Dokument: Mechanismen der endothelialen Dysfunktion bei Anämie: Einfluss von reaktiven Sauerstoffspezies, endothelialer Arginase und dysfunktionalen Erythrozyten auf die endotheliale Stickstoffmonoxidsynthase
Titel: | Mechanismen der endothelialen Dysfunktion bei Anämie: Einfluss von reaktiven Sauerstoffspezies, endothelialer Arginase und dysfunktionalen Erythrozyten auf die endotheliale Stickstoffmonoxidsynthase | |||||||
Weiterer Titel: | Mechanisms of endothelial dysfunction in anemia: influence of reactive oxygen species, endothelial arginase, and dysfunctional erythrocytes on endothelial nitricoxidesynthase | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=66198 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20240626-113608-9 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Dahlmann, Paul [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Kelm, Malte [Gutachter] PD Dr. med. Florian Simon [Gutachter] | |||||||
Stichwörter: | Kardiologie, Anämie, Myokardinfarkt, Endothelfunktion, endotheliale Dysfunktion, ROS, Arginase, eNOS, Stickstoffmonoxid,Organbad | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Bei Patienten mit akutem und chronischem Koronarsyndrom wird häufig eine Anämie diagnostiziert. Studien haben belegt, dass eine Anämie die Prognose bei akutem Myokardinfarkt (AMI) verschlechtert. Im Tiermodell wurde gezeigt, dass eine Blutungsanämie die Bildung dysfunktionaler roter Blutkörperchen (RBK) induziert. Bisher ist nicht geklärt, ob neben der RBK-Dysfunktion eine veränderte Endothelfunktion im Zusammenhang mit den anämieassoziierten Komplikationen steht. Eine endotheliale Dysfunktion (ED), definiert durch reduzierte Bioverfügbarkeit von Stickstoffmonoxid (NO), könnte die Prognose von anämischen Patienten mit AMI negativ beeinflussen. Diese Arbeit untersucht die Auswirkung der Anämie auf die Endothelfunktion großer Gefäße. Durch repetitive Blutentnahmen wurde in männlichen C57BL/6J-Mäusen (WT-Mäuse) eine subakute oder chronische Anämie induziert. Im Anschluss wurde die Endothelfunktion der thorakalen Aorta im Organbad quantifiziert. Aorten von subakut und chronisch anämischen Mäusen wiesen im Vergleich zu unbehandelten Mäusen eine reduzierte NO-abhängige Relaxation auf. Die chronische Anämie erhöhte die Empfindlichkeit der glatten Muskulatur (GMZ) gegenüber exogenem NO in Mäusen, die die endotheliale Stickstoffmonoxid-Synthase nicht exprimierten (eNOS-KO). Weder die Deletion der endothelialen Arginase I noch die pharmakologische Inhibition der Arginase I und II hat die Endothelfunktion anämischer Mäuse verbessert. Die Behandlung von chronisch anämischen WT-Mäusen mit dem Antioxidans N-Acetylcystein (NAC) verbesserte die endothelabhängige Relaxation der isolierten Gefäße. In Summe implizieren die Daten, dass die subakute und chronische Anämie über erhöhte Freisetzung von reaktiven Sauerstoffspezies die Induktion einer ED bewirkt hat. Eine gesteigerte Arginaseaktivität scheint nicht in den Pathomechanismus der ED involviert gewesen zu sein. Im zweiten Teil der Arbeit wurde ein Protokoll erarbeitet, um die Interaktion von RBK und dem Endothel messbar zu machen. Aortenringe von WT-Mäusen wurden mit humanen RBK inkubiert. Nach der Inkubation wurde die Endothelfunktion im Organbad quantifiziert. Unterschiedliche Inkubationbedingungen wurden evaluiert und schließlich ein finales Protokoll formuliert. Gemäß diesem Protokoll wurden Gefäße mit RBK von Probanden mit AMI oder mit RBK von gleichalten, gesunden Probanden inkubiert. Nach Inkubation wiesen die Gefäße beider Kohorten eine eingeschränkte Relaxation auf, die auf eine gestörte Interaktion von NO und der löslichen Guanylatcyclase der GMZ hinweisen könnte.Anemia is frequently observed in patients with acute and chronic coronary syndromes. It is well known that anemia leads to poor prognosis in cases of acute myocardial infarction (AMI). In animal models, hemorrhagic anemia has been shown to induce the formation of dysfunctional red blood cells (RBCs). However, it remains unclear whether the complications related to anemia are restricted to RBC dysfunction or are also associated with systemic alterations of endothelial function. Altered endothelium dependent nitric oxide (NO)-synthesis and associated decreased NO bioavailability are hallmarks of endothelial dysfunction (ED) and might contribute to poor prognosis of AMI in patients with anemia. This thesis outlines anemia-associated ED with a focus on large arteries. Sub-acute and chronic blood loss anemia was induced in C57BL/6J
male mice (WT-mice) through repetitive blood withdrawal. Endothelial function was assessed in the thoracic aorta using tissue organ bath, which demonstrated that aortic rings from both sub-acute and chronic anemic mice showed reduced NO-dependent relaxation compared to non-anemic mice (Sham-mice). In addition, assessment of endothelial function in the aorta of anemic global endothelial nitric oxide-synthase knockout mice (eNOS-KO) demonstrated an enhanced smooth muscle sensitivity to exogenous NO compared to sham eNOS-KO mice. Neither the genetic deletion of endothelial arginase I nor the pharmacological inhibition of arginase I and II improved the endothelial function in anemic mice. The aortic rings from chronic anemic mice supplemented with the antioxidant N-Acetylcysteine showed improved endothelial dependent relaxation responses. In summary, these results imply that both sub-acute and chronic anemia are associated with ED. Enhanced activity of arginases does not appear to be involved in the pathomechanism of ED. Increased production of reactive oxygen species in the aorta might contribute to ED in anemia. The second part of the thesis is aimed to establish a protocol to study the interaction between RBCs and the endothelium. Aortic rings from WT-mice were incubated with human RBCs. Following the incubation, endothelial function was assessed using an organ bath system. Various incubation conditions were evaluated, resulting in a final protocol. Based on the refined conditions, aortic rings were incubated with RBCs collected from both subjects with AMI and age-matched, healthy subjects. After incubation the aortic rings in both groups exhibited impaired relaxation, potentially by affecting the signaling pathway of NO and soluble guanylatecyclase. | |||||||
Quelle: | 1. Nichols, M., et al., Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J, 2014. 35(42): p. 2950-9.
2. Dauerman, H.L., et al., Bleeding complications in patients with anemia and acute myocardial infarction. Am J Cardiol, 2005. 96(10): p. 1379-83. 3. Westenbrink, B.D., et al., Anemia predicts thromboembolic events, bleeding complications and mortality in patients with atrial fibrillation: insights from the RE-LY trial. J Thromb Haemost, 2015. 13(5): p. 699-707. 4. Anker, S.D., et al., Prevalence, incidence, and prognostic value of anaemia in patients after an acute myocardial infarction: data from the OPTIMAAL trial. Eur Heart J, 2009. 30(11): p. 1331-9. 5. Aronson, D., et al., Impact of red blood cell transfusion on clinical outcomes in patients with acute myocardial infarction. Am J Cardiol, 2008. 102(2): p. 115-9. 6. Stucchi, M., et al., Anemia and acute coronary syndrome: current perspectives. Vasc Health Risk Manag, 2018. 14: p. 109-118. 7. Camus, S.M., et al., Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood, 2015. 125(24): p. 3805-14. 8. Nader, E., et al., Association Between Nitric Oxide, Oxidative Stress, Eryptosis, Red Blood Cell Microparticles, and Vascular Function in Sickle Cell Anemia.Front Immunol, 2020. 11: p. 551441. 9. Stoyanova, E., et al., Vascular endothelial dysfunction in β-thalassemia occurs despite increased eNOS expression and preserved vascular smooth muscle cell reactivity to NO. PLoS One, 2012. 7(6): p. e38089. 10. Lüllmann-Rauch, R., Kreislauforgane, in Taschenlehrbuch Histologie. 2015, Thieme: Kiel. p. 271-286. 11. Wood, K.C., et al., Circulating blood endothelial nitric oxide synthase contributes to the regulation of systemic blood pressure and nitrite homeostasis.Arterioscler Thromb Vasc Biol, 2013. 33(8): p. 1861-71. 12. Kiowski, W., et al., Endothelin-1-induced vasoconstriction in humans. Reversal by calcium channel blockade but not by nitrovasodilators or endothelium derived relaxing factor. Circulation, 1991. 83(2): p. 469-75. 13. Raees, A., et al., Altered cyclooxygenase-1 and enhanced thromboxane receptor activities underlie attenuated endothelial dilatory capacity of omental arteries in obesity. Life Sci, 2019. 239: p. 117039. 14. Furchgott, R.F. and J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980. 288(5789): p. 373-6. 15. Furchgott, R.F. and P.M. Vanhoutte, Endothelium-derived relaxing and contracting factors. Faseb j, 1989. 3(9): p. 2007-18. 16. Palmer, R.M., A.G. Ferrige, and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 1987. 327(6122): p. 524-6. 17. MacIntyre, D.E., J.D. Pearson, and J.L. Gordon, Localisation and stimulation of prostacyclin production in vascular cells. Nature, 1978. 271(5645): p. 549-51. 18. Parkington, H.C., H.A. Coleman, and M. Tare, Prostacyclin and endothelium-dependent hyperpolarization. Pharmacol Res, 2004. 49(6): p. 509-14. 19. Félétou, M. and P.M. Vanhoutte, EDHF: an update. Clin Sci (Lond), 2009. 117(4): p. 139-55 20. Rubanyi, G.M., J.C. Romero, and P.M. Vanhoutte, Flow-induced release of endothelium-derived relaxing factor. Am J Physiol, 1986. 250(6 Pt 2): p. H1145-9. 21. Sumpio, B.E., J.T. Riley, and A. Dardik, Cells in focus: endothelial cell. Int J Biochem Cell Biol, 2002. 34(12): p. 1508-12. 22. Kraft, T. and B. Brenner, Muskulatur, in Physiologie, H.-C. Pape, A. Kurtz, and S. Silbernagl, Editors. 2014, Thieme: Stuttgart, Baden-Württemberg. p. 133-168. 23. Rapoport, R.M., M.B. Draznin, and F. Murad, Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature, 1983. 306(5939): p. 174-6. 24. Sauzeau, V., et al., Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem, 2000. 275(28): p. 21722-9. 25. Kimura, K., et al., Regulation of Myosin Phosphatase by Rho and Rho-Associated Kinase (Rho-Kinase). Science, 1996. 273(5272): p. 245-248. 26. Schlossmann, J., et al., Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature, 2000. 404(6774): p. 197-201. 27. Azuma, H., M. Ishikawa, and S. Sekizaki, Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol, 1986. 88(2): p. 411-5. 28. Furlong, B., et al., Endothelium-derived relaxing factor inhibits in vitro platelet aggregation. Br J Pharmacol, 1987. 90(4): p. 687-92. 29. Moncada, S., et al., An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation.Nature, 1976. 263(5579): p. 663-5. 30. Kubes, P., M. Suzuki, and D.N. Granger, Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A, 1991. 88(11): p. 4651-5. 31. Park, J.W., Attenuation of p47phox and p67phox membrane translocation as the inhibitory mechanism of S-nitrosothiol on the respiratory burst oxidase in human neutrophils. Biochem Biophys Res Commun, 1996. 220(1): p. 31-5. 32. Zhang, Y., et al., NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol, 2020. 17(3): p. 170-194. 33. Katsuki, S., et al., Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res, 1977. 3(1): p. 23-35. 34. Rapoport, R.M. and F. Murad, Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res, 1983. 52(3): p. 352-7. 35. Förstermann, U., et al., Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ Res, 1986. 58(4): p. 531-8. 36. Yamashita, T., et al., Mechanisms of reduced nitric oxide/cGMP-mediated vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. Hypertension, 2000. 36(1): p. 97-102. 37. Pfeifer, A., et al., Defective smooth muscle regulation in cGMP kinase I-deficient mice. Embo j, 1998. 17(11): p. 3045-51. 38. Surks, H.K., et al., Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science, 1999. 286(5444): p. 1583-7 39. Desch, M., et al., IRAG determines nitric oxide- and atrial natriuretic peptide-mediated smooth muscle relaxation. Cardiovascular Research, 2010. 86(3): p. 496-505. 40. Stehlik, J. and M.A. Movsesian, Inhibitors of cyclic nucleotide phosphodiesterase 3 and 5 as therapeutic agents in heart failure. Expert Opin Investig Drugs, 2006. 15(7): p. 733-42. 41. Garg, U.C. and A. Hassid, Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest, 1989. 83(5): p. 1774-7. 42. Goldberg, I.D., et al., In vivo aortic muscle cell growth kinetics. Differences between thoracic and abdominal segments after intimal injury in the rabbit. Circ Res, 1980. 47(2): p. 182-9. 43. Mayer, B., M. John, and E. Böhme, Purification of a Ca2+/calmodulin dependent nitric oxide synthase from porcine cerebellum. Cofactor-role of tetrahydrobiopterin. FEBS Lett, 1990. 277(1-2): p. 215-9. 44. Stuehr, D.J., et al., Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein.Proc Natl Acad Sci U S A, 1991. 88(17): p. 7773-7. 45. Raman, C.S., et al., Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell, 1998. 95(7): p. 939-50. 46. Hemmens, B., et al., Role of bound zinc in dimer stabilization but not enzyme activity of neuronal nitric-oxide synthase. J Biol Chem, 2000. 275(46): p. 35786-91. 47. Crane, B.R., et al., Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science, 1998. 279(5359): p. 2121-6. 48. Stuehr, D., S. Pou, and G.M. Rosen, Oxygen reduction by nitric-oxidesynthases. J Biol Chem, 2001. 276(18): p. 14533-6. 49. Pollock, J.S., et al., Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A, 1991. 88(23): p. 10480-4. 50. Abu-Soud, H.M. and D.J. Stuehr, Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci U S A, 1993. 90(22): p. 10769-72. 51. Chen, Z.P., et al., AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett, 1999. 443(3): p. 285-9. 52. Dimmeler, S., et al., Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature, 1999. 399(6736): p. 601-605. 53. Schleicher, M., et al., The Akt1-eNOS axis illustrates the specificity of kinase-substrate relationships in vivo. Sci Signal, 2009. 2(82): p. ra41. 54. Fleming, I., et al., Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res, 2001. 88(11): p. E68-75. 55. Kleinbongard, P., et al., Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med, 2003. 35(7): p. 790-6. 56. Gödecke, A., et al., Coronary hemodynamics in endothelial NO synthase knockout mice. Circ Res, 1998. 82(2): p. 186-94. 57. Förstermann, U. and W.C. Sessa, Nitric oxide synthases: regulation and function. Eur Heart J, 2012. 33(7): p. 829-37, 837a-837d. 58. Senoner, T. and W. Dichtl, Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients, 2019. 11(9). 59. Sies, H. and D. Jones, Oxidative Stress*, in Encyclopedia of Stress (Second Edition), G. Fink, Editor. 2007, Academic Press: New York. p. 45-48. 60. Li, H., S. Horke, and U. Förstermann, Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol Sci, 2013. 34(6): p. 313-9. 61. Hink, U., et al., Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res, 2001. 88(2): p. E14-22. 62. Landmesser, U., et al., Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest, 2003. 111(8): p. 1201-9. 63. Kelley, E.E., et al., Moderate hypoxia induces xanthine oxidoreductase activity in arterial endothelial cells. Free Radic Biol Med, 2006. 40(6): p. 952-9. 64. Laursen, J.B., et al., Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation, 2001. 103(9): p. 1282-8. 65. Gryglewski, R.J., R.M. Palmer, and S. Moncada, Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature, 1986. 320(6061): p. 454-6. 66. Pieper, G.M., G. Moore-Hilton, and A.M. Roza, Evaluation of the mechanism of endothelial dysfunction in the genetically-diabetic BB rat. Life Sci, 1996. 58(9): p. Pl147-52. 67. Chandra, S., et al., Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway. Br J Pharmacol, 2012. 165(2): p. 506-19. 68. Romero, M.J., et al., Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res, 2008. 102(1): p. 95-102. 69. Berkowitz, D.E., et al., Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels.Circulation, 2003. 108(16): p. 2000-6. 70. Baydoun, A.R., et al., Substrate-dependent regulation of intracellular amino acid concentrations in cultured bovine aortic endothelial cells. Biochem Biophys Res Commun, 1990. 173(3): p. 940-8. 71. Simon, A., et al., Role of neutral amino acid transport and protein breakdown for substrate supply of nitric oxide synthase in human endothelial cells. Circ Res, 2003. 93(9): p. 813-20. 72. Grönros, J., et al., Arginase inhibition restores in vivo coronary microvascular function in type 2 diabetic rats. Am J Physiol Heart Circ Physiol, 2011. 300(4): p. H1174-81. 73. Lin, K.Y., et al., Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase.Circulation, 2002. 106(8): p. 987-92. 74. Böger, R.H., et al., LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S adenosylmethionine-dependent methyltransferases. Circ Res, 2000. 87(2): p. 99-105. 75. Walzog, B. and J. Fandrey, Zusammensetzung und Volumen des Blutes, in Physiologie, H.-C. Pape, A. Kurtz, and S. Silbernagl, Editors. 2019, Georg Thieme Verlag. 76. Walzog, B. and J. Fandrey, Zelluläre Bestandteile des Blutes, in Physiologie, H.-C. Pape, A. Kurtz, and S. Silbernagl, Editors. 2019, Georg Thieme Verlag. 77. Cortese-Krott, M.M., et al., Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease. Blood, 2012. 120(20): p. 4229-37. 78. Gorressen, S., et al., Circulating NOS3 modulates left ventricular remodeling following reperfused myocardial infarction. PLoS One, 2015. 10(4): p. e0120961. 79. Doyle, M.P. and J.W. Hoekstra, Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem, 1981. 14(4): p. 351-8. 80. Dei Zotti, F., et al., Redox regulation of nitrosyl-hemoglobin in human erythrocytes. Redox Biol, 2020. 34: p. 101399. 81. Rassaf, T., M. Feelisch, and M. Kelm, Circulating NO pool: assessment of nitrite and nitroso species in blood and tissues. Free Radic Biol Med, 2004. 36(4): p. 413-22. 82. Liu, X., et al., Diffusion-limited reaction of free nitric oxide with erythrocytes. J Biol Chem, 1998. 273(30): p. 18709-13. 83. Huang, K.T., et al., Modulation of nitric oxide bioavailability by erythrocytes.Proc Natl Acad Sci U S A, 2001. 98(20): p. 11771-6. 84. Liao, J.C., et al., Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc Natl Acad Sci U S A, 1999. 96(15): p. 8757-61. 85. Pawloski, J.R., D.T. Hess, and J.S. Stamler, Export by red blood cells of nitric oxide bioactivity. Nature, 2001. 409(6820): p. 622-6. 86. Zhang, R., et al., Hemoglobin S-nitrosylation plays an essential role in cardioprotection. J Clin Invest, 2016. 126(12): p. 4654-4658. 87. Isbell, T.S., et al., SNO-hemoglobin is not essential for red blood cell-dependent hypoxic vasodilation. Nat Med, 2008. 14(7): p. 773-7. 88. Crawford, J.H., et al., Hypoxia, red blood cells, and nitrite regulate NO dependent hypoxic vasodilation. Blood, 2006. 107(2): p. 566-74. 89. Liu, C., et al., Mechanisms of human erythrocytic bioactivation of nitrite. J Biol Chem, 2015. 290(2): p. 1281-94. 90. Cosby, K., et al., Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nature Medicine, 2003. 9(12): p. 1498-1505. 91. Sprague, R.S., et al., A selective phosphodiesterase 3 inhibitor rescues low PO2-induced ATP release from erythrocytes of humans with type 2 diabetes: implication for vascular control. Am J Physiol Heart Circ Physiol, 2011. 301(6): p. H2466-72. 92. Androne, A.S., et al., Hemodilution is common in patients with advanced heart failure. Circulation, 2003. 107(2): p. 226-9. 93. Nutritional anaemias. Report of a WHO scientific group. World Health Organ Tech Rep Ser, 1968. 405: p. 5-37. 94. Beutler, E. and J. Waalen, The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration? Blood, 2006. 107(5): p. 1747-1750. 95. Guralnik, J.M., et al., Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood, 2004. 104(8): p. 2263-8. 96. Sabatine, M.S., et al., Association of hemoglobin levels with clinical outcomes in acute coronary syndromes. Circulation, 2005. 111(16): p. 2042-9. 97. Deutsche Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e.V. S3 Leitlinie „Infarktbedingter kardiogener Schock - Diagnose, Monitoring Therapie“. 2019 98. Wischmann, P., et al., Anaemia is associated with severe RBC dysfunction and a reduced circulating NO pool: vascular and cardiac eNOS are crucial for the adaptation to anaemia. Basic Res Cardiol, 2020. 115(4): p. 43. 99. Poisson, J., et al., Erythrocyte-derived microvesicles induce arterial spasms in JAK2V617F myeloproliferative neoplasm. J Clin Invest, 2020. 130(5): p. 2630-2643. 100. Mahdi, A., et al., Red Blood Cell Peroxynitrite Causes Endothelial Dysfunction in Type 2 Diabetes Mellitus via Arginase. Cells, 2020. 9(7). 101. Mahdi, A., et al., Erythrocytes Induce Endothelial Injury in Type 2 Diabetes Through Alteration of Vascular Purinergic Signaling. Front Pharmacol, 2020. 11: p. 603226. 102. Wess, J., R.M. Eglen, and D. Gautam, Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nature Reviews Drug Discovery, 2007. 6(9): p. 721-733. 103. Böhm, S., Cholinerge Systeme, in Pharmakologie und Toxikologie: Von den molekularen Grundlagen zur Pharmakotherapie. 2020, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 131-135. 104. Bény, J.L., et al., Muscarinic receptor knockout mice confirm involvement of M3 receptor in endothelium-dependent vasodilatation in mouse arteries. J Cardiovasc Pharmacol, 2008. 51(5): p. 505-12. 105. Wilson, C., M.D. Lee, and J.G. McCarron, Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. J Physiol, 2016. 594(24): p. 7267-7307. 106. Methven, L., P.C. Simpson, and J.C. McGrath, Alpha1A/B-knockout mice explain the native alpha1D-adrenoceptor's role in vasoconstriction and show that its location is independent of the other alpha1-subtypes. Br J Pharmacol, 2009. 158(7): p. 1663-75. 107. Behrends, J., Mechanismen der Signalübertragung im pVNS, in Duale Reihe Physiologie, J. Behrends, et al., Editors. 2016, Georg Thieme Verlag. 108. Wang, P.G., et al., Nitric oxide donors: chemical activities and biological applications. Chem Rev, 2002. 102(4): p. 1091-134. 109. Offermanns, S., Pharmaka mit Wirkung auf die glatte Muskulatur, in Pharmakologie und Toxikologie: Von den molekularen Grundlagen zur Pharmakotherapie. 2020, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 447-468. 110. Brandes, R.P., et al., Increased nitrovasodilator sensitivity in endothelial nitric oxide synthase knockout mice: role of soluble guanylyl cyclase. Hypertension, 2000. 35(1 Pt 2): p. 231-6. 111. Majed, B.H. and R.A. Khalil, Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol Rev, 2012. 64(3): p. 540-82. 112. Metzger, D., et al., Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A, 1995. 92(15): p. 6991-5. 113. Feil, R., et al., Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun, 1997. 237(3): p. 752-7. 114. Whitfield, J., T. Littlewood, and L. Soucek, Tamoxifen administration to mice.Cold Spring Harb Protoc, 2015. 2015(3): p. 269-71. 115. Teilmann, A.C., et al., Physiological and pathological impact of blood sampling by retro-bulbar sinus puncture and facial vein phlebotomy in laboratory mice.PLoS One, 2014. 9(11): p. e113225. 116. Aldini, G., et al., N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res, 2018. 52(7): p. 751-762. 117. Charron, M.J., et al., Antioxidant Effects of N-Acetylcysteine Prevent Programmed Metabolic Disease in Mice. Diabetes, 2020. 69(8): p. 1650-1661. 118. Wenceslau, C.F., et al., Guidelines for the measurement of vascular function and structure in isolated arteries and veins. Am J Physiol Heart Circ Physiol, 2021. 321(1): p. H77-h111. 119. Newesely, H., Über die Löslichkeit schwerlöslicher Salze, insbesondere gefällter Calciumphosphate. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1966. 97(2): p. 468-483. 120. Szasz, T. and R.C. Webb, Perivascular adipose tissue: more than just structural support. Clin Sci (Lond), 2012. 122(1): p. 1-12. 121. Gonon, A.T., et al., Local arginase inhibition during early reperfusion mediates cardioprotection via increased nitric oxide production. PLoS One, 2012. 7(7): p. e42038. 122. Buus, N.H., E. VanBavel, and M.J. Mulvany, Differences in sensitivity of rat mesenteric small arteries to agonists when studied as ring preparations or as cannulated preparations. Br J Pharmacol, 1994. 112(2): p. 579-87. 123. Vanhoutte, P.M., et al., Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf), 2017. 219(1): p. 22-96. 124. Schubert, R., Isolated Vessels, in Practical Methods in Cardiovascular Research, S. Dhein, F.W. Mohr, and M. Delmar, Editors. 2005, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 198-211. 125. Chennupati, R., et al., Deletion of endothelial arginase 1 does not improve vasomotor function in diabetic mice. Physiol Rep, 2018. 6(11): p. e13717. 126. Ford, R.J., et al., Glutathione depletion in vivo enhances contraction and attenuates endothelium-dependent relaxation of isolated rat aorta. Free Radic Biol Med, 2006. 40(4): p. 670-8. 127. Ni, Z., S. Morcos, and N.D. Vaziri, Up-regulation of renal and vascular nitric oxide synthase in iron-deficiency anemia. Kidney Int, 1997. 52(1): p. 195-201. 128. Kaul, D.K., et al., Impaired nitric oxide-mediated vasodilation in transgenic sickle mouse, Am J Physiol Heart Circ Physiol, 2000. 278(6): p. H1799-806. 129. Ohashi, Y., et al., Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest, 1998. 102(12): p. 2061-71. 130. Inserte, J., et al., Implications of Iron Deficiency in STEMI Patients and in a Murine Model of Myocardial Infarction. JACC Basic Transl Sci, 2021. 6(7): p. 567-580. 131. Zou, M.H., C. Shi, and R.A. Cohen, Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest, 2002. 109(6): p. 817-26. 132. Chennupati, R., et al., Chronic anemia is associated with systemic endothelial dysfunction. Front Cardiovasc Med, 2023. 10: p. 1099069. 133. Nur, E., et al., N-acetylcysteine reduces oxidative stress in sickle cell patients.Ann Hematol, 2012. 91(7): p. 1097-105. 134. Kato, G.J., M.H. Steinberg, and M.T. Gladwin, Intravascular hemolysis and the pathophysiology of sickle cell disease. J Clin Invest, 2017. 127(3): p. 750-760. 135. Morris, C.R., et al., Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. Jama, 2005. 294(1): p. 81-90 136. Ryoo, S., et al., Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling. Circ Res, 2006. 99(9): p. 951-60. 137. Ma, X.L., et al., Endothelial protective and antishock effects of a selective estrogen receptor modulator in rats. Am J Physiol Heart Circ Physiol, 2001. 280(2): p. H876-84. 138. Grigoryants, V., et al., Tamoxifen up-regulates catalase production, inhibits vessel wall neutrophil infiltration, and attenuates development of experimental abdominal aortic aneurysms. Journal of Vascular Surgery, 2005. 41(1): p. 108-114. 139. Leung, H.S., et al., Tamoxifen dilates porcine coronary arteries: roles for nitric oxide and ouabain-sensitive mechanisms. British journal of pharmacology, 2006. 149(6): p. 703-711. 140. Ryoo, S., et al., Endothelial arginase II: a novel target for the treatment of atherosclerosis. Circ Res, 2008. 102(8): p. 923-32. 141. McCann Haworth, S.M., et al., Red blood cells from patients with pre-eclampsia induce endothelial dysfunction. J Hypertens, 2021. 39(8): p. 1628-1641. 142. Fitts, D.A., Ethics and animal numbers: informal analyses, uncertain sample sizes, inefficient replications, and type I errors. J Am Assoc Lab Anim Sci, 2011. 50(4): p. 445-53. 143. Zhou, Z., et al., Erythrocytes From Patients With Type 2 Diabetes Induce Endothelial Dysfunction Via Arginase I. J Am Coll Cardiol, 2018. 72(7): p. 769-780. 144. Weber, M., et al., The effect of peroxynitrite on the catalytic activity of soluble guanylyl cyclase. Free Radic Biol Med, 2001. 31(11): p. 1360-7. 145. Stasch, J.P., et al., Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest, 2006. 116(9): p. 2552-61. 146. Zhou, Z., et al., Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Pharmacol Res, 2016. 111: p. 556-562. 147. Finkel, T. and N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature, 2000. 408(6809): p. 239-47. 148. Rizvi, S.I. and P.K. Maurya, Markers of oxidative stress in erythrocytes during aging in humans. Ann N Y Acad Sci, 2007. 1100: p. 373-82. 149. Kuhn, V., et al., Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid Redox Signal, 2017. 26(13): p. 718-742. 150. Gomez, S.A., et al., The oxidative stress induced in vivo by Shiga toxin-2 contributes to the pathogenicity of haemolytic uraemic syndrome. Clin Exp Immunol, 2013. 173(3): p. 463-72. 151. Morris, C.R., et al., Hemolysis-associated pulmonary hypertension in thalassemia. Ann N Y Acad Sci, 2005. 1054: p. 481-5. 152. Iorga, A., et al., The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ, 2017. 8(1): p. 33. 153. Hohmann, N., et al., Estrogen Receptor Signaling and the PI3K/Akt Pathway Are Involved in Betulinic Acid-Induced eNOS Activation. Molecules, 2016. 21(8) | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 26.06.2024 | |||||||
Dateien geändert am: | 26.06.2024 | |||||||
Promotionsantrag am: | 10.11.2023 | |||||||
Datum der Promotion: | 06.06.2024 |