Dokument: Hormon- und HER2-Rezeptorstatus beim Mammakarzinom: Bestimmung an der sonografisch gesteuerten Stanzbiopsie und Vergleich mit dem Exzisionspräparat unter Berücksichtigung der Tumorheterogenität

Titel:Hormon- und HER2-Rezeptorstatus beim Mammakarzinom: Bestimmung an der sonografisch gesteuerten Stanzbiopsie und Vergleich mit dem Exzisionspräparat unter Berücksichtigung der Tumorheterogenität
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=66463
URN (NBN):urn:nbn:de:hbz:061-20240808-082432-7
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Török, Janet Yvonne [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,55 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 05.08.2024 / geändert 05.08.2024
Beitragende:Prof. Dr. med. Fehm, Tanja N. [Gutachter]
Prof. Dr. Baldus, Stephan [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Die sonografisch gesteuerte Stanzbiopsie ist ein fester Bestandteil der präoperativen Abklärungsdiagnostik von unklaren Brustbefunden. Zusammen mit der histologischen Untersuchung der Gewebeproben ermöglicht die Stanzbiopsie zuverlässige, präzise Diagnosen und erlaubt darüber hinaus eine umfangreiche Primärdiagnostik bei Mammakarzinomen für eine gezielte Therapieplanung. Um Brustkrebspatientinnen eine individuell maßgeschneiderte Therapie anzubieten, ist es umso wichtiger, dass die Stanzbiopsie verlässliche Informationen liefert, die ansonsten erst die Untersuchung der operativ entfernten Karzinome ergeben würde. Zu diesen zählen u. a. die Hormonrezeptoren für Östrogen (ER) und Progesteron (PR) sowie der humane epidermale Wachstumsfaktorrezeptor 2 (HER2). Diese können Aufschluss über die Wirkung einer bestimmten Systemtherapie geben und erlauben eine vorausschauende Einschätzung des weiteren Krankheitsverlaufs.
Im Rahmen der vorliegenden retrospektiven Studie wurden die diagnostische Genauigkeit der Stanzbiopsie im Vergleich mit den operativ entfernten Mammakarzinomen sowie mögliche Faktoren, die die Aussagekraft der Stanzbiopsie beeinflussen können, untersucht. Dem Vergleich von sonografisch gesteuerten Stanzbiopsien mit den dazugehörigen Exzisionspräparaten lagen 223 adjuvant behandelte Mammakarzinome sowie eine kleine als Subgruppe geführte, neoadjuvant therapierte Mammakarzinome aus der Zeit zwischen Januar 2002 und Dezember 2005 zugrunde. Im Vergleich mit den Exzisionspräparaten ergab die Stanzbiopsie eine hohe Sensitivität und Spezifität zur Bestimmung der Hormonrezeptoren ER (94,9 % und 85,4 %) und PR (95,2 % und 86,8 %) sowie für HER2 (75,0 % und 96,2 %). Vergleichbare Ergebnisse lagen für den positiven und den negativen Vorhersagewert von ER (96,1 % und 81,4 %), PR (95,2 % und 86,8 %) und HER2 (77,4 % und 95,7 %) vor. Somit bestätigen sie die Stanzbiopsie nicht nur als zuverlässiges, sondern auch als genaues Untersuchungsverfahren. Obwohl eine hohe Rate an Überstimmungen vorlag, traten ebenfalls Unterschiede bezüglich der Histologie und der biologischen Eigenschaften der Mammakarzinome auf − jeweils 14 diskrepante ER (7,1 %) und PR (7,1 %) sowie 15 diskrepante HER2 (7,0 %) −, die nicht auf technische Faktoren zurückzuführen waren aber möglicherweise für einzelne Rezeptoren mit dem Grading der Mammakarzinome zusammenhängen. Nach Alpha-Adjustierung bestand ein signifikanter Zusammenhang zwischen dem Grading und PR (p = 0,002).
Maligne Tumore, wie das Mammakarzinom, sind z. T. komplexe Tumore, die heterogene Tumorareale aufweisen können. Obwohl die Stanzbiopsie zuverlässig ein umschriebenes Tumorareal repräsentiert, definiert sie möglicherweise nicht den gesamten Tumor oder das komplette Ausmaß der Tumorheterogenität.

Sonographically guided core needle biopsy is an essential part of the preoperative diagnosis of unclear breast tumors. Together with a pathological examination of the tissue samples, core needle biopsy enables reliable and precise diagnoses and allows comprehensive primary diagnosis of breast carcinomas for targeted therapy planning. To offer breast cancer patients an individually tailored therapy, it is important that the core needle biopsy provides reliable information that would otherwise only be obtained by examining the surgically removed tumor. This includes the hormone receptors for estrogen (ER) and progesterone (PR) as well as the human epidermal growth factor receptor 2 (HER2), because they can provide information about the effect of a systemic treatment and allow a predictive assessment of the further course of the disease.
In this retrospective study the diagnostic accuracy of the core needle biopsy with the corresponding surgically removed tumors and possible factors, that may influence the significance of the biopsy, were investigated. The comparison of sonographically guided core needle biopsies with the corresponding tumors was based on 223 breast carcinomas and a small subgroup of neoadjuvantly treated patients from the period between January 2002 and December 2005. Compared with the data derived from the removed total tumors, the core needle biopsy showed high sensitivity and specificity for the determination of the hormone receptors ER (94.9 % and 85.4 %) and PR (95.2 % and 86.8 %) and for HER2 (75.0 % and 96.2 %). Comparable results were available for the positive and negative predictive value: ER (96.1 % and 81.4 %), PR (95.2 % and 86.8 %) and HER2 (77.4 % and 95.7 %). These findings confirm the core needle biopsy as a reliable and accurate procedure. Although there was a high rate of biomarker concordance, we also found differences in the histology and biological characteristics of the breast carcinomas − respectively 14 discrepant ER (7.1 %) and PR (7.1 %) and 15 discrepant HER2 (7.0 %) compared with the data derived from the total tumor, which were not due to technical factors, but maybe related to the grading of the breast carcinomas. After alpha adjustment, there was a significant correlation between grading and PR (p = 0.002).
Malignant tumors such as breast carcinoma are sometimes complex tumors that may have heterogeneous tumor areas. Although the core needle biopsy reliably represents a defined tumor area, it may not reflect the entire tumor or the full extent of tumor heterogeneity.
Quelle:1. Krebs in Deutschland für 2017/2018. 13. Ausgabe. Robert Koch-Institut (Hrsg) und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (Hrsg). Berlin, 2021. https://doi.org/10.25646/8353
2. William D. Foulkes, M.B., B.S., Ph.D., Ian E. Smith, M.D., and Jorge S. Reis-Filho, M.D., Ph.D.: Triple-Negative Breast Cancer | NEJM. (2010)
3. Hodgson, A., Turashvili, G.: Pathology of Hereditary Breast and Ovarian Cancer. Front Oncol. 10, (2020). https://doi.org/10.3389/fonc.2020.531790
4. Collaborative Group on Hormonal Factors in Breast Cance: Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 13, 1141–1151 (2012). https://doi.org/10.1016/S1470-2045(12)70425-4
5. Lord, S.J., Bernstein, L., Johnson, K.A., Malone, K.E., McDonald, J.A., Marchbanks, P.A., Simon, M.S., Strom, B.L., Press, M.F., Folger, S.G., Burkman, R.T., Deapen, D., Spirtas, R., Ursin, G.: Breast cancer risk and hormone receptor status in older women by parity, age of first birth, and breastfeeding - a case-control study. Cancer Epidemiol Biomarkers Prev. 17, 1723–1730 (2008). https://doi.org/10.1158/1055-9965.EPI-07-2824
6. Type and timing of menopausal hormone therapy and breast cancer risk: individual participant meta-analysis of the worldwide epidemiological evidence. The Lancet. 394, 1159–1168 (2019). https://doi.org/10.1016/S0140-6736(19)31709-X
7. Suzuki, R., Ye, W., Rylander-Rudqvist, T., Saji, S., Colditz, G.A., Wolk, A.: Alcohol and postmenopausal breast cancer risk defined by estrogen and progesterone receptor status: a prospective cohort study. J Natl Cancer Inst. 97, 1601–1608 (2005). https://doi.org/10.1093/jnci/dji341
8. Barnes, B.B.E., Steindorf, K., Hein, R., Flesch-Janys, D., Chang-Claude, J.: Population attributable risk of invasive postmenopausal breast cancer and breast cancer subtypes for modifiable and non-modifiable risk factors. Cancer Epidemiol. 35, 345–352 (2011). https://doi.org/10.1016/j.canep.2010.11.003
9. Tamimi, R.M., Spiegelman, D., Smith-Warner, S.A., Wang, M., Pazaris, M., Willett, W.C., Eliassen, A.H., Hunter, D.J.: Population Attributable Risk of Modifiable and Nonmodifiable Breast Cancer Risk Factors in Postmenopausal Breast Cancer. Am J Epidemiol. 184, 884–893 (2016). https://doi.org/10.1093/aje/kww145
10. Enger, S.M., Ross, R.K., Paganini-Hill, A., Carpenter, C.L., Bernstein, L.: Body Size, Physical Activity, and Breast Cancer Hormone Receptor Status: Results from Two Case-Control Studies. Cancer Epidemiol Biomarkers Prev. 9, 681–687 (2000)
11. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Mammakarzinoms, Version 4.4, 2021, AWMF Registernummer: 032-045OL, http://www.leitlinienprogramm-onkologie.de/leitlinien/mammakarzinom/. (2021)
12. Mueller-Schimpfle, M.P., Brandenbusch, V.C., Degenhardt, F., Duda, V., Madjar, H., Mundinger, A., Rathmann, R., Hahn, M.: Zur Problematik der mammografisch dichten Brust – Positionspapier des AK Mammasonografie der DEGUM. Senologie - Zeitschrift für Mammadiagnostik und -therapie. 13, 76–81 (2016). https://doi.org/10.1055/s-0042-106030
13. Madjar, H.: Role of Breast Ultrasound for the Detection and Differentiation of Breast Lesions. Breast Care (Basel). 5, 109–114 (2010). https://doi.org/10.1159/000297775
14. Buchberger, W., DeKoekkoek-Doll, P., Springer, P., Obrist, P., Dünser, M.: Incidental findings on sonography of the breast: clinical significance and diagnostic workup. AJR. American journal of roentgenology. (2013). https://doi.org/10.2214/ajr.173.4.10511149
15. Nothacker, M., Duda, V., Hahn, M., Warm, M., Degenhardt, F., Madjar, H., Weinbrenner, S., Albert, U.-S.: Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review. BMC Cancer. 9, 335 (2009). https://doi.org/10.1186/1471-2407-9-335
16. Ohuchi, N., Suzuki, A., Sobue, T., Kawai, M., Yamamoto, S., Zheng, Y.-F., Shiono, Y.N., Saito, H., Kuriyama, S., Tohno, E., Endo, T., Fukao, A., Tsuji, I., Yamaguchi, T., Ohashi, Y., Fukuda, M., Ishida, T., J-START investigator groups: Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet. 387, 341–348 (2016). https://doi.org/10.1016/S0140-6736(15)00774-6
17. Brem, R.F., Lenihan, M.J., Lieberman, J., Torrente, J.: Screening Breast Ultrasound: Past, Present, and Future. American Journal of Roentgenology. (2015). https://doi.org/10.2214/AJR.13.12072
18. Madjar, H., Ohlinger, R., Mundinger, A., Watermann, D., Frenz, J.P., Bader, W., Schulz-Wendtland, R., Degenhardt, F.: BI-RADS analoge DEGUM Kriterien von Ultraschallbefunden der Brust - Konsensus des Arbeitskreises Mammasonographie der DEGUM. Ultraschall Med. 27, 374–379 (2006). https://doi.org/10.1055/s-2006-926943
19. Buck, N., Order, B., Schäfer, F.: Aktueller Stand in der Mammasonografie. Radiologie up2date. 10, 15–31 (2010). https://doi.org/10.1055/s-0029-1243836
20. Mundinger, A., Madjar, H.: Mammasonografie Update. Lege artis - Das Magazin zur ärztlichen Weiterbildung. 6, 107–134 (2016). https://doi.org/10.1055/s-0034-1392231
21. Riffel, J.: Aktueller Stand der Mammasonografie. Radiologie up2date. 21, 59–75 (2021). https://doi.org/10.1055/a-1256-0431
22. American College of Radiology. Breast imaging reporting and data system (BI-RADS). Reston, VA: American College of Radiology, 2003. Aktualisierung 2013 und 2016.
23. Parker, S.H., Jobe, W.E., Dennis, M.A., Stavros, A.T., Johnson, K.K., Yakes, W.F., Truell, J.E., Price, J.G., Kortz, A.B., Clark, D.G.: US-guided automated large-core breast biopsy. Radiology. 187, 507–511 (1993). https://doi.org/10.1148/radiology.187.2.8475299
24. Memarsadeghi, M., Pfarl, G., Riedl, C., Wagner, T., Rudas, M., Helbich, T.H.: Die Wertigkeit der 14-Gauge Ultraschall-gezielten Stanzbiopsie bei Brustläsionen: Eigene Resultate im Vergleich mit der Literatur. Rofo. 175, 374–380 (2003). https://doi.org/10.1055/s-2003-37822
25. Crystal, P., Koretz, M., Shcharynsky, S., Makarov, V., Strano, S.: Accuracy of sonographically guided 14-gauge core-needle biopsy: Results of 715 consecutive breast biopsies with at least two-year follow-up of benign lesions. J. Clin. Ultrasound. 33, 47–52 (2005). https://doi.org/10.1002/jcu.20089
26. Buchberger, W., Niehoff, A., Obrist, P., Rettl, G., Dünser, M.: Ultraschallgezielte Stanzbiopsie der Mamma: Technik, Ergebnisse, Indikationen. Der Radiologe. 42, 25–32 (2002). https://doi.org/10.1007/s117-002-8113-9
27. Apesteguía, L., Pina, L.J.: Ultrasound-guided core-needle biopsy of breast lesions. Insights Imaging. 2, 493–500 (2011). https://doi.org/10.1007/s13244-011-0090-7
28. Badoual, C., Maruani, A., Ghorra, C., Lebas, P., Avigdor, S., Michenet, P.: Pathological prognostic factors of invasive breast carcinoma in ultrasound-guided large core biopsies-correlation with subsequent surgical excisions. Breast. 14, 22–27 (2005). https://doi.org/10.1016/j.breast.2004.07.005
29. Youk, J.H., Kim, E.-K., Kim, M.J., Oh, K.K.: Sonographically guided 14-gauge core needle biopsy of breast masses: a review of 2,420 cases with long-term follow-up. AJR Am J Roentgenol. 190, 202–207 (2008). https://doi.org/10.2214/AJR.07.2419
30. Vega BolÍvar, A., Alonso-Bartolomé, P., Ortega GarcÍa, E., Garijo Ayensa, F.: Ultrasound-guided core needle biopsy of non-palpable breast lesions: a prospective analysis in 204 cases. Acta Radiologica. 46, 690–695 (2005). https://doi.org/10.1080/02841850500225740
31. Schulz-Wendtland, R., Adamietz, B., Meier-Meitinger, M., Fasching, P., Uder, M.: Sonographisch gezielte Stanzbiopsie: 15 Jahre Follow-up. Senologie - Zeitschrift für Mammadiagnostik und -therapie. 7, A164 (2010). https://doi.org/10.1055/s-0030-1262136
32. Schoonjans, J.M., Brem, R.F.: Fourteen-gauge ultrasonographically guided large-core needle biopsy of breast masses. J Ultrasound Med. 20, 967–972 (2001). https://doi.org/10.7863/jum.2001.20.9.967
33. Liberman, L., Feng, T.L., Dershaw, D.D., Morris, E.A., Abramson, A.F.: US-guided core breast biopsy: use and cost-effectiveness. Radiology. 208, 717–723 (1998). https://doi.org/10.1148/radiology.208.3.9722851
34. Schueller, G., Schueller-Weidekamm, C., Helbich, T.H.: Accuracy of ultrasound-guided, large-core needle breast biopsy. Eur Radiol. 18, 1761 (2008). https://doi.org/10.1007/s00330-008-0955-4
35. Liberman, L.: Percutaneous Imaging-Guided Core Breast Biopsy. American Journal of Roentgenology. 174, 1191–1199 (2000). https://doi.org/10.2214/ajr.174.5.1741191
36. Parker, S.H.: Percutaneous large core breast biopsy. Cancer. 74, 256–262 (1994)
37. Arbeitsgemeinschaft Gynäkologische Onkologie e.V. (AGO) Diagnostik und Therapie früher und fortgeschrittener Mammakarzinome AGO_2022D_06_Laesionen_unsicheres_Potential.pdf, https://www.ago-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_mamma/2022/Einzeldateien/AGO_2022D_06_Laesionen_unsicheres_Potential.pdf
38. Sittek, H., Kessler, M., Untch, M., Reiser, M.: Minimal-invasive Biopsie und präoperative Markierung suspekter Mammaläsionen. GGR. 44, 69–83 (2004). https://doi.org/10.1159/000076860
39. Lakhani S.R., Ellis I.O., Schnitt S.J., Tan P.H., van de Vijver M.J. (Eds.): WHO Classification of Tumours of the Breast. IARC: Lyon 2012. Aktualisierung Dezember 2018.
40. Elston, C.W., Ellis, O.: pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. 8
41. Hammond, M.E.H., Hayes, D.F., Dowsett, M., Allred, D.C., Hagerty, K.L., Badve, S., Fitzgibbons, P.L., Francis, G., Goldstein, N.S., Hayes, M., Hicks, D.G., Lester, S., Love, R., Mangu, P.B., McShane, L., Miller, K., Osborne, C.K., Paik, S., Perlmutter, J., Rhodes, A., Sasano, H., Schwartz, J.N., Sweep, F.C.G., Taube, S., Torlakovic, E.E., Valenstein, P., Viale, G., Visscher, D., Wheeler, T., Williams, R.B., Wittliff, J.L., Wolff, A.C.: American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer. Journal of Clinical Oncology. 28, 2784 (2010). https://doi.org/10.1200/JCO.2009.25.6529
42. Arbeitsgemeinschaft Gynäkologische Onkologie e.V. (AGO) Diagnostik und Therapie früher und fortgeschrittener Mammakarzinome: 2020D 04_Pathologie.pdf, https://www.ago-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_mamma/2020/PDF_DE/2020D%2004_Pathologie.pdf
43. Gutierrez, C., Schiff, R.: HER 2: Biology, Detection, and Clinical Implications. Arch Pathol Lab Med. 135, 55–62 (2011). https://doi.org/10.1043/2010-0454-RAR.1
44. Ross, J.S., Slodkowska, E.A., Symmans, W.F., Pusztai, L., Ravdin, P.M., Hortobagyi, G.N.: The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 14, 320–368 (2009). https://doi.org/10.1634/theoncologist.2008-0230
45. Wolff, A.C., Hammond, M.E.H., Allison, K.H., Harvey, B.E., Mangu, P.B., Bartlett, J.M.S., Bilous, M., Ellis, I.O., Fitzgibbons, P., Hanna, W., Jenkins, R.B., Press, M.F., Spears, P.A., Vance, G.H., Viale, G., McShane, L.M., Dowsett, M.: Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch. Pathol. Lab. Med. (2018). https://doi.org/10.5858/arpa.2018-0902-SA
46. Kreipe, H.: Ki67-Tumorheterogenität vs. Assayheterogenität. Pathologe. 39, 272–277 (2018). https://doi.org/10.1007/s00292-018-0502-2
47. Soliman, N.A., Yussif, S.M.: Ki-67 as a prognostic marker according to breast cancer molecular subtype. Cancer Biol Med. 13, 496–504 (2016). https://doi.org/10.20892/j.issn.2095-3941.2016.0066
48. Petrelli, F., Viale, G., Cabiddu, M., Barni, S.: Prognostic value of different cut-off levels of Ki-67 in breast cancer: a systematic review and meta-analysis of 64,196 patients. Breast Cancer Res. Treat. 153, 477–491 (2015). https://doi.org/10.1007/s10549-015-3559-0
49. Inic, Z., Zegarac, M., Inic, M., Markovic, I., Kozomara, Z., Djurisic, I., Inic, I., Pupic, G., Jancic, S.: Difference between Luminal A and Luminal B Subtypes According to Ki-67, Tumor Size, and Progesterone Receptor Negativity Providing Prognostic Information. Clin Med Insights Oncol. 8, 107–111 (2014). https://doi.org/10.4137/CMO.S18006
50. Gnant, M., Harbeck, N., Thomssen, C.: St. Gallen 2011: Summary of the Consensus Discussion. Breast Care (Basel). 6, 136–141 (2011). https://doi.org/10.1159/000328054
51. Cheang, M.C.U., Chia, S.K., Voduc, D., Gao, D., Leung, S., Snider, J., Watson, M., Davies, S., Bernard, P.S., Parker, J.S., Perou, C.M., Ellis, M.J., Nielsen, T.O.: Ki67 Index, HER2 Status, and Prognosis of Patients With Luminal B Breast Cancer. J Natl Cancer Inst. 101, 736–750 (2009). https://doi.org/10.1093/jnci/djp082
52. Goldhirsch, A., Wood, W.C., Coates, A.S., Gelber, R.D., Thürlimann, B., Senn, H.-J.: Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 22, 1736–1747 (2011). https://doi.org/10.1093/annonc/mdr304
53. Jackisch, C., Harbeck, N., Huober, J., von Minckwitz, G., Gerber, B., Kreipe, H.-H., Liedtke, C., Marschner, N., Möbus, V., Scheithauer, H., Schneeweiss, A., Thomssen, C., Loibl, S., Beckmann, M.W., Blohmer, J.-U., Costa, S.-D., Decker, T., Diel, I., Fasching, P.A., Fehm, T., Janni, W., Lück, H.-J., Maass, N., Scharl, A., Untch, M.: 14th St. Gallen International Breast Cancer Conference 2015: Evidence, Controversies, Consensus – Primary Therapy of Early Breast Cancer: Opinions Expressed by German Experts. Breast Care (Basel). 10, 211–219 (2015). https://doi.org/10.1159/000433590
54. Mengel, M., Wasielewski, R. von, Wiese, B., Rüdiger, T., Müller‐Hermelink, H.K., Kreipe, H.: Inter-laboratory and inter-observer reproducibility of immunohistochemical assessment of the Ki-67 labelling index in a large multi-centre trial. The Journal of Pathology. 198, 292–299 (2002). https://doi.org/10.1002/path.1218
55. Arbeitsgemeinschaft Gynäkologische Onkologie e.V. (AGO) Diagnostik und Therapie früher und fortgeschrittener Mammakarzinome, https://www.ago-online.de/fileadmin/downloads/leitlinien/mamma/g_mamma_11_1_0_d_10_pathology.pdf
56. Prognostische und prädiktive Faktoren Arbeitsgemeinschaft Gynäkologische Onkologie e.V. (AGO) Diagnostik und Therapie früher und fortgeschrittener Mammakarzinome AGO_2022D_05_Prognostische_und_praediktive_Faktoren.pdf, https://www.ago-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_mamma/2022/Einzeldateien/AGO_2022D_05_Prognostische_und_praediktive_Faktoren.pdf
57. Houssami, N., Macaskill, P., Marinovich, M.L., Morrow, M.: The Association of Surgical Margins and Local Recurrence in Women with Early-Stage Invasive Breast Cancer Treated with Breast-Conserving Therapy: a Meta-analysis. Ann Surg Oncol. 21, 717–730 (2014). https://doi.org/10.1245/s10434-014-3480-5
58. Veronesi, U., Cascinelli, N., Mariani, L., Greco, M., Saccozzi, R., Luini, A., Aguilar, M., Marubini, E.: Twenty-Year Follow-up of a Randomized Study Comparing Breast-Conserving Surgery with Radical Mastectomy for Early Breast Cancer, https://www.nejm.org/doi/10.1056/NEJMoa020989
59. Christiansen, P., Carstensen, S.L., Ejlertsen, B., Kroman, N., Offersen, B., Bodilsen, A., Jensen, M.-B.: Breast conserving surgery versus mastectomy: overall and relative survival—a population based study by the Danish Breast Cancer Cooperative Group (DBCG). Acta Oncologica. 57, 19–25 (2018). https://doi.org/10.1080/0284186X.2017.1403042
60. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet. 378, 1707–1716 (2011). https://doi.org/10.1016/S0140-6736(11)61629-2
61. Arbeitsgemeinschaft Gynäkologische Onkologie e.V. (AGO) Diagnostik und Therapie früher und fortgeschrittener Mammakarzinome 2020D 10_Adjuvante endokrine Therapie.pdf, https://www.ago-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_mamma/2020/PDF_DE/2020D%2010_Adjuvante%20endokrine%20Therapie.pdf
62. Goldhirsch, A., Winer, E.P., Coates, A.S., Gelber, R.D., Piccart-Gebhart, M., Thürlimann, B., Senn, H.-J., Albain, K.S., André, F., Bergh, J., Bonnefoi, H., Bretel-Morales, D., Burstein, H., Cardoso, F., Castiglione-Gertsch, M., Coates, A.S., Colleoni, M., Costa, A., Curigliano, G., Davidson, N.E., Di Leo, A., Ejlertsen, B., Forbes, J.F., Gelber, R.D., Gnant, M., Goldhirsch, A., Goodwin, P., Goss, P.E., Harris, J.R., Hayes, D.F., Hudis, C.A., Ingle, J.N., Jassem, J., Jiang, Z., Karlsson, P., Loibl, S., Morrow, M., Namer, M., Kent Osborne, C., Partridge, A.H., Penault-Llorca, F., Perou, C.M., Piccart-Gebhart, M.J., Pritchard, K.I., Rutgers, E.J.T., Sedlmayer, F., Semiglazov, V., Shao, Z.-M., Smith, I., Thürlimann, B., Toi, M., Tutt, A., Untch, M., Viale, G., Watanabe, T., Wilcken, N., Winer, E.P., Wood, W.C.: Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 24, 2206–2223 (2013). https://doi.org/10.1093/annonc/mdt303
63. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. The Lancet. 365, 1687–1717 (2005). https://doi.org/10.1016/S0140-6736(05)66544-0
64. Pan, H., Gray, R., Braybrooke, J., Davies, C., Taylor, C., McGale, P., Peto, R., Pritchard, K.I., Bergh, J., Dowsett, M., Hayes, D.F.: 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. New England Journal of Medicine. 377, 1836–1846 (2017). https://doi.org/10.1056/NEJMoa1701830
65. Bardou, V.-J., Arpino, G., Elledge, R.M., Osborne, C.K., Clark, G.M.: Progesterone Receptor Status Significantly Improves Outcome Prediction Over Estrogen Receptor Status Alone for Adjuvant Endocrine Therapy in Two Large Breast Cancer Databases. JCO. 21, 1973–1979 (2003). https://doi.org/10.1200/JCO.2003.09.099
66. Ross, J.S., Fletcher, J.A., Linette, G.P., Stec, J., Clark, E., Ayers, M., Symmans, W.F., Pusztai, L., Bloom, K.J.: The HER-2/neu Gene and Protein in Breast Cancer 2003: Biomarker and Target of Therapy. The Oncologist. 8, 307–325 (2003). https://doi.org/10.1634/theoncologist.8-4-307
67. Arbeitsgemeinschaft Gynäkologische Onkologie e.V. (AGO) Diagnostik und Therapie früher und fortgeschrittener Mammakarzinome 2020D 11_Adjuvante zytostatische und zielgerichtete Therapien.pdf, https://www.ago-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_mamma/2020/PDF_DE/2020D
%2011_Adjuvante zytostatische%20und%20zielgerichtete%20Therapien_mit%20Literatur.pdf
68. Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) AGO_2023D_12_Neoadjuvante_systemische_Therapie.pdf, https://www.ago-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_mamma/2023/Einzeldateien/AGO_2023D_12_Neoadjuvante_systemische_Therapie.pdf
69. von Minckwitz, G., Procter, M., de Azambuja, E., Zardavas, D., Benyunes, M., Viale, G., Suter, T., Arahmani, A., Rouchet, N., Clark, E., Knott, A., Lang, I., Levy, C., Yardley, D.A., Bines, J., Gelber, R.D., Piccart, M., Baselga, J.: Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N Engl J Med. 377, 122–131 (2017). https://doi.org/10.1056/NEJMoa1703643
70. Sinn, H.P., Schmid, H., Junkermann, H., Huober, J., Leppien, G., Kaufmann, M., Bastert, G., Otto, H.F.: Histologische Regression des Mammakarzinoms nach primärer (neoadjuvanter) Chemotherapie. Geburtshilfe Frauenheilkd. 54, 552–558 (1994). https://doi.org/10.1055/s-2007-1022338
71. Minckwitz, G. von, Fontanella, C.: State of the art in neoadjuvant therapy of breast cancer. EJC Suppl. 11, 284–285 (2013). https://doi.org/10.1016/j.ejcsup.2013.07.043
72. von Minckwitz, G., Untch, M., Blohmer, J.-U., Costa, S.D., Eidtmann, H., Fasching, P.A., Gerber, B., Eiermann, W., Hilfrich, J., Huober, J., Jackisch, C., Kaufmann, M., Konecny, G.E., Denkert, C., Nekljudova, V., Mehta, K., Loibl, S.: Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 30, 1796–1804 (2012). https://doi.org/10.1200/JCO.2011.38.8595
73. Arbeitsgemeinschaft Gynäkologische Onkologie e.V. (AGO) Diagnostik und Therapie früher und fortgeschrittener Mammakarzinome 2020D 12_Neoadjuvante systemische Therapie.pdf, https://www.ago-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_mamma/2020/PDF_DE/2020D%2012_Neoadjuvante%20systemische%20Therapie.pdf
74. Remmele, W., Stegner, H.E.: [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. Pathologe. 8, 138–140 (1987)
75. Wolff, A.C., Hammond, M.E.H., Schwartz, J.N., Hagerty, K.L., Allred, D.C., Cote, R.J., Dowsett, M., Fitzgibbons, P.L., Hanna, W.M., Langer, A., McShane, L.M., Paik, S., Pegram, M.D., Perez, E.A., Press, M.F., Rhodes, A., Sturgeon, C., Taube, S.E., Tubbs, R., Vance, G.H., van de Vijver, M., Wheeler, T.M., Hayes, D.F., American Society of Clinical Oncology, College of American Pathologists: American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J. Clin. Oncol. 25, 118–145 (2007). https://doi.org/10.1200/JCO.2006.09.2775
76. Dillon, M.F., Hill, A.D.K., Quinn, C.M., O’Doherty, A., McDermott, E.W., O’Higgins, N.: The Accuracy of Ultrasound, Stereotactic, and Clinical Core Biopsies in the Diagnosis of Breast Cancer, With an Analysis of False-Negative Cases. Ann Surg. 242, 701–707 (2005). https://doi.org/10.1097/01.sla.0000186186.05971.e0
77. Cahill, R.A., Walsh, D., Landers, R.J., Watson, R.G.: Preoperative profiling of symptomatic breast cancer by diagnostic core biopsy. Ann. Surg. Oncol. 13, 45–51 (2006). https://doi.org/10.1245/ASO.2006.03.047
78. Rakha, E.A., Ellis, I.O.: An overview of assessment of prognostic and predictive factors in breast cancer needle core biopsy specimens. J Clin Pathol. 60, 1300–1306 (2007). https://doi.org/10.1136/jcp.2006.045377
79. Usami, S., Moriya, T., Amari, M., Suzuki, A., Ishida, T., Sasano, H., Ohuchi, N.: Reliability of prognostic factors in breast carcinoma determined by core needle biopsy. Jpn. J. Clin. Oncol. 37, 250–255 (2007). https://doi.org/10.1093/jjco/hym021
80. Tamaki, K., Sasano, H., Ishida, T., Miyashita, M., Takeda, M., Amari, M., Tamaki, N., Ohuchi, N.: Comparison of core needle biopsy (CNB) and surgical specimens for accurate preoperative evaluation of ER, PgR and HER2 status of breast cancer patients. Cancer Sci. 101, 2074–2079 (2010). https://doi.org/10.1111/j.1349-7006.2010.01630.x
81. Andrade, V.P. de, Gobbi, H.: Accuracy of typing and grading invasive mammary carcinomas on core needle biopsy compared with the excisional specimen. Virchows Arch. 445, 597–602 (2004). https://doi.org/10.1007/s00428-004-1110-5
82. Denley, H., Pinder, S., Elston, C., Lee, A., Ellis, I.: Preoperative assessment of prognostic factors in breast cancer. Journal of clinical pathology. 54, 20–4 (2001)
83. Harris, G.C., Denley, H.E., Pinder, S.E., Lee, A.H.S., Ellis, I.O., Elston, C.W., Evans, A.: Correlation of Histologic Prognostic Factors in Core Biopsies and Therapeutic Excisions of Invasive Breast Carcinoma. The American Journal of Surgical Pathology. 27, 11 (2003)
84. Deshpande, A., Garud, T., Holt, S.D.: Core biopsy as a tool in planning the management of invasive breast cancer. World J Surg Oncol. 3, 1 (2005). https://doi.org/10.1186/1477-7819-3-1
85. Erggelet, J., Grosse, R., Holzhausen, H.-J., Hauptmannb, S., Thomssen, C.: Correlation of Human Epidermal Growth Factor Receptor 2 (HER2), Estrogen Receptor (ER), and Progesterone Receptor (PR) Expression as Predicted by Core Biopsy with the Immunohistochemical Results of Surgical Breast Cancer Specimens. BRC. 2, 94–98 (2007). https://doi.org/10.1159/000101429
86. Arnedos, M., Nerurkar, A., Osin, P., A’Hern, R., Smith, I.E., Dowsett, M.: Discordance between core needle biopsy (CNB) and excisional biopsy (EB) for estrogen receptor (ER), progesterone receptor (PgR) and HER2 status in early breast cancer (EBC). Ann Oncol. 20, 1948–1952 (2009). https://doi.org/10.1093/annonc/mdp234
87. Chen, X., Sun, L., Mao, Y., Zhu, S., Wu, J., Huang, O., Li, Y., Chen, W., Wang, J., Yuan, Y., Fei, X., Jin, X., Shen, K.: Preoperative core needle biopsy is accurate in determining molecular subtypes in invasive breast cancer. BMC Cancer. 13, 390 (2013). https://doi.org/10.1186/1471-2407-13-390
88. Dekker, T.J.A., Smit, V.T.H.B.M., Hooijer, G.K.J., Van de Vijver, M.J., Mesker, W.E., Tollenaar, R. a. E.M., Nortier, J.W.R., Kroep, J.R.: Reliability of core needle biopsy for determining ER and HER2 status in breast cancer. Ann. Oncol. 24, 931–937 (2013). https://doi.org/10.1093/annonc/mds599
89. Lebeau, A., Turzynski, A., Braun, S., Behrhof, W., Fleige, B., Schmitt, W.D., Grob, T.J., Burkhardt, L., Hölzel, D., Jackisch, C., Thomssen, C., Müller, V., Untch, M.: Reliability of Human Epidermal Growth Factor Receptor 2 Immunohistochemistry in Breast Core Needle Biopsies. JCO. 28, 3264–3270 (2010). https://doi.org/10.1200/JCO.2009.25.9366
90. Joseph, C., Papadaki, A., Althobiti, M., Alsaleem, M., Aleskandarany, M.A., Rakha, E.A.: Breast cancer intratumour heterogeneity: current status and clinical implications. Histopathology. 73, 717–731 (2018). https://doi.org/10.1111/his.13642
91. Varga, Z., Noske, A., Ramach, C., Padberg, B., Moch, H.: Assessment of HER2 status in breast cancer: overall positivity rate and accuracy by fluorescence in situ hybridization and immunohistochemistry in a single institution over 12 years: a quality control study. BMC Cancer. 13, 615 (2013). https://doi.org/10.1186/1471-2407-13-615
92. Taucher, S., Rudas, M., Mader, R.M., Gnant, M., Dubsky, P., Roka, S., Bachleitner, T., Kandioler, D., Steger, G., Mittlböck, M., Jakesz, R.: Prognostic markers in breast cancer: the reliability of HER2/neu status in core needle biopsy of 325 patients with primary breast cancer. Wien. Klin. Wochenschr. 116, 26–31 (2004)
93. Wolff, A.C., Hammond, M.E.H., Hicks, D.G., Dowsett, M., McShane, L.M., Allison, K.H., Allred, D.C., Bartlett, J.M.S., Bilous, M., Fitzgibbons, P., Hanna, W., Jenkins, R.B., Mangu, P.B., Paik, S., Perez, E.A., Press, M.F., Spears, P.A., Vance, G.H., Viale, G., Hayes, D.F., American Society of Clinical Oncology, College of American Pathologists: Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 31, 3997–4013 (2013). https://doi.org/10.1200/JCO.2013.50.9984
94. Schulz-Wendtland, R., Aichinger, U., Krämer, S., Tartsch, M., Kuchar, I., Magener, A., Bautz, W.: Sonographisch gezielte Stanzbiopsie: Wie viele Biopsiezylinder sind notwendig? Fortschr Röntgenstr. 175, 94–98 (2003). https://doi.org/10.1055/s-2003-36599
95. Cavaliere, A., Sidoni, A., Scheibel, M., Bellezza, G., Brachelente, G., Vitali, R., Bucciarelli, E.: Biopathologic profile of breast cancer core biopsy: is it always a valid method? Cancer Letters. 218, 117–121 (2005). https://doi.org/10.1016/j.canlet.2004.07.041
96. Singh, K., Wang, Y., Marketkar, S., Kalife, E.T., Steinhoff, M.M.: Comparison of estrogen receptor, progesterone receptor and HER2 results in concurrent ipsilateral samples with invasive breast carcinoma: a retrospective study of 246 biopsies from 119 patients. Hum. Pathol. 65, 123–132 (2017). https://doi.org/10.1016/j.humpath.2017.04.016
97. Meattini, I., Bicchierai, G., Saieva, C., De Benedetto, D., Desideri, I., Becherini, C., Abdulcadir, D., Vanzi, E., Boeri, C., Gabbrielli, S., Lucci, F., Sanchez, L., Casella, D., Bernini, M., Orzalesi, L., Vezzosi, V., Greto, D., Mangoni, M., Bianchi, S., Livi, L., Nori, J.: Impact of molecular subtypes classification concordance between preoperative core needle biopsy and surgical specimen on early breast cancer management: Single-institution experience and review of published literature. Eur J Surg Oncol. 43, 642–648 (2017). https://doi.org/10.1016/j.ejso.2016.10.025
98. Sutela, A., Vanninen, R., Sudah, M., Berg, M., Kiviniemi, V., Rummukainen, J., Kataja, V., Kärjä, V.: Surgical specimen can be replaced by core samples in assessment of ER, PR and HER-2 for invasive breast cancer. Acta Oncol. 47, 38–46 (2008). https://doi.org/10.1080/02841860701441822
99. Douglas-Jones, A.G., Collett, N., Morgan, J.M., Jasani, B.: Comparison of core oestrogen receptor (ER) assay with excised tumour: intratumoral distribution of ER in breast carcinoma. J. Clin. Pathol. 54, 951–955 (2001)
100. Zidan, A., Christie Brown, J.S., Peston, D., Shousha, S.: Oestrogen and progesterone receptor assessment in core biopsy specimens of breast carcinoma. J Clin Pathol. 50, 27–29 (1997)
101. Mann, G.B., Fahey, V.D., Feleppa, F., Buchanan, M.R.: Reliance on Hormone Receptor Assays of Surgical Specimens May Compromise Outcome in Patients With Breast Cancer. JCO. 23, 5148–5154 (2005). https://doi.org/10.1200/JCO.2005.02.076
102. Greer, L.T., Rosman, M., Mylander, W.C., Hooke, J., Kovatich, A., Sawyer, K., Buras, R.R., Shriver, C.D., Tafra, L.: Does Breast Tumor Heterogeneity Necessitate Further Immunohistochemical Staining on Surgical Specimens? Journal of the American College of Surgeons. 216, 239–251 (2013). https://doi.org/10.1016/j.jamcollsurg.2012.09.007
103. Gown, A.M.: Current issues in ER and HER2 testing by IHC in breast cancer. Modern Pathology. 21, S8–S15 (2008). https://doi.org/10.1038/modpathol.2008.34
104. Arbeitsgemeinschaft Gynäkologische Onkologie e.V. (AGO) Diagnostik und Therapie früher und fortgeschrittener Mammakarzinome, https://www.ago-online.de/fileadmin/downloads/leitlinien/mamma/2017-03/AGO_deutsch/PDF_Gesamtdatei_deutsch/Alle_aktuellen_Empfehlungen_2017.pdf
105. Allison, K.H., Hammond, M.E.H., Dowsett, M., McKernin, S.E., Carey, L.A., Fitzgibbons, P.L., Hayes, D.F., Lakhani, S.R., Chavez-MacGregor, M., Perlmutter, J., Perou, C.M., Regan, M.M., Rimm, D.L., Symmans, W.F., Torlakovic, E.E., Varella, L., Viale, G., Weisberg, T.F., McShane, L.M., Wolff, A.C.: Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update. JCO. 38, 1346–1366 (2020). https://doi.org/10.1200/JCO.19.02309
106. Khoury, T., Sait, S., Hwang, H., Chandrasekhar, R., Wilding, G., Tan, D., Kulkarni, S.: Delay to formalin fixation effect on breast biomarkers. Mod Pathol. 22, 1457–1467 (2009). https://doi.org/10.1038/modpathol.2009.117
107. Apple, S., Pucci, R., Lowe, A.C., Shintaku, I., Shapourifar-Tehrani, S., Moatamed, N.: The Effect of Delay in Fixation, Different Fixatives, and Duration of Fixation in Estrogen and Progesterone Receptor Results in Breast Carcinoma. Am J Clin Pathol. 135, 592–598 (2011). https://doi.org/10.1309/AJCPB1RIT5YXMRIS
108. Hasson, J., Luhan, P.A., Kohl, M.W.: Comparison of estrogen receptor levels in breast cancer samples from mastectomy and frozen section specimens. Cancer. 47, 138–139 (1981)
109. Nadji, M., Gomez-Fernandez, C., Ganjei-Azar, P., Morales, A.R.: Immunohistochemistry of estrogen and progesterone receptors reconsidered: experience with 5,993 breast cancers. Am. J. Clin. Pathol. 123, 21–27 (2005). https://doi.org/10.1309/4wv79n2ghj3x1841
110. Lorgis, V., Algros, M.P., Villanueva, C., Chaigneau, L., Thierry-vuillemin, A., Nguyen, T., Demarchi, M., Bazan, F., Sautiere, J.L., Maisonnette-Lescot, Y., Ringenbach, F., Bontemps, P., Pivot, X.: Discordance in early breast cancer for tumour grade, Estrogen Receptor, Progesteron Receptors and Human Epidermal Receptor-2 status between core needle biopsy and surgical excisional primary tumour. The Breast. 20, 284–287 (2011). https://doi.org/10.1016/j.breast.2010.12.007
111. Shimada, A., Kimura, S., Abe, K., Nagasaki, K., Adachi, I., Yamaguchi, K., Suzuki, M., Nakajima, T., Miller, L.S.: Immunocytochemical staining of estrogen receptor in paraffin sections of human breast cancer by use of monoclonal antibody: comparison with that in frozen sections. Proc Natl Acad Sci U S A. 82, 4803–4807 (1985)
112. Bridges, K.G., Keshgegian, A.A., Kumar, H.A., Neal, H.S.: Influence of surgical technique on estrogen and progesterone receptor determinations in breast cancer. Cancer. 51, 2317–2320 (1983)
113. Lebeau, A., Turzynski, A., Braun, S., Behrhof, W., Fleige, B., Schmitt, W.D., Grob, T.J., Burkhardt, L., Hölzel, D., Jackisch, C., Thomssen, C., Müller, V., Untch, M.: Reliability of human epidermal growth factor receptor 2 immunohistochemistry in breast core needle biopsies. J Clin Oncol. 28, 3264–3270 (2010). https://doi.org/10.1200/JCO.2009.25.9366
114. Hanna, W., Nofech-Mozes, S., Kahn, H.J.: Intratumoral heterogeneity of HER2/neu in breast cancer--a rare event. Breast J. 13, 122–129 (2007). https://doi.org/10.1111/j.1524-4741.2007.00396.x
115. Lester, S.C., Bose, S., Chen, Y.-Y., Connolly, J.L., de Baca, M.E., Fitzgibbons, P.L., Hayes, D.F., Kleer, C., O’Malley, F.P., Page, D.L., Smith, B.L., Tan, L.K., Weaver, D.L., Winer, E.: Protocol for the Examination of Specimens From Patients With Invasive Carcinoma of the Breast. Archives of Pathology & Laboratory Medicine. 133, 1515–1538 (2009). https://doi.org/10.1043/1543-2165-133.10.1515
116. Allott, E.H., Geradts, J., Sun, X., Cohen, S.M., Zirpoli, G.R., Khoury, T., Bshara, W., Chen, M., Sherman, M.E., Palmer, J.R., Ambrosone, C.B., Olshan, A.F., Troester, M.A.: Intratumoral heterogeneity as a source of discordance in breast cancer biomarker classification. Breast Cancer Res. 18, (2016). https://doi.org/10.1186/s13058-016-0725-1
117. Murthy, S., Sandhya, D., Ahmed, F., Goud, Ki., Dayal, M., Suseela, K., Rajappa, S.: Assessment of HER2/Neu status by fluorescence in situ hybridization in immunohistochemistry-equivocal cases of invasive ductal carcinoma and aberrant signal patterns: A study at a tertiary cancer center. Indian Journal of Pathology and Microbiology. 54, 532 (2011). https://doi.org/10.4103/0377-4929.85087
118. Tsuda, H., Kurosumi, M., Umemura, S., Yamamoto, S., Kobayashi, T., Osamura, R.Y.: HER2 testing on core needle biopsy specimens from primary breast cancers: interobserver reproducibility and concordance with surgically resected specimens. BMC Cancer. 10, 534 (2010). https://doi.org/10.1186/1471-2407-10-534
119. Pekmezci, M., Szpaderska, A., Osipo, C., Erşahin, Ç.: The Effect of Cold Ischemia Time and/or Formalin Fixation on Estrogen Receptor, Progesterone Receptor, and Human Epidermal Growth Factor Receptor-2 Results in Breast Carcinoma. Patholog Res Int. 2012, (2012). https://doi.org/10.1155/2012/947041
120. Prabhu, J.S., Korlimarla, A., Desai, K., Alexander, A., Raghavan, R., Anupama, C., Dendukuri, N., Manjunath, S., Correa, M., Raman, N., Kalamdani, A., Prasad, M., Gopinath, K.S., Srinath, B.S., Sridhar, T.S.: A Majority of Low (1-10%) ER Positive Breast Cancers Behave Like Hormone Receptor Negative Tumors. J Cancer. 5, 156–165 (2014). https://doi.org/10.7150/jca.7668
121. Obr, A., Edwards, D.P.: The Biology of Progesterone Receptor in the Normal Mammary gland and in Breast Cancer. Mol Cell Endocrinol. 357, 4–17 (2012). https://doi.org/10.1016/j.mce.2011.10.030
122. Osborne, C.K., Schiff, R.: Estrogen-Receptor Biology: Continuing Progress and Therapeutic Implications. JCO. 23, 1616–1622 (2005). https://doi.org/10.1200/JCO.2005.10.036
123. Cui, X., Schiff, R., Arpino, G., Osborne, C.K., Lee, A.V.: Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J. Clin. Oncol. 23, 7721–7735 (2005). https://doi.org/10.1200/JCO.2005.09.004
124. Foley, N.M., Coll, J.M., Lowery, A.J., Hynes, S.O., Kerin, M.J., Sheehan, M., Brodie, C., Sweeney, K.J.: Re-Appraisal of Estrogen Receptor Negative/Progesterone Receptor Positive (ER−/PR+) Breast Cancer Phenotype: True Subtype or Technical Artefact? Pathol. Oncol. Res. 24, 881–884 (2018). https://doi.org/10.1007/s12253-017-0304-5
125. O’Sullivan, C.C., Bradbury, I., Campbell, C., Spielmann, M., Perez, E.A., Joensuu, H., Costantino, J.P., Delaloge, S., Rastogi, P., Zardavas, D., Ballman, K.V., Holmes, E., de Azambuja, E., Piccart-Gebhart, M., Zujewski, J.A., Gelber, R.D.: Efficacy of Adjuvant Trastuzumab for Patients With Human Epidermal Growth Factor Receptor 2–Positive Early Breast Cancer and Tumors ≤ 2 cm: A Meta-Analysis of the Randomized Trastuzumab Trials. J Clin Oncol. 33, 2600–2608 (2015). https://doi.org/10.1200/JCO.2015.60.8620
126. Martelotto, L.G., Ng, C.K., Piscuoglio, S., Weigelt, B., Reis-Filho, J.S.: Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 16, 210 (2014). https://doi.org/10.1186/bcr3658
127. Gerlinger, M., Swanton, C.: How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer. 103, 1139–1143 (2010). https://doi.org/10.1038/sj.bjc.6605912
128. Guo, M., Peng, Y., Gao, A., Du, C., Herman, J.G.: Epigenetic heterogeneity in cancer. Biomark Res. 7, 23 (2019). https://doi.org/10.1186/s40364-019-0174-y
129. Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N.Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C.R., Nohadani, M., Eklund, A.C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P.A., Swanton, C.: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. New England Journal of Medicine. 366, 883–892 (2012). https://doi.org/10.1056/NEJMoa1113205
130. Cowell, C.F., Weigelt, B., Sakr, R.A., Ng, C.K.Y., Hicks, J., King, T.A., Reis-Filho, J.S.: Progression from ductal carcinoma in situ to invasive breast cancer: Revisited. Mol Oncol. 7, 859–869 (2013). https://doi.org/10.1016/j.molonc.2013.07.005
131. Song, F., Li, X., Song, F., Zhao, Y., Li, H., Zheng, H., Gao, Z., Wang, J., Zhang, W., Chen, K.: Comparative genomic analysis reveals bilateral breast cancers are genetically independent. Oncotarget. 6, 31820–31829 (2015). https://doi.org/10.18632/oncotarget.5569
132. Saad, R.S., Denning, K.L., Finkelstein, S.D., Liu, Y., Pereira, T.C., Lin, X., Silverman, J.F.: Diagnostic and prognostic utility of molecular markers in synchronous bilateral breast carcinoma. Mod. Pathol. 21, 1200–1207 (2008). https://doi.org/10.1038/modpathol.2008.35
133. Teixeira, M.R., Ribeiro, F.R., Torres, L., Pandis, N., Andersen, J.A., Lothe, R.A., Heim, S.: Assessment of clonal relationships in ipsilateral and bilateral multiple breast carcinomas by comparative genomic hybridisation and hierarchical clustering analysis. Br J Cancer. 91, 775–782 (2004). https://doi.org/10.1038/sj.bjc.6602021
134. Slaughter, D.P., Southwick, H.W., Smejkal, W.: Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 6, 963–968 (1953)
135. Braakhuis, B.J.M., Tabor, M.P., Kummer, J.A., Leemans, C.R., Brakenhoff, R.H.: A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 63, 1727–1730 (2003)
136. Foschini, M.P., Morandi, L., Leonardi, E., Flamminio, F., Ishikawa, Y., Masetti, R., Eusebi, V.: Genetic clonal mapping of in situ and invasive ductal carcinoma indicates the field cancerization phenomenon in the breast. Hum. Pathol. 44, 1310–1319 (2013). https://doi.org/10.1016/j.humpath.2012.09.022
137. Asioli, S., Morandi, L., Cavatorta, C., Cucchi, M.C., Foschini, M.P.: The impact of field cancerization on the extent of duct carcinoma in situ (DCIS) in breast tissue after conservative excision. Eur J Surg Oncol. 42, 1806–1813 (2016). https://doi.org/10.1016/j.ejso.2016.07.005
138. Yates, L.R., Gerstung, M., Knappskog, S., Desmedt, C., Gundem, G., Loo, P.V., Aas, T., Alexandrov, L.B., Larsimont, D., Davies, H., Li, Y., Ju, Y.S., Ramakrishna, M., Haugland, H.K., Lilleng, P.K., Nik-Zainal, S., McLaren, S., Butler, A., Martin, S., Glodzik, D., Menzies, A., Raine, K., Hinton, J., Jones, D., Mudie, L.J., Jiang, B., Vincent, D., Greene-Colozzi, A., Adnet, P.-Y., Fatima, A., Maetens, M., Ignatiadis, M., Stratton, M.R., Sotiriou, C., Richardson, A.L., Lønning, P.E., Wedge, D.C., Campbell, P.J.: Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med. 21, 751–759 (2015). https://doi.org/10.1038/nm.3886
139. Lindström, L.S., Karlsson, E., Wilking, U.M., Johansson, U., Hartman, J., Lidbrink, E.K., Hatschek, T., Skoog, L., Bergh, J.: Clinically Used Breast Cancer Markers Such As Estrogen Receptor, Progesterone Receptor, and Human Epidermal Growth Factor Receptor 2 Are Unstable Throughout Tumor Progression. JCO. 30, 2601–2608 (2012). https://doi.org/10.1200/JCO.2011.37.2482
140. Li, S., Wu, J., Huang, O., He, J., Chen, W., Li, Y., Chen, X., Shen, K.: Association of Molecular Biomarker Heterogeneity With Treatment Pattern and Disease Outcomes in Multifocal or Multicentric Breast Cancer. Frontiers in Oncology. 12, (2022)
141. Nitz, U., Gluz, O., Kreipe, H.H., Christgen, M., Kuemmel, S., Baehner, F.L., Shak, S., Aktas, B., Braun, M., Lüdtke-Heckenkamp, K., Forstbauer, H., Grischke, E.-M., Nuding, B., Darsow, M., Schumacher, C., Krauss, K., Malter, W., Thill, M., Warm, M., Wuerstlein, R., Kates, R.E., Harbeck, N.: The run-in phase of the prospective WSG-ADAPT HR+/HER2– trial demonstrates the feasibility of a study design combining static and dynamic biomarker assessments for individualized therapy in early breast cancer. Ther Adv Med Oncol. 12, 1758835920973130 (2020). https://doi.org/10.1177/1758835920973130
142. van de Ven, S., Smit, V.T.H.B.M., Dekker, T.J.A., Nortier, J.W.R., Kroep, J.R.: Discordances in ER, PR and HER2 receptors after neoadjuvant chemotherapy in breast cancer. Cancer Treat. Rev. 37, 422–430 (2011). https://doi.org/10.1016/j.ctrv.2010.11.006
143. Kinsella, M.D., Nassar, A., Siddiqui, M.T., Cohen, C.: Estrogen receptor (ER), progesterone receptor (PR), and HER2 expression pre- and post- neoadjuvant chemotherapy in primary breast carcinoma: a single institutional experience. Int J Clin Exp Pathol. 5, 530–536 (2012)
144. Kasami, M., Uematsu, T., Honda, M., Yabuzaki, T., Sanuki, J., Uchida, Y., Sugimura, H.: Comparison of estrogen receptor, progesterone receptor and Her-2 status in breast cancer pre- and post-neoadjuvant chemotherapy. Breast. 17, 523–527 (2008). https://doi.org/10.1016/j.breast.2008.04.002
145. Li, P., Liu, T., Wang, Y., Shao, S., Zhang, W., Lv, Y., Yi, J., Wang, Z.: Influence of Neoadjuvant Chemotherapy on HER2/neu Status in Invasive Breast Cancer. Clinical Breast Cancer. 13, 53–60 (2013). https://doi.org/10.1016/j.clbc.2012.09.011
146. Gahlaut, R., Bennett, A., Fatayer, H., Dall, B.J., Sharma, N., Velikova, G., Perren, T., Dodwell, D., Lansdown, M., Shaaban, A.M.: Effect of neoadjuvant chemotherapy on breast cancer phenotype, ER/PR and HER2 expression - Implications for the practising oncologist. Eur. J. Cancer. 60, 40–48 (2016). https://doi.org/10.1016/j.ejca.2016.03.006
147. Jin, X., Jiang, Y.-Z., Chen, S., Yu, K.-D., Shao, Z.-M., Di, G.-H.: Prognostic value of receptor conversion after neoadjuvant chemotherapy in breast cancer patients: a prospective observational study. Oncotarget. 6, 9600–9611 (2015)
148. Tacca, O., Penault-Llorca, F., Abrial, C., Mouret-Reynier, M.-A., Raoelfils, I., Durando, X., Achard, J.-L., Gimbergues, P., Curé, H., Chollet, P.: Changes in and Prognostic Value of Hormone Receptor Status in a Series of Operable Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. The Oncologist. 12, 636–643 (2007). https://doi.org/10.1634/theoncologist.12-6-636
149. Hirata, T., Shimizu, C., Yonemori, K., Hirakawa, A., Kouno, T., Tamura, K., Ando, M., Katsumata, N., Fujiwara, Y.: Change in the hormone receptor status following administration of neoadjuvant chemotherapy and its impact on the long-term outcome in patients with primary breast cancer. Br J Cancer. 101, 1529–1536 (2009). https://doi.org/10.1038/sj.bjc.6605360
150. Niikura, N., Liu, J., Hayashi, N., Mittendorf, E.A., Gong, Y., Palla, S.L., Tokuda, Y., Gonzalez-Angulo, A.M., Hortobagyi, G.N., Ueno, N.T.: Loss of Human Epidermal Growth Factor Receptor 2 (HER2) Expression in Metastatic Sites of HER2-Overexpressing Primary Breast Tumors. J Clin Oncol. 30, 593–599 (2012). https://doi.org/10.1200/JCO.2010.33.8889
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:08.08.2024
Dateien geändert am:08.08.2024
Promotionsantrag am:15.09.2023
Datum der Promotion:20.06.2024
english
Benutzer
Status: Gast
Aktionen