Dokument: Photochemie, Photophysik und Anwendung von light, oxygen, voltage (LOV) Domänen

Titel:Photochemie, Photophysik und Anwendung von light, oxygen, voltage (LOV) Domänen
Weiterer Titel:Photochemistry, Photophysics and Application of light, oxygen, voltage (LOV) Domains
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=65916
URN (NBN):urn:nbn:de:hbz:061-20240603-135902-4
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Hemmer, Stefanie [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]30,62 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 23.05.2024 / geändert 23.05.2024
Beitragende: Krauss, Ulrich [Betreuer/Doktorvater]
Prof. Dr. Jaeger, Karl-Erich [Gutachter]
PD Dr. Pohl, Martina [Gutachter]
Stichwörter:LOV-Domänen, LOV-Photorezeptoren, Dunkelrückkehr, Dunkelzustand, Lichtzustand, LOV-basierte optogenetische Werkzeuge, maschineller Lernansatz (ML), transiente Absorptionsspektroskopie, reaktiver Triplettzustand, Blauverschiebung, Rotverschiebung, QENS, strukturelle und dynamische Veränderungen, Signalweiterleitung, Entkopplung des Adduktzustandszerfalls, strukturelles Zwischenprodukt, AsLOV2, DsLOV, iLOV, PpSB1-LOV
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibungen:Light, Oxygen, Voltage (LOV)-Photorezeptoren sind wichtige Blaulicht-Photorezeptoren, die bei Pflanzen, Pilzen, Bakterien und Protisten vorkommen und eine Anpassung an Lichtveränderungen ermöglichen. Sie durchlaufen einen reversiblen Photozyklus, der ihre Signalfunktion bestimmt. Im Dunkelzustand bindet ein Flavinmononukleotid-Chromophor nicht-kovalent an die LOV-Domäne(n) des Proteins. Belichtung mit blauem Licht führt zu einer Reihe von photochemischen und photophysikalischen Prozessen, welche zur Bildung eines kovalenten Flavin-Cysteinylthiol-Addukts führen. Die Ausbildung dieses Lichtzustands führt zu strukturellen Veränderungen in der LOV-Domäne, die die Aktivität des Photorezeptors kontrollieren und eine physiologische Reaktion auslösen. Im Dunkeln kehrt das LOV-Protein in seinen Dunkelzustand zurück (Dunkelrückkehr), wobei die Flavin-Cystein-Bindung thermisch gebrochen wird, was je nach Protein Sekunden, bis hin zu Tagen dauern kann. Neben ihrer regulatorischen Funktion werden LOV-Photorezeptoren und isolierte LOV-Domänen weitreichend für die Entwicklung von optogenetischen und biophotonischen Werkzeugen eingesetzt. Optogenetische Werkzeuge ermöglichen die reversible Kontrolle biologischer Prozesse mit hoher Präzision, während LOV-basierte biophotonische Werkzeuge als fluoreszierende Proteine zur Visualisierung biologischer Prozesse oder als Photosensibilisatoren zur irreversiblen Ausschaltung von Zellfunktionen genutzt werden. Ein detailliertes Verständnis der Struktur und Mechanismen von LOV-Photorezeptoren ist entscheidend für das Design und die Optimierung solcher Werkzeuge. Die vorliegende Arbeit konzentrierte sich daher auf drei Hauptthemen, die das Verständnis und die Optimierung von LOV-Photorezeptoren und LOV-basierten fluoreszierenden Proteinen betreffen.
Im ersten Teilprojekt wurde der LOV-Photozyklus und die Dunkelrückkehr untersucht, wobei mithilfe eines maschinellen Lernansatzes (ML) versucht wurde, Varianten der Avena sativa Phototropin-1 LOV2 (AsLOV2)-Domäne mit schnellerer und langsamerer Dunkelrückkehr zu erhalten. Über drei Vorhersage-Validierungszyklen wurden eine signifikant schnellere (AsLOV2-I427T/L446M/E475T, τrec = 0,4 ± 0 s) und signifikant langsamere Variante (AsLOV2-N414L/V416L, τrec >103.020 s) erzeugt. Anschließend wurde eine der schnellen Varianten, AsLOV2-V416T, die im Rahmen des ersten Teilprojekts identifiziert wurde, und DsLOV-M49S, eine Variante des LOV-Photorezeptors DsLOV aus Dinoroseobacter shibae, welche ebenfalls eine schnelle Dunkelrückkehr besitzt, mittels transienter Absorptionsspektroskopie untersucht, um die Bildung des reaktiven Triplett-Zustands und die Mechanismen der Adduktbildung zu verstehen. Interessanterweise wurde eine Korrelation zwischen langsamer Adduktbildung und schneller Dunkelrückkehr beobachtet, was auf sterische Wechselwirkungen hindeutet, die den Lichtzustand in LOV-Photorezeptoren stabilisieren. Eine vorläufige Datenanalyse deutet auf das Vorhandensein eines Zwischenprodukts hin, das der Adduktbildung vorausgeht.
Das zweite Teilprojekt befasste sich mit der Anpassung der spektralen Eigenschaften des LOV-basierten, Flavin-bindenden fluoreszierenden Proteins iLOV, das ursprünglich durch gene-shuffling der Gene mehrerer pflanzlicher LOV-Domänen erzeugt wurde. Mittels kombinatorischer Sättigungsmutagenese von drei Aminosäurepositionen in der Nähe des Flavin-Chromophors und einem Ultra-Hochdurchsatz-Screening mittels Fluoreszenz-aktivierter Zellsortierung (Engl. fluorescence activated cell sorting, FACS) wurden verschiedene iLOV-Varianten mit rot- und blauverschobenen spektralen Eigenschaften identifiziert. Im Vergleich zum ursprünglichen iLOV-Protein und zu Literaturdaten wurden hier zwei Varianten mit einer signifikanten Blauverschiebung der Absorptions- und der Fluoreszenzemissionsmaxima (iLOV-V392A/Q489A und iLOV-Q489A/L490R/D491W/G492K/Stop493) und eine Variante mit einem deutlich rotverschobenen Fluoreszenzemissionsmaximum, aber einem blauverschobenen Absorptionsmaximum (iLOV-V392C/G487S/Q489L) identifiziert.
Nicht zuletzt wurden im dritten Teilprojekt die strukturellen und dynamischen Veränderungen während der Dunkelrückkehr des LOV-Photorezeptor PpSB1-LOV aus Pseudomonas putida KT2440 mit einer Kombination aus UV/Vis-, Kernspinresonanz (Engl. nuclear magnetic resonance, NMR)-Spektroskopie und quasielastischen Neutronenstreuungs (QENS)-Messungen untersucht, was neue Einblicke in die Dynamik und die strukturelle Basis der Signalweiterleitung in PpSB1-LOV lieferte. Interessanterweise wurde eine Entkopplung des Zerfalls des Adduktzustands (gemessen durch UV/Vis und NMR) und der strukturellen Rückkehr in den Dunkelzustand (bestimmt durch NMR) beobachtet, was auf das Vorhandensein eines zuvor nicht beobachteten strukturellen Zwischenprodukts hindeutet. Dynamische QENS-Studien ergaben, dass die Dynamik der Proteinseitenketten auf der Zeitskala von Pikosekunden bis Nanosekunden von der Bildung des Adduktzustands beeinflusst wird und dass die Reversion dieser Änderungen offenbar dem vollständigen Brechen des Addukts vorausgeht. Zusammenfassend weisen die hier präsentierten Daten auf eine bisher unbekannte globale dynamische, strukturelle und kinetische Komplexität in diesem Photorezeptor hin.

Light, oxygen, voltage (LOV)-photoreceptors are vital blue-light photoreceptors found in plants, fungi, bacteria, and protists, enabling physiological adaptation to light changes. These receptors undergo a reversible photocycle, determining their signaling function. In darkness, a flavin mononucleotide chromophore binds non-covalently to the protein. Upon blue-light exposure, a series of photochemical and photophysical steps lead to the formation of a covalent flavin-cysteinylthiol-adduct. This light-state formation triggers significant structural changes, controlling the photoreceptor's activity and initiating a physiological response. In the dark, the flavin-cysteine bond in thermally broken and LOV-protein returns to its initial dark state (dark recovery), which can take between seconds to days, depending on the LOV-protein. Besides their regulatory role, LOV-photoreceptors and their isolated sensory LOV-domains are widely used for optogenetic and biophotonic tool development. Optogenetic tools enable reversible control of biological processes with high precision, while LOV-based biophotonic tools serve as fluorescent proteins for visualizing biological processes or photosensitizers for the irreversible ablation of cellular functions. To design and optimize such tools, a comprehensive understanding of the structural and mechanistic aspects of LOV-photoreceptors is crucial. Therefore, this thesis focused on three subjects concerning the understanding and optimization of LOV-photoreceptors and LOV-based fluorescent proteins.
The first subproject investigated the LOV-photocycle and dark recovery kinetics using a machine learning (ML) approach to predict variants of the Avena sativa phototropin-1 LOV2 domain (AsLOV2) with faster and slower dark recovery. Over three prediction-validation cycles a significantly faster (AsLOV2-I427T/L446M/E475T, τrec = 0.4 ± 0 sec) and a significantly slower variant (AsLOV2-N414L/V416L, τrec >103,020 sec) were generated. Subsequently, a fast reverting variant AsLOV2-V416T, identified as part of the first subproject, and DsLOV-M49S, a fast reverting variant of a LOV-photoreceptor of Dinoroseobacter shibae were studied by transient absorption spectroscopy to understand the formation of the reactive triplet state and the mechanisms of adduct formation. Interestingly, a correlation between slow adduct formation and fast adduct reversion was observed, which hint at steric interactions stabilizing the light state in LOV-photoreceptors. Preliminary data analysis suggests the presence of an intermediate preceding adduct formation, whose nature, however, needs to be determined.
The second subproject dealt with the adaptation of the spectral properties of the LOV-based flavin-binding fluorescent protein iLOV, originally generated by shuffling the genes of several plant LOV-domains. Using combinatorial site-saturation mutagenesis of three amino acid positions in the vicinity of the flavin chromophore and an ultra-high throughput screen employing fluorescent activated cell sorting (FACS), different iLOV variants with red- and blue-shifted spectral properties were identified. Compared to the parent iLOV protein and literature data, two variants with a larger blue shift (iLOV-V392A/Q489A and iLOV-Q489A/L490R/D491W/G492K) in both absorption and fluorescence emission and one with larger red shifted fluorescence emission but blue-shifted absorption (iLOV-V392C/G487S/Q489L/Stop493) were identified.
Last but not least, in the third subproject the structural and dynamic changes during the dark recovery in the LOV-photoreceptor PpSB1-LOV of Pseudomonas putida KT2440 was studied using a combination of UV/Vis, nuclear magnetic resonance (NMR)-spectroscopy and quasielastic neutron scattering (QENS)-measurements provided new insights into the structure and dynamics of the LOV-proteins to identify signaling mechanisms. Interestingly, a decoupling of adduct-state decay (measured by UV/Vis and NMR) and structural dark-state recovery (as determined by NMR) was observed, which hinted at the presence of a previously not observed structural intermediate. Dynamic QENS studies revealed that protein side chain dynamics on the picosecond to nanosecond time scale are influenced by adduct state formation and reversion apparently precedes complete adduct rupture. In conclusion, the in this subproject presented data hints at a previously unknown global dynamic, structural and kinetic complexity in this photoreceptor.
Quelle:1. de Wit, M., V.C. Galvao, and C. Fankhauser, Light-Mediated Hormonal Regulation of Plant Growth and Development. Annu Rev Plant Biol, 2016. 67: p. 513-37.
2. Franklin, K.A., V.S. Larner, and G.C. Whitelam, The signal transducing photoreceptors of plants. Int J Dev Biol, 2005. 49(5-6): p. 653-64.
3. Kami, C., et al., Light-regulated plant growth and development. Curr Top Dev Biol, 2010. 91: p. 29-66.
4. Cheng, Z., H. Yamamoto, and C.E. Bauer, Cobalamin's (Vitamin B12) Surprising Function as a Photoreceptor. Trends Biochem Sci, 2016. 41(8): p. 647-650.
5. Conrad, K.S., C.C. Manahan, and B.R. Crane, Photochemistry of flavoprotein light sensors. Nat Chem Biol, 2014. 10(10): p. 801-9.
6. Crosson, S., S. Rajagopal, and K. Moffat, The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry, 2003. 42(1): p. 2-10.
7. Fushimi, K. and R. Narikawa, Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum. Curr Opin Struct Biol, 2019. 57: p. 39-46.
8. Kirilovsky, D. and C.A. Kerfeld, The Orange Carotenoid Protein: a blue-green light photoactive protein. Photochem Photobiol Sci, 2013. 12(7): p. 1135-43.
9. Moglich, A. and K. Moffat, Engineered photoreceptors as novel optogenetic tools. Photochem Photobiol Sci, 2010. 9(10): p. 1286-300.
10. Rizzini, L., et al., Perception of UV-B by the Arabidopsis UVR8 protein. Science, 2011. 332(6025): p. 103-6.
11. Schreiber, M., et al., Quantum mechanical studies on the crystallographic model of bathorhodopsin. Angew Chem Int Ed Engl, 2006. 45(26): p. 4274-7.
12. van der Horst, M.A. and K.J. Hellingwerf, Photoreceptor proteins, "star actors of modern times": a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc Chem Res, 2004. 37(1): p. 13-20.
13. Kottke, T., et al., Photoreceptors Take Charge: Emerging Principles for Light Sensing. Annu Rev Biophys, 2018. 47: p. 291-313.
14. Kandori, H., Retinal Proteins: Photochemistry and Optogenetics. Bulletin of the Chemical Society of Japan, 2020. 93(1): p. 76-85.
15. Rozenberg, A., et al., Microbial Rhodopsins: The Last Two Decades. Annu Rev Microbiol, 2021. 75: p. 427-447.
16. Govorunova, E.G., et al., Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Annu Rev Biochem, 2017. 86: p. 845-872.
17. Deisseroth, K. and P. Hegemann, The form and function of channelrhodopsin. Science, 2017. 357(6356).
18. Kateriya, S., et al., "Vision" in single-celled algae. News Physiol Sci, 2004. 19: p. 133-7.
19. Mukherjee, S., P. Hegemann, and M. Broser, Enzymerhodopsins: novel photoregulated catalysts for optogenetics. Curr Opin Struct Biol, 2019. 57: p. 118-126.
20. Foster, K.W. and R.D. Smyth, Light Antennas in phototactic algae. Microbiol Rev, 1980. 44(4): p. 572-630.
21. Ueki, N., et al., Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A, 2016. 113(19): p. 5299-304.
22. Jost, M., et al., Structural basis for gene regulation by a B12-dependent photoreceptor. Nature, 2015. 526(7574): p. 536-41.
23. Kainrath, S., et al., Green-Light-Induced Inactivation of Receptor Signaling Using Cobalamin-Binding Domains. Angew Chem Int Ed Engl, 2017. 56(16): p. 4608-4611.
24. Ortiz-Guerrero, J.M., et al., Light-dependent gene regulation by a coenzyme B12-based photoreceptor. Proc Natl Acad Sci U S A, 2011. 108(18): p. 7565-70.
25. Padmanabhan, S., et al., A New Facet of Vitamin B(12): Gene Regulation by Cobalamin-Based Photoreceptors. Annu Rev Biochem, 2017. 86: p. 485-514.
26. Kerfeld, C.A., et al., The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure, 2003. 11(1): p. 55-65.
27. Wilson, A., et al., Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria. J Biol Chem, 2010. 285(24): p. 18364-75.
28. Konold, P.E., et al., Photoactivation Mechanism, Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein. J Am Chem Soc, 2019. 141(1): p. 520-530.
29. Wilson, A., et al., A photoactive carotenoid protein acting as light intensity sensor. Proc Natl Acad Sci U S A, 2008. 105(33): p. 12075-80.
30. Sedoud, A., et al., The Cyanobacterial Photoactive Orange Carotenoid Protein Is an Excellent Singlet Oxygen Quencher. Plant Cell, 2014. 26(4): p. 1781-1791.
31. Taylor, B.L. and I.B. Zhulin, PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev, 1999. 63(2): p. 479-506.
32. Genick, U.K., et al., Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science, 1997. 275(5305): p. 1471-1475.
33. Rockwell, N.C. and J.C. Lagarias, A brief history of phytochromes. Chemphyschem, 2010. 11(6): p. 1172-80.
34. Rockwell, N.C. and J.C. Lagarias, Phytochrome evolution in 3D: deletion, duplication, and diversification. New Phytologist, 2020. 225(6): p. 2283-2300.
35. Nambu, J.R., et al., The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell, 1991. 67(6): p. 1157-67.
36. Tan, P., et al., Optophysiology: Illuminating cell physiology with optogenetics. Physiol Rev, 2022. 102(3): p. 1263-1325.
37. Takala, H., et al., Signal amplification and transduction in phytochrome photosensors. Nature, 2014. 509(7499): p. 245-248.
38. Ulijasz, A.T., et al., Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature, 2010. 463(7278): p. 250-4.
39. Wagner, J.R., et al., A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature, 2005. 438(7066): p. 325-31.
40. Carvalho, R.F., M.L. Campos, and R.A. Azevedo, The role of phytochrome in stress tolerance. J Integr Plant Biol, 2011. 53(12): p. 920-9.
41. Blain-Hartung, M., et al., Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. J Biol Chem, 2018. 293(22): p. 8473-8483.
42. Enomoto, G., et al., Three cyanobacteriochromes work together to form a light color-sensitive input system for c-di-GMP signaling of cell aggregation. Proc Natl Acad Sci U S A, 2015. 112(26): p. 8082-7.
43. Enomoto, G., et al., Cyanobacteriochrome SesA is a diguanylate cyclase that induces cell aggregation in Thermosynechococcus. J Biol Chem, 2014. 289(36): p. 24801-9.
44. Ikeuchi, M. and T. Ishizuka, Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem Photobiol Sci, 2008. 7(10): p. 1159-67.
45. Wiltbank, L.B. and D.M. Kehoe, Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol, 2019. 17(1): p. 37-50.
46. Christie, J.M., et al., Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science, 2012. 335(6075): p. 1492-6.
47. Wu, D., et al., Structural basis of ultraviolet-B perception by UVR8. Nature, 2012. 484(7393): p. 214-9.
48. Heijde, M. and R. Ulm, Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc Natl Acad Sci U S A, 2013. 110(3): p. 1113-8.
49. Moriconi, V., et al., Perception of Sunflecks by the UV-B Photoreceptor UV RESISTANCE LOCUS8. Plant Physiol, 2018. 177(1): p. 75-81.
50. Partch, C.L., et al., Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. Biochemistry, 2005. 44(10): p. 3795-805.
51. Uversky, V.N., Intrinsically Disordered Proteins and Their "Mysterious" (Meta)Physics. Frontiers in Physics, 2019. 7.
52. Ahmad, M. and A.R. Cashmore, HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature, 1993. 366(6451): p. 162-6.
53. Briggs, W.R. and E. Huala, Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol, 1999. 15: p. 33-62.
54. Mao, J., et al., From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci U S A, 2005. 102(34): p. 12270-5.
55. Sancar, A., Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev, 2003. 103(6): p. 2203-37.
56. Barends, T.R., et al., Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. Nature, 2009. 459(7249): p. 1015-8.
57. Iseki, M., et al., A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature, 2002. 415(6875): p. 1047-51.
58. Park, S.Y. and J.R.H. Tame, Seeing the light with BLUF proteins. Biophys Rev, 2017. 9(2): p. 169-176.
59. Fujisawa, T. and S. Masuda, Light-induced chromophore and protein responses and mechanical signal transduction of BLUF proteins. Biophys Rev, 2018. 10(2): p. 327-337.
60. Moglich, A., et al., Structure and function of plant photoreceptors. Annu Rev Plant Biol, 2010. 61: p. 21-47.
61. Hontani, Y., et al., Spectroscopic and Computational Observation of Glutamine Tautomerization in the Blue Light Sensing Using Flavin Domain Photoreaction. J Am Chem Soc, 2023. 145(2): p. 1040-1052.
62. Shcherbakova, D.M., et al., Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu Rev Biochem, 2015. 84: p. 519-50.
63. Zoltowski, B.D. and K.H. Gardner, Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions. Biochemistry, 2011. 50(1): p. 4-16.
64. Huala, E., et al., Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science, 1997. 278(5346): p. 2120-3.
65. Nash, A.I., et al., Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc Natl Acad Sci U S A, 2011. 108(23): p. 9449-54.
66. Purcell, E.B., et al., A photosensory two-component system regulates bacterial cell attachment. Proc Natl Acad Sci U S A, 2007. 104(46): p. 18241-6.
67. Swartz, T.E., et al., Blue-light-activated histidine kinases: two-component sensors in bacteria. Science, 2007. 317(5841): p. 1090-3.
68. Takahashi, F., et al., AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. Proc Natl Acad Sci U S A, 2007. 104(49): p. 19625-30.
69. Kagawa, T., et al., Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science, 2001. 291(5511): p. 2138-41.
70. Kinoshita, T., et al., Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature, 2001. 414(6864): p. 656-60.
71. Kroth, P.G., C. Wilhelm, and T. Kottke, An update on aureochromes: Phylogeny - mechanism - function. J Plant Physiol, 2017. 217: p. 20-26.
72. Losi, A., et al., First evidence for phototropin-related blue-light receptors in prokaryotes. Biophys J, 2002. 82(5): p. 2627-34.
73. Sakai, T., et al., Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A, 2001. 98(12): p. 6969-74.
74. Krauss, U., et al., Distribution and phylogeny of light-oxygen-voltage-blue-light-signaling proteins in the three kingdoms of life. J Bacteriol, 2009. 191(23): p. 7234-42.
75. Herrou, J. and S. Crosson, Function, structure and mechanism of bacterial photosensory LOV proteins. Nat Rev Microbiol, 2011. 9(10): p. 713-23.
76. Yu, Z. and R. Fischer, Light sensing and responses in fungi. Nat Rev Microbiol, 2019. 17(1): p. 25-36.
77. Losi, A., Flavin-based Blue-Light photosensors: a photobiophysics update. Photochem Photobiol, 2007. 83(6): p. 1283-300.
78. Losi, A. and W. Gartner, Bacterial bilin- and flavin-binding photoreceptors. Photochem Photobiol Sci, 2008. 7(10): p. 1168-78.
79. Endres, S., et al., Structure and function of a short LOV protein from the marine phototrophic bacterium Dinoroseobacter shibae. BMC Microbiol, 2015. 15: p. 30.
80. Matsuoka, D. and S. Tokutomi, Blue light-regulated molecular switch of Ser/Thr kinase in phototropin. Proc Natl Acad Sci U S A, 2005. 102(37): p. 13337-42.
81. Christie, J.M., et al., Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science, 1998. 282(5394): p. 1698-701.
82. Inoue, S., et al., Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci U S A, 2008. 105(14): p. 5626-31.
83. Sullivan, S., et al., In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototropin 1. Mol Plant, 2008. 1(1): p. 178-94.
84. Inoue, S., et al., Functional analyses of the activation loop of phototropin2 in Arabidopsis. Plant Physiol, 2011. 156(1): p. 117-28.
85. Christie, J.M., et al., LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci U S A, 1999. 96(15): p. 8779-83.
86. Cho, H.Y., et al., Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis. Plant Physiol, 2007. 143(1): p. 517-29.
87. Christie, J.M., et al., Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J, 2002. 32(2): p. 205-19.
88. Kaiserli, E., et al., Domain swapping to assess the mechanistic basis of Arabidopsis phototropin 1 receptor kinase activation and endocytosis by blue light. Plant Cell, 2009. 21(10): p. 3226-44.
89. Nakasako, M., et al., Light-induced structural changes of LOV domain-containing polypeptides from Arabidopsis phototropin 1 and 2 studied by small-angle X-ray scattering. Biochemistry, 2004. 43(47): p. 14881-90.
90. Okajima, K., et al., Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin. J Biol Chem, 2014. 289(1): p. 413-22.
91. Sullivan, S., et al., Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin receptor kinases. FEBS Lett, 2009. 583(13): p. 2187-93.
92. Inoue, S., et al., Leaf positioning of Arabidopsis in response to blue light. Mol Plant, 2008. 1(1): p. 15-26.
93. Kinoshita, T. and K. Shimazaki, Blue light activates the plasma membrane H(+)-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J, 1999. 18(20): p. 5548-58.
94. Christie, J.M., et al., Plant flavoprotein photoreceptors. Plant Cell Physiol, 2015. 56(3): p. 401-13.
95. Froehlich, A.C., et al., White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science, 2002. 297(5582): p. 815-9.
96. He, Q., et al., White collar-1, a DNA binding transcription factor and a light sensor. Science, 2002. 297(5582): p. 840-3.
97. Dunlap, J.C. and J.J. Loros, How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol, 2006. 9(6): p. 579-87.
98. Ballario, P., et al., White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J, 1996. 15(7): p. 1650-7.
99. Lee, K., J.J. Loros, and J.C. Dunlap, Interconnected feedback loops in the Neurospora circadian system. Science, 2000. 289(5476): p. 107-10.
100. Talora, C., et al., Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J, 1999. 18(18): p. 4961-8.
101. Wang, B., et al., Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle. PLoS Genet, 2014. 10(9): p. e1004599.
102. Collett, M.A., et al., Light and clock expression of the Neurospora clock gene frequency is differentially driven by but dependent on WHITE COLLAR-2. Genetics, 2002. 160(1): p. 149-58.
103. Linden, H. and G. Macino, White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J, 1997. 16(1): p. 98-109.
104. Chen, C.H., et al., Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J, 2009. 28(8): p. 1029-42.
105. Dunlap, J.C. and J.J. Loros, The neurospora circadian system. J Biol Rhythms, 2004. 19(5): p. 414-24.
106. He, Q. and Y. Liu, Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev, 2005. 19(23): p. 2888-99.
107. Heintzen, C. and Y. Liu, The Neurospora crassa circadian clock. Adv Genet, 2007. 58: p. 25-66.
108. Liu, Y., Q. He, and P. Cheng, Photoreception in Neurospora: a tale of two White Collar proteins. Cell Mol Life Sci, 2003. 60(10): p. 2131-8.
109. Cheng, P., et al., Functional conservation of light, oxygen, or voltage domains in light sensing. Proc Natl Acad Sci U S A, 2003. 100(10): p. 5938-43.
110. Heintzen, C., J.J. Loros, and J.C. Dunlap, The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell, 2001. 104(3): p. 453-64.
111. Chen, C.H., et al., Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora. Proc Natl Acad Sci U S A, 2010. 107(38): p. 16715-20.
112. Jentzsch, K., et al., Mutual exchange of kinetic properties by extended mutagenesis in two short LOV domain proteins from Pseudomonas putida. Biochemistry, 2009. 48(43): p. 10321-33.
113. Krauss, U., et al., Initial characterization of a blue-light sensing, phototropin-related protein from Pseudomonas putida: a paradigm for an extended LOV construct. Phys Chem Chem Phys, 2005. 7(14): p. 2804-11.
114. Losi, A., The bacterial counterparts of plant phototropins. Photochem Photobiol Sci, 2004. 3(6): p. 566-74.
115. Sumi, S., et al., Light Response of Pseudomonas putida KT2440 Mediated by Class II LitR, a Photosensor Homolog. J Bacteriol, 2020. 202(20).
116. Conrad, K.S., A.M. Bilwes, and B.R. Crane, Light-induced subunit dissociation by a light-oxygen-voltage domain photoreceptor from Rhodobacter sphaeroides. Biochemistry, 2013. 52(2): p. 378-91.
117. Moglich, A. and K. Moffat, Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA. J Mol Biol, 2007. 373(1): p. 112-26.
118. Akbar, S., et al., New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis. J Bacteriol, 2001. 183(4): p. 1329-38.
119. Aravind, L. and E.V. Koonin, The STAS domain - a link between anion transporters and antisigma-factor antagonists. Curr Biol, 2000. 10(2): p. R53-5.
120. Avila-Perez, M., K.J. Hellingwerf, and R. Kort, Blue light activates the sigmaB-dependent stress response of Bacillus subtilis via YtvA. J Bacteriol, 2006. 188(17): p. 6411-4.
121. Gaidenko, T.A., et al., The blue-light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis. J Bacteriol, 2006. 188(17): p. 6387-95.
122. Gourley, C.R., et al., Decreased in vivo virulence and altered gene expression by a Brucella melitensis light-sensing histidine kinase mutant. Pathog Dis, 2015. 73(2): p. 1-8.
123. Toyooka, T., et al., Photoreactions of aureochrome-1. Biophys J, 2011. 100(11): p. 2801-9.
124. Hisatomi, O., et al., Blue light-induced conformational changes in a light-regulated transcription factor, aureochrome-1. Plant Cell Physiol, 2013. 54(1): p. 93-106.
125. Halavaty, A.S. and K. Moffat, N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry, 2007. 46(49): p. 14001-9.
126. Harper, S.M., L.C. Neil, and K.H. Gardner, Structural basis of a phototropin light switch. Science, 2003. 301(5639): p. 1541-4.
127. Harper, S.M., J.M. Christie, and K.H. Gardner, Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity. Biochemistry, 2004. 43(51): p. 16184-92.
128. Swartz, T.E., et al., Vibration spectroscopy reveals light-induced chromophore and protein structural changes in the LOV2 domain of the plant blue-light receptor phototropin 1. Biochemistry, 2002. 41(23): p. 7183-9.
129. Hemmer, S., Photozyklus und Signaltransduktion in light, oxygen, voltage (LOV) Photorezeptoren, Masterthesis. 2019.
130. Bauer, C., et al., Indication for a radical intermediate preceding the signaling state in the LOV domain photocycle. Photochem Photobiol, 2011. 87(3): p. 548-53.
131. Bonetti, C., et al., The role of key amino acids in the photoactivation pathway of the Synechocystis Slr1694 BLUF domain. Biochemistry, 2009. 48(48): p. 11458-69.
132. Kennis, J.T., et al., Primary reactions of the LOV2 domain of phototropin, a plant blue-light photoreceptor. Biochemistry, 2003. 42(12): p. 3385-92.
133. Lokhandwala, J., et al., A Native Threonine Coordinates Ordered Water to Tune Light-Oxygen-Voltage (LOV) Domain Photocycle Kinetics and Osmotic Stress Signaling in Trichoderma reesei ENVOY. J Biol Chem, 2016. 291(28): p. 14839-50.
134. Circolone, F., et al., Structural basis for the slow dark recovery of a full-length LOV protein from Pseudomonas putida. J Mol Biol, 2012. 417(4): p. 362-74.
135. Rollen, K., et al., Signaling States of a Short Blue-Light Photoreceptor Protein PpSB1-LOV Revealed from Crystal Structures and Solution NMR Spectroscopy. J Mol Biol, 2016. 428(19): p. 3721-36.
136. Swartz, T.E., et al., The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem, 2001. 276(39): p. 36493-500.
137. Alexandre, M.T., et al., A base-catalyzed mechanism for dark state recovery in the Avena sativa phototropin-1 LOV2 domain. Biochemistry, 2007. 46(11): p. 3129-37.
138. Losi, A. and W. Gartner, Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors. Photochem Photobiol, 2011. 87(3): p. 491-510.
139. Losi, A. and W. Gartner, The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu Rev Plant Biol, 2012. 63: p. 49-72.
140. Zayner, J.P., C. Antoniou, and T.R. Sosnick, The amino-terminal helix modulates light-activated conformational changes in AsLOV2. J Mol Biol, 2012. 419(1-2): p. 61-74.
141. Zoltowski, B.D., B. Vaccaro, and B.R. Crane, Mechanism-based tuning of a LOV domain photoreceptor. Nat Chem Biol, 2009. 5(11): p. 827-34.
142. Kottke, T., et al., Phot-LOV1: photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii. Biophys J, 2003. 84(2 Pt 1): p. 1192-201.
143. Raffelberg, S., et al., Modulation of the photocycle of a LOV domain photoreceptor by the hydrogen-bonding network. J Am Chem Soc, 2011. 133(14): p. 5346-56.
144. Zoltowski, B.D., A.I. Nash, and K.H. Gardner, Variations in protein-flavin hydrogen bonding in a light, oxygen, voltage domain produce non-Arrhenius kinetics of adduct decay. Biochemistry, 2011. 50(41): p. 8771-9.
145. Alexandre, M.T., et al., Primary reactions of the LOV2 domain of phototropin studied with ultrafast mid-infrared spectroscopy and quantum chemistry. Biophys J, 2009. 97(1): p. 227-37.
146. Alexandre, M.T., et al., Conformational heterogeneity and propagation of structural changes in the LOV2/Jalpha domain from Avena sativa phototropin 1 as recorded by temperature-dependent FTIR spectroscopy. Biophys J, 2009. 97(1): p. 238-47.
147. Nozaki, D., et al., Role of Gln1029 in the photoactivation processes of the LOV2 domain in adiantum phytochrome3. Biochemistry, 2004. 43(26): p. 8373-9.
148. Pfeifer, A., et al., Time-resolved Fourier transform infrared study on photoadduct formation and secondary structural changes within the phototropin LOV domain. Biophys J, 2009. 96(4): p. 1462-70.
149. Alexandre, M.T., et al., Electronic and protein structural dynamics of a photosensory histidine kinase. Biochemistry, 2010. 49(23): p. 4752-9.
150. Eisenreich, W., et al., 13C Isotopologue editing of FMN bound to phototropin domains. FEBS J, 2007. 274(22): p. 5876-90.
151. Iwata, T., et al., Identification of the C=O stretching vibrations of FMN and peptide backbone by 13C-labeling of the LOV2 domain of Adiantum phytochrome3. Biochemistry, 2006. 45(51): p. 15384-91.
152. Kotaki, A., M. Naoi, and K. Yagi, Effect of proton donors on the absorption spectrum of flavin compounds in apolar media. J Biochem, 1970. 68(3): p. 287-92.
153. Nash, A.I., et al., A conserved glutamine plays a central role in LOV domain signal transmission and its duration. Biochemistry, 2008. 47(52): p. 13842-9.
154. Salzmann, S., et al., Influence of the LOV domain on low-lying excited states of flavin: a combined quantum-mechanics/molecular-mechanics investigation. J Phys Chem B, 2009. 113(47): p. 15610-8.
155. Yagi, K., et al., Effect of hydrogen bonding on electronic spectra and reactivity of flavins. Biochemistry, 1980. 19(8): p. 1553-7.
156. Yamamoto, A., et al., Light signal transduction pathway from flavin chromophore to the J alpha helix of Arabidopsis phototropin1. Biophys J, 2009. 96(7): p. 2771-8.
157. Christie, J.M., et al., Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1. Biochemistry, 2007. 46(32): p. 9310-9.
158. Hart, J.E., et al., Engineering the phototropin photocycle improves photoreceptor performance and plant biomass production. Proc Natl Acad Sci U S A, 2019. 116(25): p. 12550-12557.
159. Brosi, R., et al., Hindered rotation of a cofactor methyl group as a probe for protein-cofactor interaction. J Am Chem Soc, 2010. 132(26): p. 8935-44.
160. Guo, H., et al., The phot LOV2 domain and its interaction with LOV1. Biophys J, 2005. 89(1): p. 402-12.
161. Pennacchietti, F., et al., The dark recovery rate in the photocycle of the bacterial photoreceptor YtvA is affected by the cellular environment and by hydration. PLoS One, 2014. 9(9): p. e107489.
162. Zayner, J.P., et al., Investigating models of protein function and allostery with a widespread mutational analysis of a light-activated protein. Biophys J, 2013. 105(4): p. 1027-36.
163. Fettweiss, T., et al., Mechanistic Basis of the Fast Dark Recovery of the Short LOV Protein DsLOV from Dinoroseobacter shibae. Biochemistry, 2018. 57(32): p. 4833-4847.
164. Pudasaini, A., et al., Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis. Elife, 2017. 6.
165. Vaidya, A.T., et al., Structure of a light-activated LOV protein dimer that regulates transcription. Sci Signal, 2011. 4(184): p. ra50.
166. Fedorov, R., et al., Crystal structures and molecular mechanism of a light-induced signaling switch: The Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys J, 2003. 84(4): p. 2474-82.
167. Biebl, H., et al., Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol, 2005. 55(Pt 3): p. 1089-1096.
168. Marques, S. and J.L. Ramos, Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol Microbiol, 1993. 9(5): p. 923-9.
169. Nelson, K.E., et al., Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol, 2002. 4(12): p. 799-808.
170. Röllen, K., Structure Based Studies on FMN-Binding Fluorescent LOV Proteins and Their Application as Optogenetic Tools. 2016.
171. Stadler, A.M., et al., Photoactivation Reduces Side-Chain Dynamics of a LOV Photoreceptor. Biophys J, 2016. 110(5): p. 1064-74.
172. Briggs, W.R. and J.M. Christie, Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci, 2002. 7(5): p. 204-10.
173. Reymond, P., T.W. Short, and W.R. Briggs, Blue light activates a specific protein kinase in higher plants. Plant Physiol, 1992. 100(2): p. 655-61.
174. Kagawa, T., et al., Function analysis of phototropin2 using fern mutants deficient in blue light-induced chloroplast avoidance movement. Plant Cell Physiol, 2004. 45(4): p. 416-26.
175. Salomon, M., U. Lempert, and W. Rudiger, Dimerization of the plant photoreceptor phototropin is probably mediated by the LOV1 domain. FEBS Lett, 2004. 572(1-3): p. 8-10.
176. Jones, M.A., et al., Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission. J Biol Chem, 2007. 282(9): p. 6405-14.
177. Kawano, F., et al., Fluorescence imaging-based high-throughput screening of fast- and slow-cycling LOV proteins. PLoS One, 2013. 8(12): p. e82693.
178. Zayner, J.P., et al., Helical Contributions Mediate Light-Activated Conformational Change in the LOV2 Domain of Avena sativa Phototropin 1. ACS Omega, 2019. 4(1): p. 1238-1243.
179. Losi, A., T. Kottke, and P. Hegemann, Recording of blue light-induced energy and volume changes within the wild-type and mutated phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys J, 2004. 86(2): p. 1051-60.
180. Tang, Y., et al., Interdomain signalling in the blue-light sensing and GTP-binding protein YtvA: a mutagenesis study uncovering the importance of specific protein sites. Photochem Photobiol Sci, 2010. 9(1): p. 47-56.
181. Harper, S.M., et al., Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy. J Am Chem Soc, 2004. 126(11): p. 3390-1.
182. Deisseroth, K., Controlling the brain with light. Sci Am, 2010. 303(5): p. 48-55.
183. Fenno, L., O. Yizhar, and K. Deisseroth, The development and application of optogenetics. Annu Rev Neurosci, 2011. 34: p. 389-412.
184. Torra, J., et al., Singlet oxygen photosensitisation by the fluorescent protein Pp2FbFP L30M, a novel derivative of Pseudomonas putida flavin-binding Pp2FbFP. Photochem Photobiol Sci, 2015. 14(2): p. 280-7.
185. Deisseroth, K., Optogenetics. Nat Methods, 2011. 8(1): p. 26-9.
186. Drepper, T., et al., Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol, 2007. 25(4): p. 443-5.
187. Pudasaini, A., K.K. El-Arab, and B.D. Zoltowski, LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Front Mol Biosci, 2015. 2: p. 18.
188. Nagel, G., et al., Channelrhodopsin-1: a light-gated proton channel in green algae. Science, 2002. 296(5577): p. 2395-8.
189. Nagel, G., et al., Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A, 2003. 100(24): p. 13940-5.
190. Bieszke, J.A., et al., The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci U S A, 1999. 96(14): p. 8034-9.
191. Henderson, R., et al., Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol, 1990. 213(4): p. 899-929.
192. Lanyi, J.K. and H. Luecke, Bacteriorhodopsin. Curr Opin Struct Biol, 2001. 11(4): p. 415-9.
193. Boyden, E.S., et al., Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 2005. 8(9): p. 1263-8.
194. Nagel, G., et al., Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol, 2005. 15(24): p. 2279-84.
195. Liske, H., et al., Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2. Sci Rep, 2013. 3: p. 3110.
196. Chalfie, M., et al., Green fluorescent protein as a marker for gene expression. Science, 1994. 263(5148): p. 802-5.
197. Shimomura, O., The discovery of aequorin and green fluorescent protein. J Microsc, 2005. 217(Pt 1): p. 1-15.
198. Remington, S.J., Green fluorescent protein: a perspective. Protein Sci, 2011. 20(9): p. 1509-19.
199. Davari, M.D., et al., Photophysics of the LOV-Based Fluorescent Protein Variant iLOV-Q489K Determined by Simulation and Experiment. J Phys Chem B, 2016. 120(13): p. 3344-52.
200. Wingen, M., et al., The photophysics of LOV-based fluorescent proteins--new tools for cell biology. Photochem Photobiol Sci, 2014. 13(6): p. 875-83.
201. Chapman, S., et al., The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci U S A, 2008. 105(50): p. 20038-43.
202. Adrian, M., et al., A Phytochrome-Derived Photoswitch for Intracellular Transport. ACS Synth Biol, 2017. 6(7): p. 1248-1256.
203. Nagano, S., et al., Improved fluorescent phytochromes for in situ imaging. Sci Rep, 2022. 12(1): p. 5587.
204. Shu, X., et al., A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol, 2011. 9(4): p. e1001041.
205. Endres, S., et al., An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Sci Rep, 2018. 8(1): p. 15021.
206. Kwiatkowski, S., et al., Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother, 2018. 106: p. 1098-1107.
207. Losi, A. and W. Gartner, Solving Blue Light Riddles: New Lessons from Flavin-binding LOV Photoreceptors. Photochem Photobiol, 2017. 93(1): p. 141-158.
208. Birben, E., et al., Oxidative stress and antioxidant defense. World Allergy Organ J, 2012. 5(1): p. 9-19.
209. Moglich, A., R.A. Ayers, and K. Moffat, Design and signaling mechanism of light-regulated histidine kinases. J Mol Biol, 2009. 385(5): p. 1433-44.
210. Wu, Y.I., et al., A genetically encoded photoactivatable Rac controls the motility of living cells. Nature, 2009. 461(7260): p. 104-8.
211. Yoo, S.K., et al., Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell, 2010. 18(2): p. 226-36.
212. Guntas, G., et al., Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc Natl Acad Sci U S A, 2015. 112(1): p. 112-7.
213. Lungu, O.I., et al., Designing photoswitchable peptides using the AsLOV2 domain. Chem Biol, 2012. 19(4): p. 507-17.
214. Strickland, D., K. Moffat, and T.R. Sosnick, Light-activated DNA binding in a designed allosteric protein. Proc Natl Acad Sci U S A, 2008. 105(31): p. 10709-14.
215. Li, X., et al., A single-component light sensor system allows highly tunable and direct activation of gene expression in bacterial cells. Nucleic Acids Res, 2020. 48(6): p. e33.
216. Grusch, M., et al., Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J, 2014. 33(15): p. 1713-26.
217. Xu, X., et al., A Single-Component Optogenetic System Allows Stringent Switch of Gene Expression in Yeast Cells. ACS Synth Biol, 2018. 7(9): p. 2045-2053.
218. Carrasco-Lopez, C., et al., Optogenetics and biosensors set the stage for metabolic cybergenetics. Curr Opin Biotechnol, 2020. 65: p. 296-309.
219. Delacour, Q., et al., Light-Activated Proteolysis for the Spatiotemporal Control of Proteins. ACS Chem Biol, 2015. 10(7): p. 1643-7.
220. Figueroa, D., et al., The rise and shine of yeast optogenetics. Yeast, 2021. 38(2): p. 131-146.
221. Jerng, H.H., et al., Light-regulated voltage-gated potassium channels for acute interrogation of channel function in neurons and behavior. PLoS One, 2021. 16(3): p. e0248688.
222. Renicke, C., et al., A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem Biol, 2013. 20(4): p. 619-26.
223. Salinas, F., et al., Optogenetic switches for light-controlled gene expression in yeast. Appl Microbiol Biotechnol, 2017. 101(7): p. 2629-2640.
224. Spiltoir, J.I. and C.L. Tucker, Photodimerization systems for regulating protein-protein interactions with light. Curr Opin Struct Biol, 2019. 57: p. 1-8.
225. Christie, J.M., et al., LOV to BLUF: flavoprotein contributions to the optogenetic toolkit. Mol Plant, 2012. 5(3): p. 533-44.
226. Losi, A., K.H. Gardner, and A. Moglich, Blue-Light Receptors for Optogenetics. Chem Rev, 2018. 118(21): p. 10659-10709.
227. de Mena, L. and D.E. Rincon-Limas, PhotoGal4: A Versatile Light-Dependent Switch for Spatiotemporal Control of Gene Expression in Drosophila Explants. iScience, 2020. 23(7): p. 101308.
228. Fields, S. and O. Song, A novel genetic system to detect protein-protein interactions. Nature, 1989. 340(6230): p. 245-6.
229. Frankel, A.D. and P.S. Kim, Modular structure of transcription factors: implications for gene regulation. Cell, 1991. 65(5): p. 717-9.
230. Romero, A., et al., Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast. Int J Mol Sci, 2021. 22(16).
231. Wachter, R.M., et al., Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure, 1998. 6(10): p. 1267-77.
232. https://www.fpbase.org/protein/eyfp/. 12.05.2023.
233. Cormack, B.P., R.H. Valdivia, and S. Falkow, FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 1996. 173(1 Spec No): p. 33-8.
234. Chudakov, D.M., S. Lukyanov, and K.A. Lukyanov, Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol, 2005. 23(12): p. 605-13.
235. March, J.C., G. Rao, and W.E. Bentley, Biotechnological applications of green fluorescent protein. Appl Microbiol Biotechnol, 2003. 62(4): p. 303-15.
236. Christie, J.M., et al., Structural tuning of the fluorescent protein iLOV for improved photostability. J Biol Chem, 2012. 287(26): p. 22295-304.
237. Lee, J., et al., Surface sites for engineering allosteric control in proteins. Science, 2008. 322(5900): p. 438-42.
238. Strickland, D., et al., Rationally improving LOV domain-based photoswitches. Nat Methods, 2010. 7(8): p. 623-6.
239. Lutz, S., Beyond directed evolution--semi-rational protein engineering and design. Curr Opin Biotechnol, 2010. 21(6): p. 734-43.
240. Li, X., Z. Zhang, and J. Song, Computational enzyme design approaches with significant biological outcomes: progress and challenges. Comput Struct Biotechnol J, 2012. 2: p. e201209007.
241. Reetz, M.T. and J.D. Carballeira, Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc, 2007. 2(4): p. 891-903.
242. Yuan, L., et al., Laboratory-directed protein evolution. Microbiol Mol Biol Rev, 2005. 69(3): p. 373-92.
243. Esvelt, K.M., J.C. Carlson, and D.R. Liu, A system for the continuous directed evolution of biomolecules. Nature, 2011. 472(7344): p. 499-503.
244. Harayama, S., Artificial evolution by DNA shuffling. Trends Biotechnol, 1998. 16(2): p. 76-82.
245. Santoro, S.W. and P.G. Schultz, Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A, 2002. 99(7): p. 4185-90.
246. Jaeger, K.E. and T. Eggert, Enantioselective biocatalysis optimized by directed evolution. Curr Opin Biotechnol, 2004. 15(4): p. 305-13.
247. Turner, N.J., Directed evolution drives the next generation of biocatalysts. Nat Chem Biol, 2009. 5(8): p. 567-73.
248. Lutz, S. and W.M. Patrick, Novel methods for directed evolution of enzymes: quality, not quantity. Curr Opin Biotechnol, 2004. 15(4): p. 291-7.
249. Reetz, M.T., D. Kahakeaw, and R. Lohmer, Addressing the numbers problem in directed evolution. Chembiochem, 2008. 9(11): p. 1797-804.
250. Patrick, W.M. and A.E. Firth, Strategies and computational tools for improving randomized protein libraries. Biomol Eng, 2005. 22(4): p. 105-12.
251. Schultz, S.C. and J.H. Richards, Site-saturation studies of beta-lactamase: production and characterization of mutant beta-lactamases with all possible amino acid substitutions at residue 71. Proc Natl Acad Sci U S A, 1986. 83(6): p. 1588-92.
252. Rollen, K., et al., The molecular basis of spectral tuning in blue- and red-shifted flavin-binding fluorescent proteins. J Biol Chem, 2021. 296: p. 100662.
253. Kabir, M.P., et al., Alternative Strategy for Spectral Tuning of Flavin-Binding Fluorescent Proteins. J Phys Chem B, 2023. 127(6): p. 1301-1311.
254. Arnold, F.H., Directed evolution: Creating biocatalysts for the future. Chemical Engineering Science, 1996. 51(23): p. 5091-5102.
255. Sack, U., Tarnok, A., Rothe, G., Zelluläre Diagnostik: Grundlagen, Methoden und klinische Anwendungen der Durchflusszytometrie. 2006: Karger.
256. Dittrich, W., Göhde, W., Patent DE1815352: FLOW-THROUGH CHAMBER FOR PHOTOMETERS TO MEASURE AND COUNT PARTICLES IN A DISPERSION MEDIUM. 18. Dezember 1968.
257. Herzenberg, L.A., R.G. Sweet, and L.A. Herzenberg, Fluorescence-activated cell sorting. Sci Am, 1976. 234(3): p. 108-17.
258. Schlick, T., Pursuing Laplace’s Vision on Modern Computers. Mesirov, J.P., Schulten, K., Sumners, D.W. (eds) Mathematical Approaches to Biomolecular Structure and Dynamics ed. Vol. 82. 1996: Springer, New York, NY.
259. Yang, K.K., Z. Wu, and F.H. Arnold, Machine-learning-guided directed evolution for protein engineering. Nat Methods, 2019. 16(8): p. 687-694.
260. Arinkin, V., et al., Structural determinants underlying the adduct lifetime in the LOV proteins of Pseudomonas putida. FEBS J, 2021. 288(16): p. 4955-4972.
261. Mathes, T., et al., In vivo generation of flavoproteins with modified cofactors. J Mol Biol, 2009. 385(5): p. 1511-8.
262. Chernomor, O., et al., Complex Evolution of Light-Dependent Protochlorophyllide Oxidoreductases in Aerobic Anoxygenic Phototrophs: Origin, Phylogeny, and Function. Mol Biol Evol, 2021. 38(3): p. 819-837.
263. Hemmer, S., et al., Residue alterations within a conserved hydrophobic pocket influence light, oxygen, voltage photoreceptor dark recovery. Photochem Photobiol Sci, 2023. 22(4): p. 713-727.
264. Sambrook J, F.E., Maniatis T., Molecular Cloning: A Laboratory Manual. Second Edition. Vol. 1, 2 and 3. 1989: New York: Cold Spring Labor Laboratory Press.
265. Studier, F.W., Protein production by auto-induction in high density shaking cultures. Protein Expr Purif, 2005. 41(1): p. 207-34.
266. https://www.qiagen.com/de-us/resources/faq?id=d3be05d0-ec02-4ced-aabe-dcd2a1061920&lang=en. 12.05.2023.
267. Saiki, R.K., et al., Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988. 239(4839): p. 487-91.
268. Ishii, T.M., et al., Site-directed mutagenesis. Methods Enzymol, 1998. 293: p. 53-71.
269. Wilkins, M.R., et al., Protein identification and analysis tools in the ExPASy server. Methods Mol Biol, 1999. 112: p. 531-52.
270. Candiano, G., et al., Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004. 25(9): p. 1327-33.
271. Kutta, R.-J., Blitzlichtphotolyse - Untersuchung zu LOV-Domänen und Photochromen Systemen. Dissertation, Naturwissenschaftliche Fakultät IV - Chemie und Pharmazie - der Universität Regensburg, 2012.
272. Kutta, R.-J., et al., Setup and performance of a streak camera apparatus for transient absorption measurements in the ns to ms range. Applied Physics B, 2013. 111(2): p. 203-216.
273. Pavlovska, T., et al., Tuning Deazaflavins Towards Highly Potent Reducing Photocatalysts Guided by Mechanistic Understanding - Enhancement of the Key Step by the Internal Heavy Atom Effect. Chemistry, 2022. 28(46): p. e202200768.
274. Sarter, M., Hemmer, S., et al., Multiscale relaxation analysis reveals the presence of multiple dynamic and structural intermediates in LOV photoreceptor dark recovery. manuscript in preparation (see X).
275. Grimaldo, M., et al., Dynamics of proteins in solution. Quarterly Reviews of Biophysics, 2019. 52.
276. Zayner, J.P. and T.R. Sosnick, Factors that control the chemistry of the LOV domain photocycle. PLoS One, 2014. 9(1): p. e87074.
277. Siedhoff, N.E., et al., PyPEF-An Integrated Framework for Data-Driven Protein Engineering. J Chem Inf Model, 2021. 61(7): p. 3463-3476.
278. Ferguson, A.L. and R. Ranganathan, 100th Anniversary of Macromolecular Science Viewpoint: Data-Driven Protein Design. ACS Macro Lett, 2021. 10(3): p. 327-340.
279. Siedhoff, N.E., U. Schwaneberg, and M.D. Davari, Machine learning-assisted enzyme engineering. Methods Enzymol, 2020. 643: p. 281-315.
280. Hemmer, S., et al., Machine-learning-assisted engineering of photoreceptor kinetics. JACS Au, 2023.
281. Illig, M.A., et al., A hybrid model combining evolutionary probability and machine learning leverages data-driven protein engineering. bioRxiv 2022.06.07.495081; , 2022.
282. Maia, R.N.A., et al., Real-Time Tracking of Proton Transfer from the Reactive Cysteine to the Flavin Chromophore of a Photosensing Light Oxygen Voltage Protein. J Am Chem Soc, 2021. 143(32): p. 12535-12542.
283. Kutta, R.J., et al., A search for radical intermediates in the photocycle of LOV domains. Photochem Photobiol Sci, 2015. 14(2): p. 288-99.
284. Lanzl, K., et al., Photoreaction of mutated LOV photoreceptor domains from Chlamydomonas reinhardtii with aliphatic mercaptans: implications for the mechanism of wild type LOV. Phys Chem Chem Phys, 2010. 12(25): p. 6594-604.
285. Rollen, K., et al., Small-angle X-ray scattering study of the kinetics of light-dark transition in a LOV protein. PLoS One, 2018. 13(7): p. e0200746.
286. Bannister, S., et al., Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study. Struct Dyn, 2019. 6(3): p. 034701.
287. Sarter, M., et al., Strong Adverse Contribution of Conformational Dynamics to Streptavidin-Biotin Binding. J Phys Chem B, 2020. 124(2): p. 324-335.
288. Golub, M., et al., Light-Induced Conformational Flexibility of the Orange Carotenoid Protein Studied by Quasielastic Neutron Scattering with In Situ Illumination. J Phys Chem Lett, 2023. 14(1): p. 295-301.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie » Enzymtechnologie
Dokument erstellt am:03.06.2024
Dateien geändert am:03.06.2024
Promotionsantrag am:19.07.2023
Datum der Promotion:18.03.2024
english
Benutzer
Status: Gast
Aktionen