real-time methylation-specific PCR for genetic imbalanced DNA specimens [WWW Document]. https://doi.org/10.2144/000114379

Santourlidis, S., Trompeter, H.-I., Weinhold, S., Eisermann, B., Meyer, K.L., Wernet, P., Uhrberg, M., 2002. Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J. Immunol. Baltim. Md 1950 169, 4253–4261. https://doi.org/10.4049/jimmunol.169.8.4253

Sato, F., Tsuchiya, S., Meltzer, S.J., Shimizu, K., 2011. MicroRNAs and epigenetics. FEBS J. 278, 1598–1609. https://doi.org/10.1111/j.1742-4658.2011.08089.x

Saxonov, S., Berg, P., Brutlag, D.L., 2006. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. U. S. A. 103, 1412–1417. https://doi.org/10.1073/pnas.0510310103

Schmidt, M., Maié, T., Dahl, E., Costa, I.G., Wagner, W., 2020. Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biol. 18, 178. https://doi.org/10.1186/s12915-020-00910-4

Shariat, S.F., Semjonow, A., Lilja, H., Savage, C., Vickers, A.J., Bjartell, A., 2011. Tumor markers in prostate cancer I: blood-based markers. Acta Oncol. Stockh. Swed. 50 Suppl 1, 61–75. https://doi.org/10.3109/0284186X.2010.542174

Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A., 2021. Cancer Statistics, 2021. CA. Cancer J. Clin. 71, 7–33. https://doi.org/10.3322/caac.21654

Silva, R., Moran, B., Russell, N.M., Fahey, C., Vlajnic, T., Manecksha, R.P., Finn, S.P., Brennan, D.J., Gallagher, W.M., Perry, A.S., 2020. Evaluating liquid biopsies for methylomic profiling of prostate cancer. Epigenetics 15, 715–727. https://doi.org/10.1080/15592294.2020.1712876

Skuse, D.H., 2005. X-linked genes and mental functioning. Hum. Mol. Genet. 14, R27–R32. https://doi.org/10.1093/hmg/ddi112

Sobel, R.E., Sadar, M.D., 2005. Cell lines used in prostate cancer research: a compendium of old and new lines--part 1. J. Urol. 173, 342–359. https://doi.org/10.1097/01.ju.0000141580.30910.57

Stone, K.R., Mickey, D.D., Wunderli, H., Mickey, G.H., Paulson, D.F., 1978. Isolation of a human prostate carcinoma cell line (DU 145). Int. J. Cancer 21, 274–281. https://doi.org/10.1002/ijc.2910210305

Tammen, S.A., Friso, S., Choi, S.-W., 2013. Epigenetics: the link between nature and nurture. Mol. Aspects Med. 34, 753–764. https://doi.org/10.1016/j.mam.2012.07.018

Tao, K., Sutton, J., Flanagan, J., 2021. Pan-cancer DNA methylation signature quantification of lifestyle exposures and cancer prognosis. https://doi.org/10.21203/rs.3.rs-199381/v1

Thalmann, G.N., Anezinis, P.E., Chang, S.M., Zhau, H.E., Kim, E.E., Hopwood, V.L., Pathak, S., von Eschenbach, A.C., Chung, L.W., 1994. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 54, 2577–2581.

Uhrberg, M., 2005. The KIR gene family: life in the fast lane of evolution. Eur. J. Immunol. 35, 10–15. https://doi.org/10.1002/eji.200425743

Van Bergen, J., Trowsdale, J., 2012. Ligand specificity of Killer cell Immunoglobulin-like Receptors: a brief history of KIR. Front. Immunol. 3.

van der Burgt, Y.E.M., Siliakus, K.M., Cobbaert, C.M., Ruhaak, L.R., 2020. HILIC–MRM–MS for Linkage-Specific Separation of Sialylated Glycopeptides to Quantify Prostate-Specific Antigen Proteoforms. J. Proteome Res. 19, 2708–2716. https://doi.org/10.1021/acs.jproteome.0c00050

Warrick, J., Tomlins, S., 2018. Prostate Cancer Tissue Diagnosis 457–473. https://doi.org/10.1007/978-3-319-64096-9_26

Webber, M.M., Bello, D., Quader, S., 1997. Immortalized and tumorigenic adult human prostatic epithelial cell lines: Characteristics and applications part 2. Tumorigenic cell lines. The Prostate 30, 58–64. https://doi.org/10.1002/(SICI)1097-0045(19970101)30:1<58::AID-PROS9>3.0.CO;2-H

Wojdacz, T.K., Borgbo, T., Hansen, L.L., 2009. Primer design versus PCR bias in methylation independent PCR amplifications. Epigenetics 4, 231–234. https://doi.org/10.4161/epi.9020

Wolff, D.J., Dyke, D.L.V., Powell, C.M., 2010. Laboratory guideline for Turner syndrome. Genet. Med. 12, 52–55. https://doi.org/10.1097/GIM.0b013e3181c684b2
Wu, S.C., Zhang, Y., 2010. Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 11, 607–620. https://doi.org/10.1038/nrm2950

Wu, Y., Sarkissyan, M., Vadgama, J.V., 2015. Epigenetics in breast and prostate cancer. Methods Mol. Biol. Clifton NJ 1238, 425–466. https://doi.org/10.1007/978-1-4939-1804-1_23

Wyatt, G.R., 1950. Occurrence of 5-methylcytosine in nucleic acids. Nature 166, 237–238. https://doi.org/10.1038/166237b0

Yegnasubramanian, S., 2016. Prostate cancer epigenetics and its clinical implications. Asian J. Androl. 18, 549–558. https://doi.org/10.4103/1008-682X.179859

Yu, H., Hahn, Y., Yang, I., 2015. Reference Materials for Calibration of Analytical Biases in Quantification of DNA Methylation. PLOS ONE 10, e0137006. https://doi.org/10.1371/journal.pone.0137006

Yue, M., Charles Richard, J.L., Ogawa, Y., 2016. Dynamic interplay and function of multiple noncoding genes governing X chromosome inactivation. Biochim. Biophys. Acta BBA - Gene Regul. Mech., SI: Clues to long noncoding RNA taxonomy 1859, 112–120. https://doi.org/10.1016/j.bbagrm.2015.07.015
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Bezug:2 Jahre
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:09.09.2024
Dateien geändert am:09.09.2024
Promotionsantrag am:19.03.2024
Datum der Promotion:29.08.2024
english
Benutzer
Status: Gast
Aktionen