Dokument: Implementierung und klinische Anwendung des PET/MRT

Titel:Implementierung und klinische Anwendung des PET/MRT
Weiterer Titel:Implementation and clinical application of PET/MRI
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=66230
URN (NBN):urn:nbn:de:hbz:061-20240702-110203-9
Kollektion:Publikationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Habilitation
Medientyp:Text
Autor:Dr.med. Bruckmann, Nils-Martin [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]23,02 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 24.06.2024 / geändert 24.06.2024
Stichwörter:Hybride Bildgebung; Radiologie, PET/MRT
Dokumententyp (erweitert):Habilitation
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Die Anwendung hybrider Bildgebungsverfahren, also die Fusion morphologischer und funktioneller Bilddatensätze zur Erlangung komplementärer Informationen, ist seit vielen Jahren mit großem Erfolg Teil der klinischen Routine. Seit Beginn dieses Jahrtausends ist die PET/CT, also die Kombination aus Positronenemissions-tomographie und Computertomographie, bereits ein etabliertes Verfahren und in vielen Leitlinien als Diagnostikum verankert. Seit 2010 steht auch die PET/MRT zur Verfügung und stellt damit die bis dato neueste der hybriden Bildgebungsmodalitäten dar. Sie kombiniert funktionelle sowie morphologisch hochauflösende Daten aus der Magnetresonanztomographie mit Stoffwechselinformationen aus der PET.
Insbesondere in der Onkologie ist die PET/MRT ein vielversprechendes bildgebendes Verfahren mit vielfältigen Anwendungsmöglichkeiten. Seit ihrer Einführung haben sich eine große Anzahl an Studien mit dieser Modalität beschäftigt und ihren hohen diagnostischen Wert für das Staging von Tumorerkrankungen herausgestellt.
Beispielsweise wird erwartet, dass die gleichzeitige Erfassung von metabolischen PET- und morphologischen sowie funktionellen MRT-Daten einen großen Einfluss auf die Bildgebung des Mammakarzinoms haben könnte, da die MRT im Vergleich zur CT eine bessere Auflösung des Brustgewebes bietet. Neben den molekularen Markern sind Fernmetastasen und der Befall der axillären Lymphknoten die wichtigsten Prädiktoren für das Gesamtüberleben und die Rezidivwahrscheinlichkeit bei Patientinnen mit Mammakarzinom.
Analog hierzu beschäftigten sich die Arbeiten 1, 2 und 3 mit dem Vergleich des diagnostischen Potentials von Knochenszintigraphie, Computertomographie, Ganzkörper-MRT und Ganzkörper [18F]FDG PET/MRT Untersuchungen für das lokoregionäre (N-Staging) und Ganzkörperstaging (M-Staging) bei Patientinnen mit neu diagnostiziertem, histologisch gesichertem Mammakarzinom. In Arbeit 1 wurde die diagnostische Wertigkeit vom MRT allein mit dem [18F]FDG PET/MRT verglichen. In der Studie konnten beide Modalitäten sehr gute diagnostische Ergebnisse erzielen, wobei die [18F]FDG PET/MRT sowohl beim N- als auch beim M-Staging eine Überlegenheit gegenüber der alleinigen MRT-Untersuchung bot. In Arbeit 2 erfolgte der Vergleich der derzeit in der Leitlinie als Goldstandard festgelegten kontrastverstärkten Computertomographie mit der [18F]FDG PET/MRT Untersuchung. Auch hier konnte die [18F]FDG PET/MRT eine diagnostische Überlegenheit zeigen, sodass trotz der offensichtlichen Vorteile der Computertomographie wie Verfügbarkeit, geringerer Kosten oder schnellerer Akquisitionsgeschwindigkeit der Aufnahmen die [18F]FDG PET/MRT als potentielle Alternative beim primären Staging des Mammakarzinoms in Zukunft als Alternative in Betracht gezogen werden muss.
Trotz der Fortschritte bei der Behandlung des Mammakarzinoms entwickeln immer noch bis zu 30 % der Patientinnen im Laufe der Erkrankung Fernmetastasen. Hierbei ist das Skelettsystem mit etwa 50-70 % aller Metastasen am häufigsten betroffen. Dies kann zu verschiedenen Komplikationen wie Schmerzen, pathologischen Frakturen oder Hyperkalzämie führen, was oft einen großen Einfluss auf die Morbidität und Mortalität der Patientinnen hat. Aufgrund der Relevanz von ossären Metastasen beschäftigte sich Arbeit 3 mit der diagnostischen Wertigkeit von [18F]FDG PET/MRT, dem MRT allein, der Computertomographie und der Knochenszintigraphie in Bezug auf die Detektion von ossären Metastasen im Rahmen des primären Stagings bei Patientinnen mit primärem Mammakarzinom. In dieser Studie konnte gezeigt werden, dass sowohl die MRT als auch die [18F]FDG PET/MRT in der Detektion von Knochenmetastasen beim Mammakarzinom der CT und insbesondere der Knochenszintigraphie deutlich überlegen sind. Die MRT allein und das [18F]FDG PET/MRT erreichten hierbei gleich gute Ergebnisse, sodass auch in Anbetracht des häufig jungen Patientenalters und der therapeutischen Bedeutung von ossären Metastasen die strahlenfreie Ganzkörper-MRT als Diagnostikum der Wahl beim primären Staging von Brustkrebspatientinnen dienen könnte.
Diesen Ergebnissen entsprechend hat die Ganzkörper-MRT zunehmend an Bedeutung gewonnen und wird heute in internationalen Leitlinien für verschiedene Tumorentitäten (z.B. multiples Myelom, Prostatakarzinom und auch Mammakarzinom) empfohlen. Eine wesentliche Einschränkung ist allerdings weiterhin die Anfälligkeit für Atem- und Herzbewegungen, was zu einer deutlich geringeren Beurteilbarkeit des Lungenparenchyms und eingeschränkten Erkennbarkeit von Lungenmetastasen im Vergleich zum CT-Thorax führt. In Arbeit 4 wurde daher das diagnostische Potential einer radial akquirierten Stack of Stars T1-gewichteten Gradientenecho (GRE) 3D-VIBE-Sequenz (StarVIBE), bei der keine Atempausen nötig sind, mit den konventionellen, standardmäßig verwendeten T1- und T2- gewichteten MRT-Sequenzen und der Computertomographie als Referenzstandard in Hinblick auf die Erkennung von Lungenrundherden in der kontrastverstärkten Ganzkörper-[18F]FDG PET/MRT Untersuchung verglichen. Hier war die StarVIBE-Sequenz bei der Erkennung zentral gelegener Lungenrundherde im Vergleich zu den übrigen Sequenzen besonders vorteilhaft, allerdings waren alle MRT-Sequenzen der Computertomographie als Referenzstandard insgesamt weiterhin unterlegen.
Die PET/MRT bietet neben mindestens gleichwertigen diagnostischen Ergebnissen im Vergleich zu den konventionellen Bildgebungsmodalitäten zusätzlich Informationen über Metabolismus mittels PET sowie die Tumorzellularität mittels funktioneller Bildgebung wie beispielsweise den diffusionsgewichteten Sequenzen (DWI). Ziel verschiedener Studien ist es, mittels Kombination einzelner Tumorparameter eine Vorhersage über Tumoraggressivität und -differenzierung zu ermöglichen und damit den Krankheitsverlauf und die Prognose abschätzen und frühzeitig eine gezielte Therapie einzuleiten zu können. Dies ist besonders wichtig bei Tumoren, die eine hohe Letalität besitzen oder durch ihre Heterogenität eine frühzeitige Auswahl einer geeigneten Therapie erschweren.
Ein Beispiel hierfür ist das Lungenkarzinom, welches die weltweit am häufigsten diagnostizierte Tumorentität und mit etwa 18% die mit Abstand häufigste krebsbedingte Todesursache darstellt. Ziel der Arbeit 5 war es, mit Hilfe einer [18F]FDG PET/MRT Untersuchung einen unabhängigen, möglichst präzisen Marker für das Langzeitüberleben von Patienten mit fortgeschrittenem NSCLC (non small cell lung cancer) zu finden. Die Studie unterstreicht den Wert des SUVmax als unabhängigen prognostischen Marker für das Gesamtüberleben bei NSCLC-Patienten, die Bestimmung des ADC-Wertes brachte in dieser Studie jedoch keinen zusätzlichen Nutzen.
Auch Arbeit 6 beschäftigte sich mit der Kombination verschiedener Daten aus dem PET/MRT, um möglichst frühzeitig Aussagen zu Tumorparametern treffen zu können. In dieser Studie wurde der Einfluss der Kontrastmittelanreicherung, der Diffusionsstörungen und des SUV-Wertes auf das Tumorgrading bei therapienaiven Patienten mit neuroendokrinem Tumor mittels [68Ga]DOTATOC-PET/MRT untersucht und gezeigt, dass diese Parameter eine Vorhersage des Gradings und der Tumoraggressivität bei neuroendokrinen Tumoren ermöglichen.
Um möglichst exakte quantitative Ergebnisse aus der PET-Untersuchung zu erhalten, ist auch im PET/MRT eine Schwächungskorrektur notwendig, die umgebendes Körpergewebe und Hardwarekomponenten des Gerätes berücksichtigt. In der PET/MRT ist die Erstellung dieser Schwächungskorrektur besonders schwierig. In der Regel wird ein Segmentierungsansatz verwendet, bei dem umgebendes Gewebe einzelnen Gewebeklassen zugeordnet wird (Luft, Lunge, Fett, Weichgewebe, Knochen). Ziel vieler Studien in den letzten Jahren war es daher, diese Schwächungskorrektur stetig zu verbessern um möglichst exakte quantitative Werte zu erreichen. In Arbeit 7 wurde der Einfluss einer Kontrastmittelgabe während der Untersuchung auf die Schwächungskorrektur in den neuesten verwendeten Dixon-Sequenzen untersucht und festgestellt, dass die Kontrastmittelgabe die Schwächungskorrektur teils erheblich beeinflussen kann und quantitative Daten wie SUV-Werte verfälscht werden. Neue PET/MRT Protokolle müssen daher für eine optimale Vergleichbarkeit der gewonnenen Daten so erstellt werden, dass die Schwächungskorrektur immer vor der Kontrastmittelgabe erfolgt.
Das zunehmende Verständnis von Stoffwechselprozessen und der Pathogenese verschiedener Erkrankungen hat in den letzten Jahren zur Entwicklung einer ganzen Reihe neuer, spezifischer Radiotracer geführt. Ein Beispiel hierfür ist der osteoblastenspezifische Radiotracer 18F-Natriumfluorid (Na[18F]F), der die Visualisierung lokaler osteoblastischer Aktivität in entzündlichen und strukturellen Läsionen des Skeletts ermöglicht. In Arbeit 8 wurde mit Hilfe dieses Radiotracers die Wirkung einer Therapie mit TNF-Inhibitoren auf die osteoblastische Aktivität mittels eines Na[18F]F PET/MRT bei Patienten mit röntgenologischer axialer Spondyloarthritis untersucht und festgestellt, dass die TNF-Inhibitoren neben der entzündungshemmenden auch eine positive, antiosteoblastische Wirkung besitzen und damit eine Rückbildung der radiologischen Progression dieser Erkrankung zur Folge haben können. Außerdem ist eine möglichst frühzeitige Einleitung der Therapie für den Krankheitsverlauf entscheidend.

The use of hybrid imaging techniques, i.e. the fusion of morphological and functional image data sets to obtain complementary information, has been part of routine clinical practice for many years with great success. PET/CT, i.e. the combination of positron emission tomography and computer tomography, has been an established procedure since the beginning of this millennium and is included in many guidelines as a diagnostic tool. PET/MRI has also been available since 2010, making it the latest of the hybrid imaging modalities to date. It combines functional and morphological high-resolution data from magnetic resonance imaging with metabolic information from PET.
In oncology in particular, PET/MRI is a promising imaging technique with a wide range of potential applications. Since its introduction, a large number of studies have focused on this modality and highlighted its high diagnostic value for the staging of tumour diseases.
For example, the simultaneous acquisition of metabolic PET and morphological and functional MRI data is expected to have a major impact on the imaging of breast cancer, as MRI offers better resolution of breast tissue compared to CT. In addition to molecular markers, distant metastases and axillary lymph node involvement are the most important predictors of overall survival and the probability of recurrence in patients with breast cancer.
Similarly, papers 1, 2 and 3 compared the diagnostic potential of bone scintigraphy, computed tomography, whole-body MRI and whole-body [18F]FDG PET/MRI examinations for locoregional (N-staging) and whole-body staging (M-staging) in patients with newly diagnosed, histologically confirmed breast cancer.
In study 1, the diagnostic value of MRI alone was compared with [18F]FDG PET/MRI. In the study, both modalities achieved very good diagnostic results, with [18F]FDG PET/MRI offering superiority over MRI alone for both N- and M-staging. Work 2 compared the contrast-enhanced computed tomography currently defined as the gold standard in the guideline with the [18F]FDG PET/MRI examination. Here, too, [18F]FDG PET/MRI demonstrated diagnostic superiority, so that despite the obvious advantages of computed tomography, such as availability, lower costs or faster acquisition speed of the images, [18F]FDG PET/MRI must be considered as a potential alternative in the primary staging of breast cancer in the future.
Despite advances in the treatment of breast cancer, up to 30 % of patients still develop distant metastases during the course of the disease.
The skeletal system is most frequently affected, accounting for around 50-70% of all metastases. This can lead to various complications such as pain, pathological fractures or hypercalcaemia, which often has a major impact on patient morbidity and mortality. Due to the relevance of osseous metastases, paper 3 dealt with the diagnostic value of [18F]FDG PET/MRI, MRI alone, computed tomography and bone scintigraphy with regard to the detection of osseous metastases in the context of primary staging in patients with primary breast cancer. This study showed that both MRI and [18F]FDG PET/MRI are clearly superior to CT and especially bone scintigraphy in the detection of bone metastases in breast cancer. MRI alone and [18F]FDG PET/MRI achieved equally good results, so that radiation-free whole-body MRI could serve as the diagnostic tool of choice in the primary staging of breast cancer patients, also in view of the often young age of patients and the therapeutic significance of osseous metastases.In line with these results, whole-body MRI has become increasingly important and is now recommended in international guidelines for various tumour entities (e.g. multiple myeloma, prostate carcinoma and breast carcinoma).
However, a significant limitation is still the susceptibility to respiratory and cardiac movements, which leads to a significantly lower assessability of the lung parenchyma and limited recognisability of lung metastases compared to CT thorax. In work 4, the diagnostic potential of a radially acquired stack of stars T1-weighted gradient echo (GRE) 3D VIBE sequence (StarVIBE), which does not require breath-holds, was therefore compared with the conventional, standard T1- and T2-weighted MRI sequences and computed tomography as a reference standard with regard to the detection of lung round foci in the contrast-enhanced whole-body [18F]FDG PET/MRI examination. Here, the StarVIBE sequence was particularly favourable in the detection of centrally located lung round foci compared to the other sequences, although all MRI sequences were still inferior to computed tomography as a reference standard overall.In addition to providing at least equivalent diagnostic results compared to conventional imaging modalities, PET/MRI also provides information on metabolism using PET and tumour cellularity using functional imaging such as diffusion-weighted imaging (DWI).
The aim of various studies is to use a combination of individual tumour parameters to enable a prediction of tumour aggressiveness and differentiation and thus to estimate the course of the disease and prognosis and to be able to initiate targeted therapy at an early stage. This is particularly important for tumours with a high mortality rate or whose heterogeneity makes it difficult to select a suitable therapy at an early stage.One example of this is lung cancer, which is the most frequently diagnosed tumour entity worldwide and, at around 18%, by far the most common cause of cancer-related death.
The aim of study 5 was to find an independent, precise marker for the long-term survival of patients with advanced NSCLC (non-small cell lung cancer) using an [18F]FDG PET/MRI examination. The study emphasises the value of SUVmax as an independent prognostic marker for overall survival in NSCLC patients, but the determination of the ADC value did not provide any additional benefit in this study.
Study 6 also dealt with the combination of different data from PET/MRI in order to be able to make statements about tumour parameters as early as possible. In this study, the influence of contrast agent enhancement, diffusion disturbances and the SUV value on tumour grading in treatment-naive patients with neuroendocrine tumours was investigated using [68Ga]DOTATOC PET/MRI and it was shown that these parameters enable prediction of grading and tumour aggressiveness in neuroendocrine tumoursIn order to obtain the most accurate quantitative results possible from the PET examination, an attenuation correction is also necessary in PET/MRI, which takes into account the surrounding body tissue and hardware components of the device.
In PET/MRI, the creation of this attenuation correction is particularly difficult. As a rule, a segmentation approach is used in which the surrounding tissue is assigned to individual tissue classes (air, lung, fat, soft tissue, bone). The aim of many studies in recent years has therefore been to continuously improve this attenuation correction in order to achieve quantitative values that are as accurate as possible. In work 7, the influence of contrast agent administration during the examination on the attenuation correction in the latest Dixon sequences used was investigated and it was found that the administration of contrast agent can have a considerable influence on the attenuation correction in some cases and that quantitative data such as SUV values are falsified. New PET/MRI protocols must therefore be created in such a way that the attenuation correction always takes place before the contrast agent is administered in order to optimise the comparability of the data obtained.The increasing understanding of metabolic processes and the pathogenesis of various diseases has led to the development of a whole series of new, specific radiotracers in recent years.
One example of this is the osteoblast-specific radiotracer 18F-sodium fluoride (Na[18F]F), which enables the visualisation of local osteoblastic activity in inflammatory and structural lesions of the skeleton. In work 8, this radiotracer was used to investigate the effect of therapy with TNF inhibitors on osteoblastic activity using Na[18F]F PET/MRI in patients with radiological axial spondyloarthritis and it was found that TNF inhibitors have a positive, anti-osteoblastic effect in addition to the anti-inflammatory effect and can therefore result in a regression of the radiological progression of this disease. In addition, the earliest possible initiation of therapy is crucial for the course of the disease.
Quelle:1. Townsend DW. Combined positron emission tomography-computed tomography: the historical perspective. Semin Ultrasound CT MR. 2008;29:232-235.
2. Quick HH. Integrated PET/MR. J Magn Reson Imaging. 2014;39:243-58.
3. Kirchner J. Onkologische Diagnosik mittels hybrider Bildgebung.; 2020.
4. Kitajima K, Yamano T, Miyoshi Y, Katsuura T, Enoki T, Yamakado K. Prognostic value of 18 F-FDG PET/CT prior to breast cancer treatment. Comparison with magnetic resonance spectroscopy and diffusion weighted imaging. Hell J Nucl Med. 2019;22:25-35.
5. Hwang JP, Lim I, Byun BH, Kim B Il, Choi CW, Lim SM. Prognostic value of SUVmax measured by pretreatment 18F-FDG PET/CT in patients with primary gastric lymphoma. Nucl Med Commun. 2016;37:1267-1272.
6. Chung MP, Margolis D, Mesko S, Wang J, Kupelian P, Kamrava M. Correlation of quantitative diffusion-weighted and dynamic contrast-enhanced MRI parameters with prognostic factors in prostate cancer. J Med Imaging Radiat Oncol. 2014;58:588-94.
7. Nakamura K, Joja I, Kodama J, Hongo A, Hiramatsu Y. Measurement of SUVmax plus ADCmin of the primary tumour is a predictor of prognosis in patients with cervical cancer. Eur J Nucl Med Mol Imaging. 2012.
8. Gao F. Integrated Positron Emission Tomography/Magnetic Resonance Imaging in clinical diagnosis of Alzheimer’s disease. Eur J Radiol. 2021;145:110017.
9. Buchbender C, Ostendorf B, Ruhlmann V, et al. Hybrid 18f-labeled fluoride positron emission tomography/Magnetic Resonance (MR) imaging of the sacroiliac joints and the spine in patients with axial spondyloarthritis: A pilot study exploring the link of MR bone pathologies and increased osteoblastic ac. J Rheumatol. 2015;42:1631-7.
10. Kogan F, Fan AP, Gold GE. Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease. Quant Imaging Med Surg. 2016;6:756-771.
11. Moses WW. Fundamental Limits of Spatial Resolution in PET. Nucl instruments methods Phys Res Sect A, Accel spectrometers, Detect Assoc Equip. 2011;648 Supple:S236-S240.
12. Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369-1379.
13. Kalendar WA. Computertomographie. Grundlagen, Gerätetechnologie, Bildqualität, Anwendungen. 2. überarb. Erlangen: Publicis Corporate Publishing; 2006.
14. Alkadhi H, Leschka S, Stolzmann P, Scheffel H. Wie funktioniert CT? Springer Medizin Verlag Heidelberg; 2011.
15. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25:2046-2053.
16. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med. 2003.
17. Antoch G, Stattaus J, Nemat AT, et al. Non-Small Cell Lung Cancer: Dual-Modality PET/CT in Preoperative Staging. Radiology. 2003.
18. Antoch G, Vogt FM, Freudenberg LS, et al. Whole-Body Dual-Modality PET/CT and Whole-Body MRI for Tumor Staging in Oncology. J Am Med Assoc. 2003;290:3199-206.
19. Bar-Shalom R, Yefremov N, Guralnik L, et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med. 2003;44:1200-1209.
20. Lardinois D, Weder W, Hany TF, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med. 2003;348:2500-2507.
21. Hahn K, Pfluger T. Is PET/CT necessary in paediatric oncology? Against. Eur J Nucl Med Mol Imaging. 2006;33:966-968.
22. Brix G, Nosske D, Lechel U. Radiation exposure of patients undergoing whole-body FDG-PET/CT examinations: an update pursuant to the new ICRP recommendations. Nuklearmedizin. 2014;53:217-220.
23. Magometschnigg HF, Baltzer PA, Fueger B, et al. Diagnostic accuracy of (18)F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3 T. Eur J Nucl Med Mol Imaging. 2015;42:1656-1665.
24. Fukui MB, Blodgett TM, Snyderman CH, et al. Combined PET-CT in the head and neck: part 2. Diagnostic uses and pitfalls of oncologic imaging. Radiogr a Rev Publ Radiol Soc North Am Inc. 2005;25:913-930.
25. Gu P, Pan L-L, Wu S-Q, Sun L, Huang G. CA 125, PET alone, PET-CT, CT and MRI in diagnosing recurrent ovarian carcinoma: a systematic review and meta-analysis. Eur J Radiol. 2009;71:164-174.
26. Khalil HI, Patterson SA, Panicek DM. Hepatic lesions deemed too small to characterize at CT: prevalence and importance in women with breast cancer. Radiology. 2005;235:872-878.
27. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 2: Bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med. 2012;53:1244-52.
28. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 1: Tumors of the brain, head and neck, chest, abdomen, and pelvis. J Nucl Med. 2012;53:928-938.
29. Antoch G, Bockisch A. Combined PET/MRI: A new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009.
30. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med. 2006;47:1968-1976.
31. Pichler BJ, Judenhofer MS, Catana C, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47:639-647.
32. Quick HH. Integrated PET/MR. J Magn Reson Imaging. 2014;39:243-258.
33. Visvikis D, Costa DC, Croasdale I, et al. CT-based attenuation correction in the calculation of semi-quantitative indices of [18F]FDG uptake in PET. Eur J Nucl Med Mol Imaging. 2003;30:344-53.
34. Carney JPJ, Townsend DW, Rappoport V, Bendriem B. Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys. 2006;38:2948-56.
35. Kim JH, Lee JS, Song I-C, Lee DS. Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data. J Nucl Med. 2012;53:1878-1882.
36. Heusch P, Buchbender C, Beiderwellen K, et al. Standardized uptake values for [18F] FDG in normal organ tissues: Comparison of whole-body PET/CT and PET/MRI. Eur J Radiol. 2013;82:870-6.
37. Sawicki LM, Grueneisen J, Buchbender C, et al. Evaluation of the Outcome of Lung Nodules Missed on 18F-FDG PET/MRI Compared with 18F-FDG PET/CT in Patients with Known Malignancies. J Nucl Med. 2016;57:15-20.
38. Sawicki LM, Grueneisen J, Buchbender C, et al. Comparative Performance of 18F-FDG PET/MRI and 18F-FDG PET/CT in Detection and Characterization of Pulmonary Lesions in 121 Oncologic Patients. J Nucl Med. 2016;57:582-586.
39. Beiderwellen K, Gomez B, Buchbender C, et al. Depiction and characterization of liver lesions in whole body [(1)(8)F]-FDG PET/MRI. Eur J Radiol. 2013;82:e669-75.
40. Krüger S, Mottaghy FM, Buck AK, et al. Brain metastasis in lung cancer. Comparison of cerebral MRI and 18F-FDG-PET/CT for diagnosis in the initial staging. Nuklearmedizin. 2011;50:101-106.
41. Beiderwellen K, Huebner M, Heusch P, et al. Whole-body [18F]FDG PET/MRI vs. PET/CT in the assessment of bone lesions in oncological patients: initial results. Eur Radiol. 2014;24:2023-2030.
42. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424.
43. Michaelson JS, Chen LL, Silverstein MJ, et al. How cancer at the primary site and in the lymph nodes contributes to the risk of cancer death. Cancer. 2009;115:5095-5107.
44. Wockel A, Festl J, Stuber T, et al. Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017) - Part 2 with Recommendations for the Therapy of Primary, Recurrent and Advanced Br. Geburtshilfe Frauenheilkd. 2018;78:1056-1088.
45. Cardoso F, Paluch-Shimon S, Senkus E, et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol. 2020;31:1623-1649.
46. Gradishar WJ, Anderson BO, Balassanian R, et al. Breast Cancer, Version 4.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2018;16:310-320.
47. Menezes GL, Knuttel FM, Stehouwer BL, Pijnappel RM, van den Bosch MA. Magnetic resonance imaging in breast cancer: A literature review and future perspectives. World J Clin Oncol. 2014;5:61-70.
48. Senkus E, Kyriakides S, Ohno S, et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol Off J Eur Soc Med Oncol. 2015;26 Suppl 5:v8-30.
49. Hausmann D, Kern C, Schröder M. Ganzkörper-MRT in der präoperativen Diagnostik des Mammakarzinoms – ein Vergleich mit den Staging- methoden in der S 3-Leitlinie Whole-Body MRI in Preoperative Diagnostics of Breast Cancer – a Comparison of. Fortschritte Röntgenstrahlen. 2011;183:1130-1137.
50. Tatsumi M, Cohade C, Mourtzikos KA, Fishman EK, Wahl RL. Initial experience with FDG-PET/CT in the evaluation of breast cancer. Eur J Nucl Med Mol Imaging. 2006.
51. Ulaner GA. PET/CT for Patients With Breast Cancer: Where Is the Clinical Impact? Am J Roentgenol. 2019:1-12.
52. Ulaner GA, Castillo R, Goldman DA, et al. 18F-FDG-PET/CT for systemic staging of newly diagnosed triple-negative breast cancer. Eur J Nucl Med Mol Imaging. 2016;43:1937-44.
53. Botsikas D, Bagetakos I, Picarra M, et al. What is the diagnostic performance of 18-FDG-PET/MR compared to PET/CT for the N- and M- staging of breast cancer? Eur Radiol. 2019;29:1787-1798.
54. Grueneisen J, Nagarajah J, Buchbender C, et al. Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients with Primary Breast Cancer: A Comparison with Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging. Invest Radiol. 2015;50:505-13.
55. Sawicki LM, Grueneisen J, Schaarschmidt BM, et al. Evaluation of 18F-FDG PET/MRI, 18F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer. Eur J Radiol. 2016;85:459-465.
56. Grueneisen J, Sawicki LM, Wetter A, et al. Evaluation of PET and MR datasets in integrated 18F-FDG PET/MRI: A comparison of different MR sequences for whole-body restaging of breast cancer patients. Eur J Radiol. 2017;89:14-19.
57. Melsaether AN, Raad RA, Pujara AC, et al. Comparison of Whole-Body 18 F FDG PET/MR Imaging and Whole-Body 18 F FDG PET/CT in Terms of Lesion Detection and Radiation Dose in Patients with Breast Cancer. Radiology. 2016;281:193-202.
58. Gradishar WJ, Moran MS, Abraham J, et al. NCCN Guidelines® Insights: Breast Cancer, Version 4.2021. J Natl Compr Canc Netw. 2021;19:484-493.
59. Kanda T, Kitajima K, Suenaga Y, et al. Value of retrospective image fusion of 18F-FDG PET and MRI for preoperative staging of head and neck cancer: Comparison with PET/CT and contrast-enhanced neck MRI. Eur J Radiol. 2013.
60. Anderson WF, Reiner AS, Matsuno RK, Pfeiffer RM. Shifting breast cancer trends in the United States. J Clin Oncol. 2007;25:3923-9.
61. Telli ML, Gradishar WJ, Ward JH. NCCN Guidelines Updates: Breast Cancer. J Natl Compr Canc Netw. 2019;17:552-555.
62. Kirchner J, Sawicki LM, Deuschl C, et al. 18 F-FDG PET/MR imaging in patients with suspected liver lesions: Value of liver-specific contrast agent Gadobenate dimeglumine. PLoS One. 2017;12:1-14.
63. Beiderwellen K, Grueneisen J, Ruhlmann V, et al. [(18)F]FDG PET/MRI vs. PET/CT for whole-body staging in patients with recurrent malignancies of the female pelvis: initial results. Eur J Nucl Med Mol Imaging. 2015;42:56-65.
64. Heusch P, Buchbender C, Köhler J, et al. Thoracic staging in lung cancer: Prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT. J Nucl Med. 2014;55:373-8.
65. Bruckmann NM, Kirchner J, Umutlu L, et al. Prospective comparison of the diagnostic accuracy of 18F-FDG PET/MRI, MRI, CT, and bone scintigraphy for the detection of bone metastases in the initial staging of primary breast cancer patients. Eur Radiol. 2021;31:8714-8724.
66. Tabouret-Viaud C, Botsikas D, Delattre BMA, et al. PET/MR in Breast Cancer. Semin Nucl Med. 2015;45:304-321.
67. Kirchner J, Grueneisen J, Martin O, et al. Local and whole-body staging in patients with primary breast cancer: a comparison of one-step to two-step staging utilizing 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2018;45:2328-2337.
68. Parkes A, Clifton K, Al-Awadhi A, et al. Characterization of bone only metastasis patients with respect to tumor subtypes. npj Breast Cancer. 2018;4:2.
69. Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987;55:61-66.
70. Liede A, Jerzak KJ, Hernandez RK, Wade SW, Sun P, Narod SA. The incidence of bone metastasis after early-stage breast cancer in Canada. Breast Cancer Res Treat. 2016;156:587-595.
71. Brockton NT, Gill SJ, Laborge SL, et al. The Breast Cancer to Bone (B2B) Metastases Research Program: A multi-disciplinary investigation of bone metastases from breast cancer. BMC Cancer. 2015;15:512.
72. Jung SY, Rosenzweig M, Sereika SM, Linkov F, Brufsky A, Weissfeld JL. Factors associated with mortality after breast cancer metastasis. Cancer Causes Control. 2012;23:103-112.
73. Hortobagyi GN, Theriault RL, Lipton A, et al. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. J Clin Oncol. 1998;16:2038-44.
74. Liu T, Cheng T, Xu W, Yan WL, Liu J, Yang HL. A meta-analysis of 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with breast cancer. Skeletal Radiol. 2011;40:523-31.
75. Rossi L, Longhitano C, Kola F, Del Grande M. State of art and advances on the treatment of bone metastases from breast cancer: a concise review. Chinese Clin Oncol. 2020;9:18.
76. Cardoso F, Senkus E, Costa A, et al. 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4). Ann Oncol. 2018.
77. Ohlmann-Knafo S, Pickuth D, Kirschbaum M, Fenzl G. Diagnostic value of whole-body MRI and bone scintigraphy in the detection of osseous metastases in patients with breast cancer - A prospective double-blinded study at two hospital centers. RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgeb Verfahren. 2009;181:255-63.
78. Cardoso F, Senkus E, Costa A, et al. 4th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4)dagger. Ann Oncol Off J Eur Soc Med Oncol. 2018;29:1634-1657.
79. Hildebrandt MG, Gerke O, Baun C, et al. [181F] Fluorodeoxyglucose (FDG)-Positron emission tomography (PET)/computed tomography (CT) in suspected recurrent breast cancer: A prospective comparative study of dual-time-point FDG-PET/CT, contrast-enhanced CT, and bone scintigraphy. J Clin Oncol. 2016;34:1889-1897.
80. Bitencourt AGV, Andrade WP, Cunha RR da, et al. Detection of distant metastases in patients with locally advanced breast cancer: role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and conventional imaging with computed tomography scans. Radiol Bras. 2017;50:211-215.
81. Park S, Yoon JK, Jin Lee S, Kang SY, Yim H, An YS. Prognostic utility of FDG PET/CT and bone scintigraphy in breast cancer patients with bone-only metastasis. Med (United States). 2017;96:e8985.
82. Hahn S, Heusner T, Kümmel S, et al. Comparison of FDG-PET/CT and bone scintigraphy for detection of bone metastases in breast cancer. Acta radiol. 2011;52:1009-14.
83. Heindel W, Gübitz R, Vieth V, Weckesser M, Schober O, Schäfers M. The diagnostic imaging of bone metastases. Dtsch Arztebl Int. 2014;111:741-747.
84. Catalano OA, Nicolai E, Rosen BR, et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br J Cancer. 2015;112:1452-1460.
85. Sonni I, Minamimoto R, Baratto L, et al. Simultaneous PET/MRI in the Evaluation of Breast and Prostate Cancer Using Combined Na[18F] F and [18F]FDG: a Focus on Skeletal Lesions. Mol Imaging Biol. 2020;22:397-406.
86. Kumar SK, Callander NS, Hillengass J, et al. NCCN Guidelines Insights: Multiple Myeloma, Version 1.2020. J Natl Compr Cancer Netw. 2019;17:1154-1165.
87. Mottet N, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol. 2017;71:618-629.
88. Schafer JF, Vollmar J, Schick F, et al. [Detection of pulmonary nodules with breath-hold magnetic resonance imaging in comparison with computed tomography]. Rofo. 2005;177:41-49.
89. Block KT, Chandarana H, Milla S, et al. Towards Routine Clinical Use of Radial Stack-of-Stars 3D Gradient-Echo Sequences for Reducing Motion Sensitivity. J Korean Soc Magn Reson Med. 2014;18:87.
90. Kumar S, Rai R, Stemmer A, et al. Feasibility of free breathing Lung MRi for Radiotherapy using non-Cartesian k-space acquisition schemes. Br J Radiol. 2017;90:20170037.
91. McRobbie DW, Moore EA, Graves MJ, Prince MR. MRI from Picture to Proton. Third Edit. Cambridge university press; 2017.
92. Block KT, Chandarana H, Fatterpekar G, et al. Improving the Robustness of Clinical T1-Weighted MRI Using Radial VIBE. Magnetom Flash. 2013:6-11.
93. Azevedo RM, De Campos ROP, Ramalho M, Herédia V, Dale BM, Semelka RC. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: Preliminary observations. Am J Roentgenol. 2011;197:650-7.
94. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209-249.
95. Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol. 2016;893:1-19.
96. Ettinger DS, Aisner DL, Wood DE, et al. NCCN Guidelines Insights: Non–Small Cell Lung Cancer, Version 5.2018. J Natl Compr Cancer Netw. 2018;16:807-821.
97. Bunyaviroch T, Coleman RE. PET evaluation of lung cancer. J Nucl Med. 2006;47:451-69.
98. Goeckenjan G, Sitter H, Thomas M, et al. Prevention, diagnosis, therapy, and follow-up of lung cancer: Interdisciplinary guideline of the German respiratory society and the German cancer society. Pneumologie. 2011;65:e51-75.
99. Choi SH, Kim YT, Kim SK, et al. Positron emission tomography-computed tomography for postoperative surveillance in non-small cell lung cancer. Ann Thorac Surg. 2011;92:1826-32.
100. Postmus PE, Kerr KM, Oudkerk M, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv1-iv21.
101. Heusch P, Buchbender C, Kohler J, et al. Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT. J Nucl Med. 2014;55:373-378.
102. Schaarschmidt BM, Grueneisen J, Metzenmacher M, et al. Thoracic staging with (18)F-FDG PET/MR in non-small cell lung cancer - does it change therapeutic decisions in comparison to (18)F-FDG PET/CT? Eur Radiol. 2017;27:681-688.
103. Kirchner J, Sawicki LM, Nensa F, et al. Prospective comparison of 18 F-FDG PET/MRI and 18 F-FDG PET/CT for thoracic staging of non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2019;46:437-445.
104. Heusch P, Buchbender C, Köhler J, et al. Correlation of the apparent diffusion coefficient (ADC) with the standardized uptake value (SUV) in hybrid 18F-FDG PET/MRI in non-small cell lung cancer (NSCLC) lesions: Initial results. RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgeb Verfahren. 2013;185:1056-62.
105. Regier M, Derlin T, Schwarz D, et al. Diffusion weighted MRI and 18F-FDG PET/CT in non-small cell lung cancer (NSCLC): Does the apparent diffusion coefficient (ADC) correlate with tracer uptake (SUV)? Eur J Radiol. 2012;81:2913-8.
106. Rakheja R, Chandarana H, DeMello L, et al. Correlation between standardized uptake value and apparent diffusion coefficient of neoplastic lesions evaluated with whole-body simultaneous hybrid PET/MRI. Am J Roentgenol. 2013;201:1115-9.
107. Schaarschmidt BM, Buchbender C, Nensa F, et al. Correlation of the apparent diffusion coefficient (ADC) with the standardized uptake value (SUV) in lymph node metastases of non-small cell lung cancer (NSCLC) patients using hybrid 8F-FDG PET/MRI. PLoS One. 2015;10:1-14.
108. Zhong J, Gore JC. Studies of restricted diffusion in heterogeneous media containing variations in susceptibility. Magn Reson Med. 1991;19:276-84.
109. Shi D, Cai G, Peng J, et al. The preoperative SUVmax for 18 F-FDG uptake predicts survival in patients with colorectal cancer. BMC Cancer. 15:991.
110. Song B Il, Kim HW, Won KS, Ryu SW, Sohn SS, Kang YN. Preoperative standardized uptake value of metastatic lymph nodes measured by 18F-FDG PET/CT improves the prediction of prognosis in gastric cancer. Med (United States). 2015;94:e1037.
111. Diao W, Tian F, Jia Z. The prognostic value of SUVmax measuring on primary lesion and ALN by 18F-FDG PET or PET/CT in patients with breast cancer. Eur J Radiol. 2018;105:1-7.
112. Ohno Y, Koyama H, Yoshikawa T, et al. Diffusion-weighted MRI versus 18F-FDG PET/CT: Performance as predictors of tumor treatment response and patient survival in patients with non-small cell lung cancer receiving chemoradiotherapy. Am J Roentgenol. 2012;198:75-82.
113. Weiss E, Ford JC, Olsen KM, et al. Apparent diffusion coefficient (ADC) change on repeated diffusion-weighted magnetic resonance imaging during radiochemotherapy for non-small cell lung cancer: A pilot study. Lung Cancer. 2016;96:113-119.
114. Taal BG, Visser O. Epidemiology of neuroendocrine tumours. Neuroendocrinology. 2004;80 Suppl 1:3-7.
115. Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063-3072.
116. Klimstra DS, Beltran H, Lilenbaum R, Bergsland E. The Spectrum of Neuroendocrine Tumors: Histologic Classification, Unique Features and Areas of Overlap. Am Soc Clin Oncol Educ B. 2015:92-103.
117. Chai SM, Brown IS, Kumarasinghe MP. Gastroenteropancreatic neuroendocrine neoplasms: selected pathology review and molecular updates. Histopathology. 2018;72:153-167.
118. Kunz PL. Carcinoid and neuroendocrine tumors: Building on success. J Clin Oncol. 2015.
119. Canellas R, Lo G, Bhowmik S, Ferrone C, Sahani D. Pancreatic neuroendocrine tumor: Correlations between MRI features, tumor biology, and clinical outcome after surgery. J Magn Reson Imaging. 2018.
120. Singhi AD, Klimstra DS. Well-differentiated pancreatic neuroendocrine tumours (PanNETs) and poorly differentiated pancreatic neuroendocrine carcinomas (PanNECs): concepts, issues and a practical diagnostic approach to high-grade (G3) cases. Histopathology. 2018;72:168-177.
121. Hofman MS, Eddie Lau WF, Hicks RJ. Somatostatin receptor imaging with68Ga DOTATATE PET/CT: Clinical utility, normal patterns, pearls, and pitfalls in interpretation1. Radiographics. 2015;35:500-16.
122. Hope TA, Pampaloni MH, Nakakura E, et al. Simultaneous 68Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor. Abdom Imaging. 2015;40:1432-40.
123. Treglia G, Castaldi P, Rindi G, Giordano A, Rufini V. Diagnostic performance of Gallium-68 somatostatin receptor PET and PET/CT in patients with thoracic and gastroenteropancreatic neuroendocrine tumours: A meta-analysis. Endocrine. 2012;42:80-7.
124. Beiderwellen KJ, Poeppel TD, Hartung-Knemeyer V, et al. Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: Initial results. Invest Radiol. 2013;48:273-9.
125. Sawicki LM, Deuschl C, Beiderwellen K, et al. Evaluation of 68Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with 68Ga-DOTATOC PET/CT. Eur Radiol. 2017;27:4091-4099.
126. Schmid-Tannwald C, Oto A, Reiser MF, Zech CJ. Diffusion-weighted MRI of the abdomen: Current value in clinical routine. J Magn Reson Imaging. 2013;37:35-37.
127. Pereira JAS, Rosado E, Bali M, Metens T, Chao SL. Pancreatic neuroendocrine tumors: correlation between histogram analysis of apparent diffusion coefficient maps and tumor grade. Abdom Imaging. 2015;40:3122-8.
128. Lotfalizadeh E, Ronot M, Wagner M, et al. Prediction of pancreatic neuroendocrine tumour grade with MR imaging features: added value of diffusion-weighted imaging. Eur Radiol. 2017;27:1748-1759.
129. Öksüz MÖ, Winter L, Pfannenberg C, et al. Peptide receptor radionuclide therapy of neuroendocrine tumors with 90Y-DOTATOC: Is treatment response predictable by pre-therapeutic uptake of 68Ga-DOTATOC? Diagn Interv Imaging. 2014;jnumed.119.
130. Rha SE, Jung SE, Lee KH, Ku YM, Byun JY, Lee JM. CT and MR imaging findings of endocrine tumor of the pancreas according to WHO classification. Eur J Radiol. 2007;62:371-7.
131. Humphrey PE, Alessandrino F, Bellizzi AM, Mortele KJ. Non-hyperfunctioning pancreatic endocrine tumors: multimodality imaging features with histopathological correlation. Abdom Imaging. 2015;40:2398-4010.
132. Manfredi R, Bonatti M, Mantovani W, et al. Non-hyperfunctioning neuroendocrine tumours of the pancreas: MR imaging appearance and correlation with their biological behaviour. Eur Radiol. 2013.
133. Quick HH. Integrated PET/MR. J Magn Reson Imaging. 2014.
134. Martinez-Moller A, Souvatzoglou M, Delso G, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: Evaluation with PET/CT data. J Nucl Med. 2009;50:520-6.
135. Beyer T, Lassen ML, Boellaard R, et al. Investigating the state-of-the-art in whole-body MR-based attenuation correction: an intra-individual, inter-system, inventory study on three clinical PET/MR systems. Magn Reson Mater Physics, Biol Med. 2016;29:75-87.
136. Seith F, Gatidis S, Schmidt H, et al. Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance- and Computed Tomography-Based Attenuation Correction in Physiological Tissues and Lesions. Invest Radiol. 2016;51:66-71.
137. Blumhagen JO, Ladebeck R, Fenchel M, Scheffler K. MR-based field-of-view extension in MR/PET: B0 homogenization using gradient enhancement (HUGE). Magn Reson Med. 2013;70:1047-57.
138. Lindemann ME, Oehmigen M, Blumhagen JO, Gratz M, Quick HH. MR-based truncation and attenuation correction in integrated PET/MR hybrid imaging using HUGE with continuous table motion: Med Phys. 2017;44:4559-4572.
139. Breuer F, Blaimer M, Griswold M, Jakob P. Controlled Aliasing in Parallel Imaging Results in Higher Acceleration ( CAIPIRINHA ). Magnetom Flash. 2012.
140. Freitag MT, Fenchel M, Bäumer P, et al. Improved clinical workflow for simultaneous whole-body PET/MRI using high-resolution CAIPIRINHA-accelerated MR-based attenuation correction. Eur J Radiol. 2017;96:12-20.
141. Quick HH, Von Gall C, Zeilinger M, et al. Integrated whole-body PET/MR hybrid imaging: Clinical experience. Invest Radiol. 2013;48:280-9.
142. Ruhlmann V, Heusch P, Kühl H, et al. Potential influence of Gadolinium contrast on image segmentation in MR-based attenuation correction with Dixon sequences in whole-body 18F-FDG PET/MR. Magn Reson Mater Physics, Biol Med. 2016;29:301-8.
143. Boel A, Molto A, van der Heijde D, et al. Do patients with axial spondyloarthritis with radiographic sacroiliitis fulfil both the modified New York criteria and the ASAS axial spondyloarthritis criteria? Results from eight cohorts. Ann Rheum Dis. 2019;78:1545-1549.
144. Rudwaleit M, Van Der Heijde D, Landewé R, et al. The Assessment of SpondyloArthritis international Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis. 2011;70:25-31.
145. Sieper J, Rudwaleit M, Baraliakos X, et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis. 2009;68 Suppl 2:ii1-44.
146. Kiltz U, Baraliakos X, Braun J. Ankylosing spondylitis. In: Comorbidity in Rheumatic Diseases. ; 2017:125-143.
147. Kiltz U, Baraliakos X, Regel A, Bühring B, Braun J. Causes of pain in patients with axial spondyloarthritis. Clin Exp Rheumatol. 2017;35 Suppl 1:102-107.
148. Van Der Heijde D, Ramiro S, Landewé R, et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann Rheum Dis. 2017;76:978-991.
149. Baraliakos X, Listing J, Rudwaleit M, Sieper J, Braun J. The relationship between inflammation and new bone formation in patients with ankylosing spondylitis. Arthritis Res Ther. 2008;10:R104.
150. Baraliakos X, Fruth M, Kiltz U, Braun J. Inflammatory spinal diseases: axial spondyloarthritis: Central importance of imaging. Inflamm spinal Dis axial spondyloarthritis Cent importance imaging. 2017;76:149-162.
151. Krohn M, Braum LS, Sieper J, et al. Erosions and fatty lesions of sacroiliac joints in patients with axial spondyloarthritis: Evaluation of different MRI techniques and two scoring methods. J Rheumatol. 2014;41:473-80.
152. Maksymowych WP, Chiowchanwisawakit P, Clare T, Pedersen SJ, Østergaard M, Lambert RGW. Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis evidence of a relationship between inflammation and new bone formation. Arthritis Rheum. 2009;60:93-102.
153. Hawkins RA, Choi Y, Huang SC, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med. 1992;33:633-42.
154. Fischer DR, Pfirrmann CWA, Zubler V, et al. High bone turnover assessed by 18E-fluoride PET/CT in the spine and sacroiliac joints of patients with ankylosing spondylitis: Comparison with inflammatory lesions detected by whole body MRI. EJNMMI Res. 2012;2:38.
155. Sawicki LM, Lütje S, Baraliakos X, et al. Dual-phase hybrid 18F-Fluoride Positron emission tomography/MRI in ankylosing spondylitis: Investigating the link between MRI bone changes, regional hyperaemia and increased osteoblastic activity. J Med Imaging Radiat Oncol. 2018;62:313-319.
156. Baraliakos X, Boehm H, Bahrami R, et al. What constitutes the fat signal detected by MRI in the spine of patients with ankylosing spondylitis? A prospective study based on biopsies obtained during planned spinal osteotomy to correct hyperkyphosis or spinal stenosis. Ann Rheum Dis. 2019;78:1220-1225.
157. Baraliakos X, Haibel H, Listing J, Sieper J, Braun J. Continuous long-term anti-TNF therapy does not lead to an increase in the rate of new bone formation over 8 years in patients with ankylosing spondylitis. Ann Rheum Dis. 2014;73:710-5.
158. Haroon N, Inman RD, Learch TJ, et al. The impact of tumor necrosis factor α inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum. 2013;65:2645-2654.
159. Molnar C, Scherer A, Baraliakos X, et al. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: Results from the Swiss Clinical Quality Management cohort. Ann Rheum Dis. 2018;77:63-69.
160. Schuler MK, Platzek I, Beuthien-Baumann B, Fenchel M, Ehninger G, van den Hoff J. (18)F-FDG PET/MRI for therapy response assessment in sarcoma: comparison of PET and MR imaging results. Clin Imaging. 2015;39:866-870.
161. Tian J, Fu L, Yin D, et al. Does the novel integrated PET/MRI offer the same diagnostic performance as PET/CT for oncological indications? PLoS One. 2014;9:e90844.
162. Kwon HW, Becker A-K, Goo JM, Cheon GJ. FDG Whole-Body PET/MRI in Oncology: a Systematic Review. Nucl Med Mol Imaging (2010). 2017;51:22-31.
163. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7-30.
164. Zugni F, Ruju F, Pricolo P, et al. The added value of whole-body magnetic resonance imaging in the management of patients with advanced breast cancer. PLoS One. 2018;13:e0205251.
165. Sawicki LM, Grueneisen J, Schaarschmidt BM, et al. Evaluation of 18F-FDG PET/MRI, 18F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer. Eur J Radiol. 2016;85:459-465.
166. Botsikas D, Kalovidouri A, Becker M, et al. Clinical utility of 18F-FDG-PET/MR for preoperative breast cancer staging. Eur Radiol. 2016;26:2297-2307.
167. Heusner TA, Hahn S, Jonkmanns C, et al. Diagnostic accuracy of fused positron emission tomography/magnetic resonance mammography: initial results. Br J Radiol. 2011;84:126-135.
168. Bristow AR, Agrawal A, Evans AJ, et al. Can computerised tomography replace bone scintigraphy in detecting bone metastases from breast cancer? A prospective study. Breast. 2008;17:98-103.
169. Muindi J, Coombes RC, Golding S, Powles TJ, Khan O, Husband J. The role of computed tomography in the detection of bone metastases in breast cancer patients. Br J Radiol. 1983;56:233-6.
170. Avrahami E, Tadmor R, Dally O, Hadar H. Early MR demonstration of spinal metastases in patients with normal radiographs and CT and radionuclide bone scans. J Comput Assist Tomogr. 1989;13:598-602.
171. Steinborn M, Tiling R, Heuck A, Brügel M, Stäbler A, Reiser M. Diagnosis of bone marrow metastases with MRI | Diagnostik der metastasierung im knochenmark mittels MRT. Radiologe. 2000;40:826-34.
172. Heusner T, Gölitz P, Hamami M, et al. “One-stop-shop” staging: Should we prefer FDG-PET/CT or MRI for the detection of bone metastases? Eur J Radiol. 2011;78:430-5.
173. Jambor I, Kuisma A, Ramadan S, et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol (Madr). 2016;55:59-67.
174. Löfgren J, Mortensen J, Rasmussen SH, et al. A prospective study comparing99mTc-hydroxyethylene-diphosphonate planar bone scintigraphy and whole-body SPECT/CT with18F-fluoride PET/CT and18F-fluoride PET/MRI for diagnosing bone metastases. J Nucl Med. 2017;58:1778-1785.
175. Sawicki LM, Kirchner J, Umutlu L, et al. Comparison of 18F–FDG PET/MRI and MRI alone for whole-body staging and potential impact on therapeutic management of women with suspected recurrent pelvic cancer: a follow-up study. Eur J Nucl Med Mol Imaging. 2017;45:622-629.
176. Bitencourt AG V, Lima ENP, Chojniak R, et al. Multiparametric evaluation of breast lesions using PET-MRI: initial results and future perspectives. Medicine (Baltimore). 2014;93:e115.
177. van Nijnatten TJA, Goorts B, Vöö S, et al. Added value of dedicated axillary hybrid 18F-FDG PET/MRI for improved axillary nodal staging in clinically node-positive breast cancer patients: a feasibility study. Eur J Nucl Med Mol Imaging. 2018;45:179-186.
178. Pinker K, Bogner W, Baltzer P, et al. Improved differentiation of benign and malignant breast tumors with multiparametric 18fluorodeoxyglucose positron emission tomography magnetic resonance imaging: a feasibility study. Clin cancer Res an Off J Am Assoc Cancer Res. 2014;20:3540-3549.
179. Morawitz J, Bruckmann N-M, Dietzel F, et al. Comparison of nodal staging between CT, MRI, and [(18)F]-FDG PET/MRI in patients with newly diagnosed breast cancer. Eur J Nucl Med Mol Imaging. 2021;49:992-1001.
180. Morawitz J, Bruckmann N-M, Dietzel F, et al. Determining the axillary nodal status with four current imaging modalities including (18)F-FDG PET/MRI in newly diagnosed breast cancer: A comparative study using histopathology as reference standard. J Nucl Med. 2021;62:1677-1683.
181. Lee B, Lim AK, Krell J, et al. The efficacy of axillary ultrasound in the detection of nodal metastasis in breast cancer. Am J Roentgenol. 2013;200:W314-20.
182. Valente SA, Levine GM, Silverstein MJ, et al. Accuracy of predicting axillary lymph node positivity by physical examination, mammography, ultrasonography, and magnetic resonance imaging. Ann Surg Oncol. 2012;19:1825-30.
183. Panda SK, Goel A, Nayak V, Shaik Basha S, Pande PK, Kumar K. Can Preoperative Ultrasonography and MRI Replace Sentinel Lymph Node Biopsy in Management of Axilla in Early Breast Cancer—a Prospective Study from a Tertiary Cancer Center. Indian J Surg Oncol. 2019;10:483-488.
184. Shin CH, Kim JI, Lee JY. The role of radiologic evaluation for detection of axillary lymph node metastasis in early breast cancer. Eur J Cancer. 2016;57:143-144.
185. Dendl K, Koerber SA, Kratochwil C, et al. FAP and FAPI-PET/CT in Malignant and Non-Malignant Diseases: A Perfect Symbiosis? Cancers (Basel). 2021;13:4946.
186. Backhaus P, Burg MC, Roll W, et al. Simultaneous FAPI PET/MRI Targeting the Fibroblast-Activation Protein for Breast Cancer. Radiology. 2022;302:39-47.
187. Rauscher I, Eiber M, Fürst S, et al. PET/MR imaging in the detection and characterization of pulmonary lesions: Technical and diagnostic evaluation in comparison to PET/CT. J Nucl Med. 2014;55:724-9.
188. Wielpütz MO. MRI of Pulmonary Nodules: Closing the Gap on CT. Radiology. November 2021:212516.
189. Benjamin MS, Drucker EA, McLoud TC, Shepard JAO. Small pulmonary nodules: Detection at chest CT and outcome. Radiology. 2003;226:489-493.
190. Jannusch K, Bruckmann NM, Geuting CJ, et al. Lung Nodules Missed in Initial Staging of Breast Cancer Patients in PET/MRI-Clinically Relevant? Cancers (Basel). 2022;14.
191. Horne ZD, Clump DA, Vargo JA, et al. Pretreatment SUVmax predicts progression-free survival in early-stage non-small cell lung cancer treated with stereotactic body radiation therapy. Radiat Oncol. 2014;9:41.
192. Liu J, Dong M, Sun X, Li W, Xing L, Yu J. Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: A meta-analysis. PLoS One. 2016;11:e0146195.
193. Sharma A, Mohan A, Bhalla AS, et al. Role of Various Metabolic Parameters Derived from Baseline 18 F-FDG PET/CT as Prognostic Markers in Non-Small Cell Lung Cancer Patients Undergoing Platinum-Based Chemotherapy. Clin Nucl Med. 2018;43:e8-e17.
194. Burdick MJ, Stephans KL, Reddy CA, Djemil T, Srinivas SM, Videtic GMM. Maximum standardized uptake value from staging FDG-PET/CT does not predict treatment outcome for early-stage non-small-cell lung cancer treated with stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78:1033-9.
195. Martin-Perez E, Capdevila J, Castellano D, et al. Prognostic factors and long-term outcome of pancreatic neuroendocrine neoplasms: Ki-67 index shows a greater impact on survival than disease stage. the large experience of the spanish national tumor registry (RGETNE). Neuroendocrinology. 2013;98:156-68.
196. Guo C, Chen X, Xiao W, Wang Q, Sun K, Wang Z. Pancreatic neuroendocrine neoplasms at magnetic resonance imaging: Comparison between grade 3 and grade 1/2 tumors. Onco Targets Ther. 2017;10:1465-1474.
197. Jang KM, Kim SH, Lee SJ, Choi D. The value of gadoxetic acid-enhanced and diffusion-weighted MRI for prediction of grading of pancreatic neuroendocrine tumors. Acta radiol. 2014;55:140-8.
198. De Robertis R, Cingarlini S, Martini PT, et al. Pancreatic neuroendocrine neoplasms: Magnetic resonance imaging features according to grade and stage. World J Gastroenterol. 2017;23:275-285.
199. Kim M, Kang TW, Kim YK, et al. Pancreatic neuroendocrine tumour: Correlation of apparent diffusion coefficient or WHO classification with recurrence-free survival. Eur J Radiol. 2016;85:680-7.
200. Kayani I, Bomanji JB, Groves A, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (Dota-DPhe1, Tyr3-octreotate) and 18F-FDG. Cancer. 2008;112:2447-55.
201. Spick C, Herrmann K, Czernin J. 18F-FDG PET/CT and PET/MRI Perform Equally Well in Cancer: Evidence from Studies on More Than 2,300 Patients. J Nucl Med. 2016.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Bezug:2018-2024
Fachbereich / Einrichtung:Medizinische Fakultät » Institute » Institut für Diagnostische Radiologie
Dokument erstellt am:02.07.2024
Dateien geändert am:02.07.2024
english
Benutzer
Status: Gast
Aktionen