Dokument: Movies in the Magnet
Titel: | Movies in the Magnet | |||||||
Weiterer Titel: | Movies in the Magnet | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=65751 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20240508-112806-9 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Englisch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Mochalski, Lisa Noreen [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | PD Dr. Weis, Susanne [Gutachter] PD Caspers, Julian [Gutachter] | |||||||
Stichwörter: | naturalistic viewing | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Naturalistic viewing (NV) ist ein vielversprechender Ansatz zur Untersuchung des Gehirns in einer ökologisch valideren Umgebung als Experimente oder Ruhemessungen (RS). In NV schauen ProbandInnen Filme während einer funktionellen Magnetresonanztomographie (fMRT). Filme sind komplexe, kontinuierliche und dynamische Stimuli, die dem echten Leben in vielerlei Hinsicht ähneln (Bottenhorn et al., 2018; Sonkusare et al., 2019). NV ist weniger kontrolliert als Experimente, aber bietet im Gegensatz zu RS inhaltlich bedeutungsvolle Stimulation (Finn et al., 2017) und praktische Vorteile, wie erhöhte Compliance (Vanderwal et al., 2019; Eickhoff et al., 2020). Filme wurden verwendet, um Beziehungen zwischen Gehirn und Verhalten und individuelle Unterschiede zu untersuchen und die sozio-affektive Forschung voranzutreiben (Sonkusare et al., 2019; Saarimäki, 2021).
Die Ziele dieser Arbeit umfassen eine Beurteilung des Einsatzes von NV in sozio-affektiver und Forschung zu individuellen Unterschieden, und die Vorstellung des Movies-Datensatzes, der zur Erforschung dieser Themen kreiert wurde. Zuerst wird ein Projekt vorgestellt, in dem der Einfluss eines ganzen Filmes auf die funktionelle Konnektivität in 14 funktionellen Gehirn-Netzwerken (NFC) untersucht wird. Inter- und intra-individuelle Variabilität in NFC wurden erhoben, und es wurde untersucht, wie Emotionen, die im Film dargestellt werden, diese beeinflussen. Der Movies-Datensatz umfasst zwei RS, eine anatomische und acht NV (f)MRI-Aufnahmen, sowie umfassende Testungen der ProbandInnen hinsichtlich sozio-affektiver Eigenschaften als traits und states. Erweitert wurde der Datensatz durch eine Annotation der von den Filmen ausgelösten Emotionen in einer eigenen Stichprobe und eine Annotation der Eigenschaften der Filme durch zwei Beurteilende. Daten des Movies-Datensatzes wurden genutzt, um zu untersuchen, wie trait und state Ängstlichkeit mit NFC in 14 Netzwerken ko-variieren. Die Ergebnisse dieser Studie zeigen, dass signifikante Korrelationen zwischen state Ängstlichkeit und NFC des Spiegelneuronennetzwerks durch drei bestimmte Filme hervorgerufen werden. Sowohl die Literatur als auch meine eigene Arbeit unterstreichen, dass Film-Stimuli und ProbandInnen genau charakterisiert werden müssen, um zu verstehen, wie NV am besten in sozio-affektiver und Forschung zu individuellen Unterschieden eingesetzt werden kann. Auswahl von Stimulus, Verhalten und Gehirnmessung müssen genau abgewogen und abgestimmt werden (Eickhoff et al., 2020). Der Movies-Datensatz stellt einen großen fMRT-Datensatz dar zum Zweck der Untersuchung, wie diese Faktoren miteinander kombiniert werden müssen, um effektive NV-Forschung zu betreiben.Naturalistic viewing (NV) is a promising approach to studying the brain in more ecologically valid environments than traditional task or resting state (RS) approaches allow. In NV, subjects commonly watch excerpts from or full movies while undergoing functional magnetic resonance imaging (fMRI). Movies are complex, continuous and dynamic stimuli that approximate real life in many ways (Bottenhorn et al., 2018; Sonkusare et al., 2019). NV is less constrained than traditional tasks, but still offers meaningful stimulation, which is missing in RS paradigms (Finn et al., 2017), and offers practical advantages like higher subject compliance and engagement (Vanderwal et al., 2019; Eickhoff et al., 2020). Movies have been employed to study brain-behavior relationships, individual differences, and advance socio-affective research (Sonkusare et al., 2019, Saarimäki, 2021). The aims of the current work are an assessment of the use of NV in individual differences and socio-affective research and the presentation of the Movies dataset, which was created to study these research topics in particular. First, a study is presented that investigates the influence of watching a full narrative movie on network functional connectivity (NFC) in 14 functional brain networks. Inter- and intra-subject variability in NFC are assessed, as well as how they are affected by emotions portrayed in the movie stimulus. Afterwards, I present the Movies dataset, encompassing two RS, one anatomical and 8 movie (f)MRI acquisitions and extensive socio-affective phenotyping of the subjects, including robust assessment of traits and states. This dataset was extended with an annotation of the emotions induced by the movie stimuli in a separate sample and an annotation of the features of the movie stimuli by two raters. Last, data from the Movies dataset was used to investigate the covariation in trait and state anxiety with NFC in 14 functional brain networks. Results indicate that significant correlations between state anxiety and NFC in the mirror neuron system network are not intrinsic, but elicited by three specific movie stimuli. Both literature and my own work emphasize the conclusion that movie stimuli and subjects need to be characterized broadly and robustly to understand how NV can be best leveraged in individual differences and socio-affective research. Stimulus choice, phenotype of interest and brain measure need to be considered carefully and matched to uncover brain-behavior relationships (Eickhoff et al., 2020). The Movies dataset offers a large-scale neuroimaging dataset suitable for advancing the understanding of how these factors need to be combined for effective NV research. | |||||||
Quelle: | A. T. BECK, M.D. C. H. WARD, M. D., M. MENDELSON, M.D. J. MOCK, M. D. A., J. ERBAUGH, M. D. P., & 561. (1961). An Inventory for Measuring Depression. Library, 561–571. https://doi.org/10.1001/archpsyc.1961.01710120031004
Aaron, R. V., Snodgress, M. A., Blain, S. D., & Park, S. (2018). Affect labeling and other aspects of emotional experiences in relation to alexithymia following standardized emotion inductions. Psychiatry Research, 262(July 2017), 115–123. https://doi.org/10.1016/j.psychres.2018.02.014 Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., … Varoquaux, G. (2014). Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8(FEB), 1–10. https://doi.org/10.3389/fninf.2014.00014 Adebimpe, A., Bassett, D. S., Jamieson, P. E., & Romer, D. (2019). Intersubject Synchronization of Late Adolescent Brain Responses to Violent Movies: A Virtue-Ethics Approach. Frontiers in Behavioral Neuroscience, 13(November), 1–13. https://doi.org/10.3389/fnbeh.2019.00260 Aldama, F. L. (2015). The Science of Storytelling: Perspectives from Cognitive Science, Neuroscience, and the Humanities. Projections, 9(1). https://doi.org/10.3167/proj.2015.090106 Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., … Milham, M. P. (2017). Data Descriptor: An open resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific Data, 4, 1–26. https://doi.org/10.1038/sdata.2017.181 Amft, M., Bzdok, D., Laird, A. R., Fox, P. T., Schilbach, L., & Eickhoff, S. B. (2015). Definition and characterization of an extended social-affective default network. Brain Structure and Function, 220(2), 1031–1049. https://doi.org/10.1007/s00429-013-0698-0 Andric, M., Goldin-Meadow, S., Small, S. L., & Hasson, U. (2016). Repeated movie viewings produce similar local activity patterns but different network configurations. NeuroImage, 142, 613–627. https://doi.org/10.1016/j.neuroimage.2016.07.061 Appel, M., & Gnambs, T. (2023). Women in Fiction: Bechdel-Wallace Test Results for the Highest-Grossing Movies of the Last Four Decades. Psychology of Popular Media, 12(4), 499–504. https://doi.org/https://doi.org/10.1037/ppm0000436 Appel, M., & Weber, S. (2021). Do Mass Mediated Stereotypes Harm Members of Negatively Stereotyped Groups? A Meta-Analytical Review on Media-Generated Stereotype Threat and Stereotype Lift. Communication Research, 48(2), 151–179. https://doi.org/10.1177/0093650217715543 Arbula, S., Pisanu, E., & Rumiati, R. I. (2021). Representation of social content in dorsomedial prefrontal cortex underlies individual differences in agreeableness trait. NeuroImage, 235(April), 118049. https://doi.org/10.1016/j.neuroimage.2021.118049 Arifin, S., & Cheung, P. Y. K. (2008). Affective level video segmentation by utilizing the pleasure-arousal- dominance information. IEEE Transactions on Multimedia, 10(7), 1325–1341. https://doi.org/10.1109/TMM.2008.2004911 Aubert, O., Prié, Y., Aubert, O., & Prié, Y. (2017). Advene : active reading through hypervideo To cite this version : Advene : active reading through hypervideo, (Hypertext 2005), 235–244. Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41. https://doi.org/10.1016/j.media.2007.06.004 Bach, M., Bach, D., de Zwaan, M., & Serim, M. (1996). Validierung der deutschen Version der 20-Item Toronto-Alexithymie-Skala bei Normalpersonen und psychiatrischen Patienten [Validation of the German version of the 20-item Toronto Alexithymia Scale in normal adults and psychiatric inpatients]. PPmP: Psychotherapie Psychosomatik Medizinische Psychologie, 46(1), 23–28. Bacha-Trams, M., Alexandrov, Y. I., Broman, E., Glerean, E., Kauppila, M., Kauttonen, J., … Jääskeläinen, I. P. (2018). A drama movie activates brains of holistic and analytical thinkers differentially. Social Cognitive and Affective Neuroscience, 13(12), 1293–1304. https://doi.org/10.1093/scan/nsy099 Bacha-Trams, M., Glerean, E., Dunbar, R., Lahnakoski, J. M., Ryyppö, E., Sams, M., & Jääskeläinen, I. P. (2017). Differential inter-subject correlation of brain activity when kinship is a variable in moral dilemma. Scientific Reports, 7(1), 1–16. https://doi.org/10.1038/s41598-017-14323-x Bacha-Trams, M., Ryyppo, E., Glerean, E., Sams, M., & Jaaskelainen, I. P. (2020). Social perspective-takingshapes brain hemodynamic activity and eye movements during movie viewing. Social Cognitive and Affective Neuroscience, 15(2), 175–191. https://doi.org/10.1093/scan/nsaa033 Bados, A., Gómez-Benito, J., & Balaguer, G. (2010). The state-trait anxiety inventory, trait version: Does it really measure anxiety? Journal of Personality Assessment, 92(6), 560–567. https://doi.org/10.1080/00223891.2010.513295 Bagby, M., Parker, J. D. A., & Taylor, G. J. (1994). THE TWENTY-ITEM TORONTO ALEXITHYMIA SCALE-I. ITEM SELECTION AND CROSS-VALIDATION OF THE FACTOR STRUCTURE. Journal of Psychosomatic Research, 38(1), 23–32. https://doi.org/10.1016/0022-3999(94)90005-1 Baranowski, A., & Hecht, H. (2017). One Hundred Years of Photoplay: Hugo Münsterberg’s Lasting Contribution to Cognitive Movie Psychology. Projections, 11(2), 1–21. https://doi.org/10.3167/proj.2017.110202 Bartels, A., & Zeki, S. (2004). Functional Brain Mapping during Free Viewing of Natural Scenes. Human Brain Mapping, 21(2), 75–85. https://doi.org/10.1002/hbm.10153 Baveye, Y., Dellandréa, E., Chamaret, C., & Chen, L. (2015). LIRIS-ACCEDE: A video database for affective content analysis. IEEE Transactions on Affective Computing, 6(1), 43–55. https://doi.org/10.1109/TAFFC.2015.2396531 Beck, A. T., Steer, R. A., & Brown, G. (1996). Beck Depression Inventory–II (BDI-II) [Database record]. APA PsycTests. https://doi.org/10.1037/t00742-000 Behr, M., Becker, M. (2004). Skalen zum Erleben von Emotionen. 1. Auflage. Göttingen: Hogrefe. Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101. https://doi.org/10.1016/j.neuroimage.2007.04.042 Berg, D. J., Boehnke, S. E., Marino, R. A., Munoz, D. P., & Itti, L. (2009). Free viewing of dynamic stimuli by humans and monkeys. Journal of Vision, 9(5), 1–15. https://doi.org/10.1167/9.5.19 Betti, V., DellaPenna, S., de Pasquale, F., Mantini, D., Marzetti, L., Romani, G. L., & Corbetta, M. (2013). Natural scenes viewing alters the dynamics of functional connectivity in the human brain. Neuron, 79(4), 782–797. https://doi.org/10.1016/j.neuron.2013.06.022 Betzel, R. F., Byrge, L., Esfahlani, F. Z., & Kennedy, D. P. (2020). Temporal fluctuations in the brain’s modular architecture during movie-watching. NeuroImage, 213(February), 116687. https://doi.org/10.1016/j.neuroimage.2020.116687 Bieling, P. J., Antony, M. M., & Swinson, R. P. (1998). The state-trait anxiety inventory, trait version: Structure and content re-examined. Behaviour Research and Therapy, 36(7–8), 777–788. https://doi.org/10.1002/humu.21034 Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–2796. https://doi.org/10.1093/cercor/bhp055 Boeving, E. R., Flannery, J. S., Riedel, M. C., Sutherland, M. T., Laird, A. R., Bottenhorn, K. L., & Eickhoff, S. B. (2018). Cooperating yet distinct brain networks engaged during naturalistic paradigms: A meta-analysis of functional MRI results. Network Neuroscience, 3(1), 27–48. https://doi.org/10.1162/netn_a_00050 Bond, B. J. (2014). Sex and Sexuality in Entertainment Media Popular With Lesbian, Gay, and Bisexual Adolescents. Mass Communication and Society, 17(1), 98–120. https://doi.org/10.1080/15205436.2013.816739 Bordwell, David, and Kristin Thompson. 2010. Film Art: An Introduction. 9th ed. New York: McGraw-Hill. Borkenau, P., Ostendorf, F. (2008). NEO-Fünf-Faktoren-Inventar nach Costa und Mc Crae. 2., neu normierte und vollständig überarbeitete Auflage. Göttingen: Hogrefe. Breil, S. M., Mielke, I., Ahrens, H., Geldmacher, T., Sensmeier, J., Marschall, B., & Back, M. D. (2022). Predicting Actual Social Skill Expression from Personality and Skill Self-Concepts. Journal of Intelligence, 10(3). https://doi.org/10.3390/jintelligence10030048 Buhle, J. T., Silvers, J. A., Wage, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24(11), 2981–2990. https://doi.org/10.1093/cercor/bht154 Brüne, A. (2016). TOM: Theory of Mind Test. SCHUHFRIED GmbH. Byrge, L., Dubois, J., Tyszka, J. M., Adolphs, R., & Kennedy, D. P. (2015). Idiosyncratic Brain Activation Patterns Are Associated with Poor Social Comprehension in Autism. Journal of Neuroscience, 35(14), 5837–5850. https://doi.org/10.1523/JNEUROSCI.5182-14.2015 Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., & Eickhoff, S. B. (2012). Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure and Function, 217(4), 783–796. https://doi.org/10.1007/s00429-012-0380-y Caci, H., Baylé, F. J., Dossios, C., Robert, P., & Boyer, P. (2003). The Spielberger trait anxiety inventory measures more than anxiety. European Psychiatry, 18(8), 394–400. https://doi.org/10.1016/j.eurpsy.2003.05.003 Calhoun, V. D., Miller, R., Pearlson, G., & Adali, T. (2014). The Chronnectome: Time-Varying Connectivity Networks as the Next Frontier in fMRI Data Discovery. Neuron, 84(2), 262–274. https://doi.org/10.1016/j.neuron.2014.10.015 Camilleri, J. A., Müller, V. I., Fox, P., Laird, A. R., Hoffstaedter, F., Kalenscher, T., & Eickhoff, S. B. (2018). Definition and characterization of an extended multiple-demand network. NeuroImage, 165(October 2017), 138–147. https://doi.org/10.1016/j.neuroimage.2017.10.020 Cantlon, J. F., & Li, R. (2013). Neural Activity during Natural Viewing of Sesame Street Statistically Predicts Test Scores in Early Childhood. PLoS Biology, 11(1). https://doi.org/10.1371/journal.pbio.1001462 Carvalho, S., Leite, J., Galdo-Álvarez, S., & Gonçalves, Ó. F. (2012). The emotional movie database (EMDB): A self-report and psychophysiological study. Applied Psychophysiology Biofeedback, 37(4), 279–294. https://doi.org/10.1007/s10484-012-9201-6 Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2016). ALE meta-analysis of action observation and imitation in the human brain. Physiology & Behavior, 176(1), 139–148. https://doi.org/10.1016/j.physbeh.2017.03.040 Chang, L. J., Jolly, E., Cheong, J. H., Rapuano, K. M., Greenstein, N., Chen, P. H. A., & Manning, J. R. (2021). Endogenous variation in ventromedial prefrontal cortex state dynamics during naturalistic viewing reflects affective experience. Science Advances, 7(17). https://doi.org/10.1126/sciadv.abf7129 Charpentier, C. J., Faulkner, P., Pool, E. R., Ly, V., Tollenaar, M. S., Kluen, L. M., … O’Doherty, J. P. (2021). How representative are neuroimaging samples? Large-scale evidence for trait anxiety differences between fMRI and behaviour-only research participants. Social Cognitive and Affective Neuroscience, 16(10), 1057–1070. https://doi.org/10.1093/scan/nsab057 Chen, P.-H. A., Jolly, E., Cheong, J. H., & Chang, L. J. (2020). Intersubject representational similarity analysis reveals individual variations in affective experience when watching erotic movies. NeuroImage, 216(April), 116851. https://doi.org/10.1016/j.neuroimage.2020.116851 Cieslik, E. C., Mueller, V. I., Eickhoff, C. R., Langner, R., & Eickhoff, S. B. (2015, January 1). Three key regions for supervisory attentional control: Evidence from neuroimaging meta-analyses. Neuroscience and Biobehavioral Reviews. Elsevier Ltd. https://doi.org/10.1016/j.neubiorev.2014.11.003 Costa, P. (1992). Neo PI-R professional manual. Psychological Assessment Resources, Inc. Cox, R. W., & Hyde, J. S. (1997). Software Tools for Analysis and Visualization of FMRI Data NMR in Biomedicine, in press. NMR Biomed, 10(4–5), 171–178. Retrieved from https://afni.nimh.nih.gov/pub/dist/doc/papers/afni_paper2.pdf Cremers, H. R., Demenescu, L. R., Aleman, A., Renken, R., van Tol, M. J., van der Wee, N. J. A., … Roelofs, K. (2010). Neuroticism modulates amygdala-prefrontal connectivity in response to negative emotional facial expressions. NeuroImage, 49(1), 963–970. https://doi.org/10.1016/j.neuroimage.2009.08.023 Critchley, H. D., & Harrison, N. A. (2013). Visceral Influences on Brain and Behavior. Neuron, 77(4), 624–638. https://doi.org/10.1016/j.neuron.2013.02.008 Cutting, J. E. (2014). Event segmentation and seven types of narrative discontinuity in popular movies. Acta Psychologica, 149, 69–77. https://doi.org/10.1016/j.actpsy.2014.03.003 Cutting, J. E. (2016). Narrative theory and the dynamics of popular movies. Psychonomic Bulletin and Review, 23(6), 1713–1743. https://doi.org/10.3758/s13423-016-1051-4 Cutting, J. E., & Armstrong, K. L. (2018). Cryptic Emotions and the Emergence of a Metatheory of Mind in Popular Filmmaking. Cognitive Science, 42(4), 1317–1344. https://doi.org/10.1111/cogs.12586 Cutting, J. E., Brunick, K. L., & Candan, A. (2012). Perceiving event dynamics and parsing Hollywood films. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1476–1490. https://doi.org/10.1037/a0027737 Cutting, J. E., Brunick, K. L., & DeLong, J. (2012). On Shot Lengths and Film Acts: A Revised View. Projections, 6(1). https://doi.org/10.3167/proj.2012.060106 Cutting, J. E., Brunick, K. L., DeLong, J. E., Iricinschi, C., & Candan, A. (2011). Quicker, faster, darker: Changes in hollywood film over 75 years. I-Perception, 2(6), 569–576. https://doi.org/10.1068/i0441aap Cutting, J. E., & Candan, A. (2015). Shot durations, shot classes, and the increased pace of popular movies. Projections (New York), 9(2), 40–62. https://doi.org/10.3167/proj.2015.090204 Cutting, J. E., DeLong, J. E., & Brunick, K. L. (2011). Visual Activity in Hollywood Film: 1935 to 2005 and Beyond. Psychology of Aesthetics, Creativity, and the Arts, 5(2), 115–125. https://doi.org/10.1037/a0020995 Cutting, J. E., Delong, J. E., & Nothelfer, C. E. (2010). Attention and the evolution of hollywood film. Psychological Science, 21(3), 432–439. https://doi.org/10.1177/0956797610361679 Cutting, J., & Iricinschi, C. (2015). Re-presentations of space in hollywood movies: An event-indexing analysis. Cognitive Science, 39(2), 434–456. https://doi.org/10.1111/cogs.12151 Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical Surface-Based Analysis. NeuroImage, 9(2), 179–194. https://doi.org/10.1006/nimg.1998.0395 Dan, R., Weinstock, M., & Goelman, G. (2023). Emotional states as distinct configurations of functional brain networks. Cerebral Cortex, 33(9), 5727–5739. https://doi.org/10.1093/cercor/bhac455 Davis, K. L., & Panksepp, J. (2011). The brain’s emotional foundations of human personality and the Affective Neuroscience Personality Scales. Neuroscience and Biobehavioral Reviews, 35(9), 1946–1958. https://doi.org/10.1016/j.neubiorev.2011.04.004 Davis, K. L., Panksepp, J., & Normansell, L. (2003). The Affective Neuroscience Personality Scales: Normative Data and Implications. Neuropsychoanalysis, 5(1), 57–69. https://doi.org/10.1080/15294145.2003.10773410 Dayan, E., Barliya, A., De Gelder, B., Hendler, T., Malach, R., & Flash, T. (2018). Motion cues modulate responses to emotion in movies. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-29111-4 Delgado-Herrera, M., Reyes-Aguilar, A., & Giordano, M. (2021). What Deception Tasks Used in the Lab Really Do: Systematic Review and Meta-analysis of Ecological Validity of fMRI Deception Tasks. Neuroscience, 468, 88–109. https://doi.org/10.1016/j.neuroscience.2021.06.005 Demirtaş, M., Ponce-Alvarez, A., Gilson, M., Hagmann, P., Mantini, D., Betti, V., … Deco, G. (2019). Distinct modes of functional connectivity induced by movie-watching. NeuroImage, 184(June 2018), 335–348. https://doi.org/10.1016/j.neuroimage.2018.09.042 Dorr, M., Martinetz, T., Gegenfurtner, K. R., & Barth, E. (2010). Variability of eye movements when viewing dynamic natural scenes. Journal of Vision, 10(10), 1–17. https://doi.org/10.1167/10.10.28 Dosenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., … Petersen, S. E. (2006). A Core System for the Implementation of Task Sets. Neuron, 50(5), 799–812. https://doi.org/10.1016/j.neuron.2006.04.031 Douglas-Cowie, E., Cowie, R., Sneddon, I., Cox, C., Lowry, O., McRorie, M., … Karpouzis, K. (2011). The HUMAINE Database: Addressing the Collection and Annotation of Naturalistic and Induced Emotional Data. In R. Cowie, C. Pelachaud, & P. Petta (Eds.), Emotion-Oriented Systems (pp. 488–500). Springer Verlag. Dziobek, I., Fleck, S., Kalbe, E., Rogers, K., Hassenstab, J., Brand, M., … Convit, A. (2006). Introducing MASC: A movie for the assessment of social cognition. Journal of Autism and Developmental Disorders, 36(5), 623–636. https://doi.org/10.1007/s10803-006-0107-0 Ebert, D., Krause, J., & Roth-Sackenheim, C. (2003). ADHS im Erwachsenenalter--Leitlinien auf der Basis eines Expertkonsensus mit Unterstützung der DGPPN. Der Nervenarzt, 74(10), 939–946. Eickhoff, S. B., & Grefkes, C. (2011). Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clinical EEG and Neuroscience, 42(2), 107–121. https://doi.org/10.1177/155005941104200211 Eickhoff, S. B., Milham, M., & Vanderwal, T. (2020). Towards clinical applications of movie fMRI. NeuroImage, 217(October 2019), 116860. https://doi.org/10.1016/j.neuroimage.2020.116860 Ekman, P. (2014). Consants Across Cultures In the Face and Emotion. Psycnet.Apa.Org, 18(2), 114311. Retrieved from http://psycnet.apa.org/record/1971-07999-001 Ekman, P., Levenson, R. W., & Friesen, W. V. (2013). Autonomic Nervous System Activity Distinguishes among Emotions Author ( s ): Paul Ekman , Robert W . Levenson and Wallace V . Friesen. Science, 221(4616), 1208–1210. Esteban, Oscar, Ross Blair, Christopher J. Markiewicz, Shoshana L. Berleant, Craig Moodie, Feilong Ma, Ayse Ilkay Isik, et al. 2018. “FMRIPrep.” Software. Zenodo. https://doi.org/10.5281/zenodo.852659. Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., … Gorgolewski, K. J. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111–116. https://doi.org/10.1038/s41592-018-0235-4 Evans, A. C., Janke, A. L., Collins, D. L., & Baillet, S. (2012). Brain templates and atlases. NeuroImage, 62(2), 911–922. https://doi.org/10.1016/j.neuroimage.2012.01.024 Fabbri-Destro, M., & Rizzolatti, G. (2008). Mirror neurons and mirror systems in monkeys and humans. Physiology, 23(3), 171–179. https://doi.org/10.1152/physiol.00004.2008 Fernández-Aguilar, L., Ricarte, J., Ros, L., & Latorre, J. M. (2018). Emotional differences in young and older adults: Films as mood induction procedure. Frontiers in Psychology, 9(July). https://doi.org/10.3389/fpsyg.2018.01110 Finn, E. S. (2021). Is it time to put rest to rest? Trends in Cognitive Sciences, 25(12), 1021–1032. https://doi.org/10.1016/j.tics.2021.09.005 Finn, E. S., & Bandettini, P. A. (2021). Movie-watching outperforms rest for functional connectivity-based prediction of behavior. NeuroImage, 235(March), 117963. https://doi.org/10.1016/j.neuroimage.2021.117963 Finn, E. S., Corlett, P. R., Chen, G., Bandettini, P. A., & Constable, R. T. (2018). Trait paranoia shapes inter-subject synchrony in brain activity during an ambiguous social narrative. Nature Communications, 9(1), 1–13. https://doi.org/10.1038/s41467-018-04387-2 Finn, E. S., Glerean, E., Khojandi, A. Y., Nielson, D., Molfese, P. J., Handwerker, D. A., & Bandettini, P. A. (2020). Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging. NeuroImage, 215, 1–31. https://doi.org/10.1016/j.neuroimage.2020.116828 Finn, E. S., Scheinost, D., Finn, D. M., Shen, X., Papademetris, X., & Constable, R. T. (2017, October 15). Can brain state be manipulated to emphasize individual differences in functional connectivity? NeuroImage. Academic Press Inc. https://doi.org/10.1016/j.neuroimage.2017.03.064 Fonov, VS, AC Evans, RC McKinstry, CR Almli, and DL Collins. 2009. “Unbiased Nonlinear Average Age-Appropriate Brain Templates from Birth to Adulthood.” NeuroImage 47, Supplement 1: S102. https://doi.org/10.1016/S1053-8119(09)70884-5. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. https://doi.org/10.1073/pnas.0504136102 Frazier, T. W., Strauss, M. E., & Steinhauer, S. R. (2004). Respiratory sinus arrhythmia as an index of emotional response in young adults. Psychophysiology, 41(1), 75–83. https://doi.org/10.1046/j.1469-8986.2003.00131.x Gaines, S. O. (2019). Personality Psychology. Personality Psychology. https://doi.org/10.4324/9780429056031 Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593–609. https://doi.org/10.1093/brain/119.2.593 Gao, J., Chen, G., Wu, J., Wang, Y., Hu, Y., Xu, T., … Yang, Z. (2020). Reliability map of individual differences reflected in inter-subject correlation in naturalistic imaging. NeuroImage, 223(July), 117277. https://doi.org/10.1016/j.neuroimage.2020.117277 Gao, W., & Lin, W. (2012). Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Human Brain Mapping, 33(1), 192–202. https://doi.org/10.1002/hbm.21204 Gaviria, J., Rey, G., Bolton, T., Ville, D. Van De, & Vuilleumier, P. (2021). Dynamic functional brain networks underlying the temporal inertia of negative emotions. NeuroImage, 240(May), 118377. https://doi.org/10.1016/j.neuroimage.2021.118377 Geerligs, L., Rubinov, M., Cam-CAN, & Henson, R. N. (2015). State and Trait Components of Functional Connectivity: Individual Differences Vary with Mental State. Journal of Neuroscience, 35(41), 13949–13961. https://doi.org/10.1523/JNEUROSCI.1324-15.2015 Gentili, C., Cristea, I. A., Ricciardi, E., Vanello, N., Popita, C., David, D., & Pietrini, P. (2017). Not in one metric: Neuroticism modulates different resting state metrics within distinctive brain regions. Behavioural Brain Research, 327, 34–43. https://doi.org/10.1016/j.bbr.2017.03.031 Gilman, T. L., Shaheen, R., Nylocks, K. M., Halachoff, D., Chapman, J., Flynn, J. J., … Coifman, K. G. (2017). A film set for the elicitation of emotion in research: A comprehensive catalog derived from four decades of investigation. Behavior Research Methods, 49(6), 2061–2082. https://doi.org/10.3758/s13428-016-0842-x Gilson, M., Deco, G., Friston, K. J., Hagmann, P., Mantini, D., Betti, V., … Corbetta, M. (2017). Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. NeuroImage, 180(October 2017), 534–546. https://doi.org/10.1016/j.neuroimage.2017.09.061 Goldberg, L. R. (1990). Personality Processes and Individual Differences - an Alternative “Description of Personality”: The Big-Five Factor Structure. Journal of Personality and Social Psychology, 59(6), 1216–1229. Goldin, P. R., Hutcherson, C. A. C., Ochsner, K. N., Glover, G. H., Gabrieli, J. D. E., & Gross, J. J. (2005). The neural bases of amusement and sadness: A comparison of block contrast and subject-specific emotion intensity regression approaches. NeuroImage, 27(1), 26–36. https://doi.org/10.1016/j.neuroimage.2005.03.018 Goldstein, R. B., Woods, R. L., & Peli, E. (2007). Where people look when watching movies: Do all viewers look at the same place? Computers in Biology and Medicine, 37(7), 957–964. https://doi.org/10.1016/j.compbiomed.2006.08.018 Gonzalez-Castillo, J., Kam, J. W. Y., Hoy, C. W., & Bandettini, P. A. (2021). How to interpret resting-state fMRI : ask your participants . Journal of Neuroscience, 41(6), 1130–1141. Gordon, E. M., Breeden, A. L., Bean, S. E., & Vaidya, C. J. (2014). Working memory-related changes in functional connectivity persist beyond task disengagement. Human Brain Mapping, 35(3), 1004–1017. https://doi.org/10.1002/hbm.22230 Gordon, E. M., Laumann, T. O., Marek, S., Raut, R. V., Gratton, C., Newbold, D. J., … Nelson, S. M. (2020). Default-mode network streams for coupling to language and control systems. Proceedings of the National Academy of Sciences of the United States of America, 117(29), 17308–17319. https://doi.org/10.1073/pnas.2005238117 Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & Ghosh, S. S. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in Python. Frontiers in Neuroinformatics, 5(August). https://doi.org/10.3389/fninf.2011.00013 Gorgolewski, Krzysztof J., Oscar Esteban, Christopher J. Markiewicz, Erik Ziegler, David Gage Ellis, Michael Philipp Notter, Dorota Jarecka, et al. 2018. “Nipype.” Software. Zenodo. https://doi.org/10.5281/zenodo.596855. Grady, C. L., Rieck, J. R., Baracchini, G., & Desouza, B. (2023). Relation of resting brain signal variability to cognitive and socioemotional measures in an adult lifespan sample. Social Cognitive and Affective Neuroscience, 18(1). https://doi.org/10.1093/scan/nsad044 Grall, C., & Finn, E. S. (2022). Leveraging the power of media to drive cognition: A media-informed approach to naturalistic neuroscience. Social Cognitive and Affective Neuroscience, 17(6), 598–608. https://doi.org/10.1093/scan/nsac019 Grandgirard, J., Poinsot, D., Krespi, L., Nénon, J. P., & Cortesero, A. M. (2002). Costs of secondary parasitism in the facultative hyperparasitoid Pachycrepoideus dubius: Does host size matter? Entomologia Experimentalis et Applicata, 103(3), 239–248. https://doi.org/10.1023/A Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., … Petersen, S. E. (2018). Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron, 98(2), 439–452. https://doi.org/10.1016/j.neuron.2018.03.035 Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. NeuroImage, 48(1), 63–72. https://doi.org/10.1016/j.neuroimage.2009.06.060 Grob, A. , Horowitz, D. (2014). Fragebogen zur Erhebung der Emotionsregulation bei Erwachsenen (FEEL-E). Bern: Huber. Gross, J. J. (1998). Antecedent- and response-focused emotion regulation: Divergent consequences for experience, expression, and physiology. Journal of Personality and Social Psychology, 74(1), 224–237. https://doi.org/10.1037//0022-3514.74.1.224 Gross, J. J., & Levenson, R. W. (1995). Emotion Elicitation using Films. Cognition and Emotion, 9(1), 87–108. https://doi.org/10.1080/02699939508408966 Gross, J., & Kreibig, S. (2012). Understanding mixed emotions: paradigms and measures. Physica Scripta, 85(5), 62–71. https://doi.org/10.1016/j.cobeha.2017.05.016 Guo, C. C., Nguyen, V. T., Hyett, M. P., Parker, G. B., & Breakspear, M. J. (2015). Out-of-sync: Disrupted neural activity in emotional circuitry during film viewing in melancholic depression. Scientific Reports, 5(June), 1–12. https://doi.org/10.1038/srep11605 Hagemann, D., Naumann, E., Maier, S., Becker, G., Lürken, A., & Bartussek, D. (1999). The assessment of affective reactivity using fims: Validity, reliability and sex differences. Personality and Individual Differences, 26, 627–639. https://doi.org/10.1017/CBO9781139193436.003 Hanke, M., Adelhöfer, N., Kottke, D., Iacovella, V., Sengupta, A., Kaule, F. R., … Stadler, J. (2016). A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation. Scientific Data, 3, 160092. https://doi.org/10.1038/sdata.2016.92 LK - https://tdnetdiscover.com/shibboleth/go/773/resolver/full?sid=EMBASE&issn=20524463&id=doi:10.1038%2Fsdata.2016.92&atitle=A+studyforrest+extension%2C+simultaneous+fMRI+and+eye+gaze+recordings+during+prolonged+natural+stimulation&stitle=Sci+Data&title=Scientific+data&volume=3&issue=&spage=160092&epage=&aulast=Hanke&aufirst=Michael&auinit=M.&aufull=Hanke+M.&coden=&isbn=&pages=160092-&date=2016&auinit1=M&auinitm= Hanke, Michael, Baumgartner, F. J., Ibe, P., Kaule, F. R., Pollmann, S., Speck, O., … Stadler, J. (2014). A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie. Scientific Data, 1. https://doi.org/10.1038/sdata.2014.3 Hanke, Michael, & Ibe, P. (2016). Lies, irony, and contradiction - an annotation of semantic conflict in the movie “Forrest Gump.” F1000Research, 5, 1–9. https://doi.org/10.12688/f1000research.9635.1 Hanke, Michael, Labs, A., Reich, T., Schulenburg, H., Boennen, M., Mareike, G., … von Sobbe, F. R. (2015). Portrayed emotions in the movie “Forrest Gump.” F1000Research, 4. https://doi.org/10.12688/f1000research.6230.1 Hart, B. M. t., Vockeroth, J., Schumann, F., Bartl, K., Schneider, E., König, P., & Einhäuser, W. (2009). Gaze allocation in natural stimuli: Comparing free exploration to head-fixed viewing conditions. Visual Cognition, 17(6–7), 1132–1158. https://doi.org/10.1080/13506280902812304 Harwood, J., & Anderson, K. (2002). The presence and portrayal of social groups on prime–time television. International Journal of Phytoremediation, 21(1), 81–97. https://doi.org/10.1080/08934210209367756 Hasson, U., Furman, O., Clark, D., Dudai, Y., & Davachi, L. (2008). Enhanced Intersubject Correlations during Movie Viewing Correlate with Successful Episodic Encoding. Neuron, 57(3), 452–462. https://doi.org/10.1016/j.neuron.2007.12.009 Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., & Heeger, D. J. (2008). Neurocinematics: The Neuroscience of Film. Projections, 2(1), 1–26. https://doi.org/10.3167/proj.2008.020102 Hasson, U., Malach, R., & Heeger, D. J. (2010). Reliability of cortical activity during natural stimulation. Trends in Cognitive Sciences, 14(1), 40–48. https://doi.org/10.1016/j.tics.2009.10.011 Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject Synchronization of Cortical Activity During Natural Vision. Science, 303(MARCH), 1634–1640. https://doi.org/10.1126/science.1089506 Hasson, U., Yang, E., Vallines, I., Heeger, D. J., & Rubin, N. (2008). A hierarchy of temporal receptive windows in human cortex. Journal of Neuroscience, 28(10), 2539–2550. https://doi.org/10.1523/JNEUROSCI.5487-07.2008 Häusler, C. O., & Hanke, M. (2021). A studyforrest extension, an annotation of spoken language in the German dubbed movie “Forrest Gump” and its audio-description. F1000Research, 10. https://doi.org/10.12688/f1000research.27621.1 Hautzinger, M., Keller, F., Kühner, C. (2009). Beck-Depressions-Inventar Revision. 2. Auflage. Frankfurt am Main: Pearson Assessment. Hlinka, J., Děchtěrenko, F., Rydlo, J., Androvičová, R., Vejmelka, M., Jajcay, L., … Horáček, J. (2022). The intra-session reliability of functional connectivity during naturalistic viewing conditions. Psychophysiology, (March), 1–13. https://doi.org/10.1111/psyp.14075 Hoffner, C. A., & Levine, K. J. (2013). Enjoyment of mediated fright and violence: A meta-analysis. Mass Media Effects Research: Advances Through Meta-Analysis, (September 2013), 215–244. https://doi.org/10.4324/9780203823453 Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., … Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 80, 360–378. https://doi.org/10.1016/j.neuroimage.2013.05.079 Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60(October 2008), 653–670. https://doi.org/10.1146/annurev.psych.60.110707.163604 Jääskeläinen, I. P., Ahveninen, J., Klucharev, V., Shestakova, A. N., & Levy, J. (2022). Behavioral Experience-Sampling Methods in Neuroimaging Studies With Movie and Narrative Stimuli. Frontiers in Human Neuroscience, 16(January), 1–7. https://doi.org/10.3389/fnhum.2022.813684 Jääskeläinen, I. P., Koskentalo, K., Balk, M. H., Autti, T., Kauramäki, J., Pomren, C., & Sams, M. (2008). Inter-Subject Synchronization of Prefrontal Cortex Hemodynamic Activity During Natural Viewing. The Open Neuroimaging Journal, 2(1), 14–19. https://doi.org/10.2174/1874440000802010014 Jääskeläinen, I. P., Pajula, J., Tohka, J., Lee, H. J., Kuo, W. J., & Lin, F. H. (2016). Brain hemodynamic activity during viewing and re-viewing of comedy movies explained by experienced humor. Scientific Reports, 6(December 2015), 1–14. https://doi.org/10.1038/srep27741 Jang, C., Knight, E. Q., Pae, C., Park, B., Yoon, S. A., & Park, H. J. (2017). Individuality manifests in the dynamic reconfiguration of large-scale brain networks during movie viewing. Scientific Reports, 7(January), 1–14. https://doi.org/10.1038/srep41414 Jenkins, L. M., & Andrewes, D. G. (2012). A new set of standardised verbal and non-verbal contemporary film stimuli for the elicitation of emotions. Brain Impairment, 13(2), 212–227. https://doi.org/10.1017/BrImp.2012.18 Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage, 17(2), 825–841. https://doi.org/10.1006/nimg.2002.1132 Jiang, T., Li, H., & Hou, Y. (2019). Cultural differences in humor perception, usage, and implications. Frontiers in Psychology, 10(JAN), 1–8. https://doi.org/10.3389/fpsyg.2019.00123 Kanning, U.P. (2002). Soziale Kompetenz - Definition, Strukturen und Prozesse. Zeitschrift Für Psychologie-Journal of Psychology, 210, 154-163. Kanning, U. P. (2003). Diagnostik sozialer Kompetenzen. Kompendien Psychologische Diagnostik Bd. 4. Göttingen: Hogrefe. Kauppi, J. P., Jääskeläinen, I. P., Sams, M., & Tohka, J. (2010). Inter-subject correlation of brain hemodynamic responses during watching a movie: Localization in space and frequency. Frontiers in Neuroinformatics, 4(MAR). https://doi.org/10.3389/fninf.2010.00005 Kauttonen, J., Hlushchuk, Y., Jääskeläinen, I. P., & Tikka, P. (2018). Brain mechanisms underlying cue-based memorizing during free viewing of movie Memento. NeuroImage, 172, 313–325. https://doi.org/10.1016/j.neuroimage.2018.01.068 Kim, D., Kay, K., Shulman, G. L., & Corbetta, M. (2018). A new modular brain organization of the bold signal during natural vision. Cerebral Cortex, 28(9), 3065–3081. https://doi.org/10.1093/cercor/bhx175 Kingstone, A., Smilek, D., & Eastwood, J. D. (2008). Cognitive Ethology: A new approach for studying human cognition. British Journal of Psychology, 99(3), 317–340. https://doi.org/10.1348/000712607X251243 Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. H. (1993). The “Trier Social Stress Test” - A Tool for Investigating Psychobiological Stress Responses in a Laboratory Setting. Neuropsychobiology, 3(28), 76–81. Klein, A., Ghosh, S. S., Bao, F. S., Giard, J., Häme, Y., Stavsky, E., … Keshavan, A. (2017). Mindboggling morphometry of human brains. PLoS Computational Biology (Vol. 13). https://doi.org/10.1371/journal.pcbi.1005350 Knautz, K., & Stock, W. G. (2011). Collective indexing of emotions in videos. Journal of Documentation, 67(6), 975–994. https://doi.org/10.1108/00220411111183555 Knight, L. K., Stoica, T., Fogleman, N. D., & Depue, B. E. (2019). Convergent neural correlates of empathy and anxiety during socioemotional processing. Frontiers in Human Neuroscience, 13(March), 1–15. https://doi.org/10.3389/fnhum.2019.00094 Knowles, K. A., & Bunmi O. Olatunji. (2020). Specificity of Trait Anxiety in Anxiety and Depression: Meta- Analysis of the State-Trait Anxiety Inventory. Clin Psychol Rev, 82. https://doi.org/10.1016/j.cpr.2020.101928. Specificity Koelstra, S., Mühl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., … Patras, I. (2012). DEAP: A database for emotion analysis; Using physiological signals. IEEE Transactions on Affective Computing, 3(1), 18–31. https://doi.org/10.1109/T-AFFC.2011.15 Kong, R., Li, J., Orban, C., Sabuncu, M. R., Liu, H., Schaefer, A., … Yeo, B. T. T. (2018). Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion. Cerebral Cortex, 1–19. https://doi.org/10.1093/cercor/bhy123 Kotthoff, H. (2006). Gender and humor: The state of the art. Journal of Pragmatics, 38(1 SPEC. ISS.), 4–25. https://doi.org/10.1016/j.pragma.2005.06.003 Kraus, B., Zinbarg, R., Braga, R. M., Nusslock, R., Mittal, V. A., & Gratton, C. (2023). Insights from personalized models of brain and behavior for identifying biomarkers in psychiatry. Neuroscience and Biobehavioral Reviews, 152(May), 105259. https://doi.org/10.1016/j.neubiorev.2023.105259 Kreibig, S. D., Samson, A. C., & Gross, J. J. (2013). The psychophysiology of mixed emotional states. Psychophysiology, 50(8), 799–811. https://doi.org/10.1111/psyp.12064 Kreibig, S. D., Samson, A. C., & Gross, J. J. (2015). The psychophysiology of mixed emotional states: Internal and external replicability analysis of a direct replication study. Psychophysiology, 52(7), 873–886. https://doi.org/10.1111/psyp.12425 Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis - connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2(NOV), 1–28. https://doi.org/10.3389/neuro.06.004.2008 Krohne, H. W., Egloff, B., Kohlmann, C.-W., & Tausch, A. (1996). Untersuchung mit einer deutschen Version der “Positive and Negative Affect Schedule (PANAS).” Diagnostica, 42(2), 139–156. Kröll, J. P., Friedrich, P., Li, X., Patil, K. R., Mochalski, L., Waite, L., … Weis, S. (2023). Naturalistic viewing increases individual identifiability based on connectivity within functional brain networks. NeuroImage, 273(April), 120083. https://doi.org/10.1016/j.neuroimage.2023.120083 Kucyi, A. (2018). Just a thought: How mind-wandering is represented in dynamic brain connectivity. NeuroImage, 180(April 2017), 505–514. https://doi.org/10.1016/j.neuroimage.2017.07.001 Kuipers, G., & Van Der Ent, B. (2016). The seriousness of ethnic jokes: Ethnic humor and social change in the Netherlands, 1995-2012. Humor, 29(4), 605–633. https://doi.org/10.1515/humor-2016-0013 Kupfer, J., Brosig, B., Brähler, E. (2001). Toronto-Alexithymie-Skala-26 Deutsche Version. 1. Auflage. Göttingen: Hogrefe. Kuppens, P., Tuerlinckx, F., Yik, M., Koval, P., Coosemans, J., Zeng, K. J., & Russell, J. A. (2017). The Relation Between Valence and Arousal in Subjective Experience Varies With Personality and Culture. Journal of Personality, 85(4), 530–542. https://doi.org/10.1111/jopy.12258 Lahnakoski, J. M., Glerean, E., Jääskeläinen, I. P., Hyönä, J., Hari, R., Sams, M., & Nummenmaa, L. (2014). Synchronous brain activity across individuals underlies shared psychological perspectives. NeuroImage, 100, 316–324. https://doi.org/10.1016/j.neuroimage.2014.06.022 Lahnakoski, J. M., Glerean, E., Salmi, J., Jääskeläinen, I. P., Sams, M., Hari, R., & Nummenmaa, L. (2012). Naturalistic fMRI Mapping Reveals Superior Temporal Sulcus as the Hub for the Distributed Brain Network for Social Perception. Frontiers in Human Neuroscience, 6(August), 1–14. https://doi.org/10.3389/fnhum.2012.00233 Lanczos, C. 1964. “Evaluation of Noisy Data.” Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis 1 (1): 76–85. https://doi.org/10.1137/0701007. Lang, P. J. The Cognitive Psychophysiology of Emotion: Anxiety and the Anxiety Disorders. Hillsdale, NJ: Lawrence Erlbaum, 1985 Langner, R., & Eickhoff, S. B. (2013). Sustaining Attention to Simple Tasks: A Meta-Analytic Review of the Neural Mechanisms of Vigilant Attention, 71(2), 233–236. https://doi.org/10.1038/mp.2011.182.doi Laux, L., Glanzmann, P., Schaffner, P., Spielberger, C. D. (1981). Das State-Trait-Angstinventar. 1. Auflage. Göttingen: Beltz Test. Lauzen, M. M., & Dozier, D. M. (2005). Maintaining the double standard: Portrayals of age and gender in popular films. Sex Roles, 52(7–8), 437–446. https://doi.org/10.1007/s11199-005-3710-1 Leal, P. C., Goes, T. C., da Silva, L. C. F., & Teixeira-Silva, F. (2017). Trait vs. state anxiety in different threatening situations. Trends in Psychiatry and Psychotherapy, 39(3), 147–157. https://doi.org/10.1590/2237-6089-2016-0044 Leavitt, P. A., Covarrubias, R., Perez, Y. A., & Fryberg, S. A. (2015). “Frozen in time”: The impact of native American media representations on identity and self-understanding. Journal of Social Issues, 71(1), 39–53. https://doi.org/10.1111/josi.12095 Lee, S., Bijsterbosch, J. D., Almagro, F. A., Elliott, L., McCarthy, P., Taschler, B., … Douaud, G. (2023). Amplitudes of resting-state functional networks – investigation into their correlates and biophysical properties. NeuroImage, 265(July 2022), 119779. https://doi.org/10.1016/j.neuroimage.2022.119779 Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U. (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8), 2906–2915. https://doi.org/10.1523/JNEUROSCI.3684-10.2011 Lettieri, G., Handjaras, G., Ricciardi, E., Leo, A., Papale, P., Betta, M., … Cecchetti, L. (2019). Emotionotopy in the human right temporo-parietal cortex. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13599-z Lettieri, G., Handjaras, G., Setti, F., Cappello, E. M., Bruno, V., Diano, M., … Cecchetti, L. (2022). Default and control network connectivity dynamics track the stream of affect at multiple timescales. Social Cognitive and Affective Neuroscience, 17(5), 461–469. https://doi.org/10.1093/scan/nsab112 Levakov, G., Sporns, O., & Avidan, G. (2023). Fine-scale dynamics of functional connectivity in the face-processing network during movie watching. Cell Reports, 42(6), 112585. https://doi.org/10.1016/j.celrep.2023.112585 Li, X., Friedrich, P., Patil, K. R., Eickhoff, S. B., & Weis, S. (2023). A topography-based predictive framework for naturalistic viewing fMRI. NeuroImage, 277(January), 120245. https://doi.org/10.1016/j.neuroimage.2023.120245 Liu, H., Cao, J., Zhang, J., & Ragulskis, M. (2023). Minimum spanning tree brain network topology reflects individual differences in the structure of affective experience. Neurocomputing, 521, 56–64. https://doi.org/10.1016/j.neucom.2022.11.095 Liu, T., Hu, X., Li, X., Chen, M., Han, J., & Guo, L. (2014). Merging neuroimaging and multimedia: Methods, opportunities, and challenges. IEEE Transactions on Human-Machine Systems, 44(2), 270–280. https://doi.org/10.1109/THMS.2013.2296871 Liu, T. T., & Falahpour, M. (2020). Vigilance Effects in Resting-State fMRI. Frontiers in Neuroscience, 14(April). https://doi.org/10.3389/fnins.2020.00321 Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages. Neuroscience and Biobehavioral Reviews, 35(5), 1219–1236. https://doi.org/10.1016/j.neubiorev.2010.12.012.Common Lu, K. H., Hung, S. C., Wen, H., Marussich, L., & Liu, Z. (2016). Influences of high-level features, gaze, and scene transitions on the reliability of BOLD responses to natural movie stimuli. PLoS ONE, 11(8), 1–19. https://doi.org/10.1371/journal.pone.0161797 Mantini, D., Hasson, U., Betti, V., Perrucci, M. G., Romani, G. L., Corbetta, M., … Vanduffel, W. (2012). Interspecies activity correlations reveal functional correspondence between monkey and human brain areas. Nature Methods, 9(3), 277–282. https://doi.org/10.1038/nmeth.1868 Mar, R. A., Tackett, J. L., & Moore, C. (2010). Exposure to media and theory-of-mind development in preschoolers. Cognitive Development, 25(1), 69–78. https://doi.org/10.1016/j.cogdev.2009.11.002 Marchant, P., Raybould, D., Renshaw, T., & Stevens, R. (2009). Are you seeing what I’m seeing? An eye-tracking evaluation of dynamic scenes. Digital Creativity, 20(3), 153–163. https://doi.org/10.1080/14626260903083611 Markett, S., Montag, C., Melchers, M., Weber, B., & Reuter, M. (2016). Anxious personality and functional efficiency of the insular-opercular network: A graph-analytic approach to resting-state fMRI. Cognitive, Affective and Behavioral Neuroscience, 16(6), 1039–1049. https://doi.org/10.3758/s13415-016-0451-2 Martin, C. G., He, B. J., & Chang, C. (2021). State-related neural influences on fMRI connectivity estimation. NeuroImage, 244(May), 118590. https://doi.org/10.1016/j.neuroimage.2021.118590 Mastro, D. (2015). Why the media’s role in issues of race and ethnicity should be in the spotlight. Journal of Social Issues, 71(1), 1–16. https://doi.org/10.1111/josi.12093 Mastro, D. E., & Behm-Morawitz, E. (2005). Latino representation on primetime television. Journalism and Mass Communication Quarterly, 82(1), 110–130. https://doi.org/10.1177/107769900508200108 Matthews, G., Joyner, L., Gilliland, K., Campbell, S., Falconer, S., & Huggins, J. (1999). Validation of a comprehensive stress state questionnaire: Towards a state big three. Personality psychology in Europe, 7, 335-350. Tilburg: Tilburg University Press. Matthews, G., Szalma, J., Panganiban, A. R., Neubauer, C., & Warm, J. S. (2013). Profiling task stress with the dundee state questionnaire. Psychology of Stress: New Research. McCrae, R., & John, O. P. (1992). An Introduction to the Five-Factor Model and Its Applications. Journal of Personality, 60(2), 175–215. https://doi.org/10.1111/j.1467-6494.1992.tb00970.x McCrae, R. R., & Costa, P. T. (2004). A contemplated revision of the NEO Five-Factor Inventory. Personality and Individual Differences, 36(3), 587–596. https://doi.org/10.1016/S0191-8869(03)00118-1 McNamara, Q., De La Vega, A., & Yarkoni, T. (2017). Developing a comprehensive framework for multimodal feature extraction. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Part F1296, 1567–1574. https://doi.org/10.1145/3097983.3098075 Meer, J. N. va. der, Breakspear, M., Chang, L. J., Sonkusare, S., & Cocchi, L. (2020). Movie viewing elicits rich and reliable brain state dynamics. Nature Communications, 11(1), 1–14. https://doi.org/10.1038/s41467-020-18717-w Mendiburo-Seguel, A., Páez, D., & Martínez-Sánchez, F. (2015). Humor styles and personality: A meta-analysis of the relation between humor styles and the Big Five personality traits. Scandinavian Journal of Psychology, 56(3), 335–340. https://doi.org/10.1111/sjop.12209 Metallinou, A., & Narayanan, S. (2013). Annotation and processing of continuous emotional attributes: Challenges and opportunities. 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, FG 2013, 1–8. https://doi.org/10.1109/FG.2013.6553804 Michon, K. J., Khammash, D., Simmonite, M., Hamlin, A. M., & Polk, T. A. (2022). Person-specific and precision neuroimaging: Current methods and future directions. NeuroImage, 263(July), 119589. https://doi.org/10.1016/j.neuroimage.2022.119589 Mirchi, N., Betzel, R. F., Bernhardt, B. C., Dagher, A., & Mišić ‡, B. (2019). Tracking mood fluctuations with functional network patterns. Social Cognitive and Affective Neuroscience, 14(1), 47–57. https://doi.org/10.1093/scan/nsy107 Mišić, B., & Sporns, O. (2016). From regions to connections and networks: New bridges between brain and behavior. Current Opinion in Neurobiology, 40, 1–7. https://doi.org/10.1016/j.conb.2016.05.003 Mital, P. K., Smith, T. J., Hill, R. L., & Henderson, J. M. (2011). Clustering of Gaze During Dynamic Scene Viewing is Predicted by Motion. Cognitive Computation, 3(1), 5–24. https://doi.org/10.1007/s12559-010-9074-z Moon, S. E., & Lee, J. S. (2017). Implicit Analysis of Perceptual Multimedia Experience Based on Physiological Response: A Review. IEEE Transactions on Multimedia, 19(2), 340–353. https://doi.org/10.1109/TMM.2016.2614880 Morris, J. D. (1995). SAM: The Self-Assessment Manikin - An efficient cross-cultural measurement of emotional response. Journal of Advertising Research, 35(6), 63–68. https://doi.org/http://adsam.com/files/Observations.PDF Nakuci, J., Wasylyshyn, N., Cieslak, M., Elliott, J. C., Bansal, K., Giesbrecht, B., … Muldoon, S. F. (2023). Within-subject reproducibility varies in multi-modal, longitudinal brain networks. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-33441-3 Nastase, S. A., Gazzola, V., Hasson, U., & Keysers, C. (2019). Measuring shared responses across subjects using intersubject correlation. Social Cognitive and Affective Neuroscience, 14(6), 669–687. https://doi.org/10.1093/scan/nsz037 Neville, C., & Anastasio, P. (2019). Fewer, Younger, but Increasingly Powerful: How Portrayals of Women, Age, and Power Have Changed from 2002 to 2016 in the 50 Top-Grossing U.S. Films. Sex Roles, 80(7–8), 503–514. https://doi.org/10.1007/s11199-018-0945-1 Nguyen, V. T., Sonkusare, S., Stadler, J., Hu, X., Breakspear, M., & Guo, C. C. (2017). Distinct cerebellar contributions to cognitive- perceptual dynamics during natural viewing. Cerebral Cortex, 27(12), 5652–5662. https://doi.org/10.1093/cercor/bhw334 Norman, W. T. (1963). Toward an adequate taxonomy of personality attributes: Replicated factor structure in peer nomination personality ratings. Journal of Abnormal and Social Psychology, 66(6), 574–583. https://doi.org/10.1037/h0040291 Nummenmaa, L., Glerean, E., Viinikainen, M., Jääskeläinen, I. P., Hari, R., & Sams, M. (2012). Emotions promote social interaction by synchronizing brain activity across individuals. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9599–9604. https://doi.org/10.1073/pnas.1206095109 Nummenmaa, L., Lahnakoski, J. M., & Glerean, E. (2018). Sharing the social world via intersubject neural synchronisation. Current Opinion in Psychology, 24, 7–14. https://doi.org/10.1016/j.copsyc.2018.02.021 Nyström, M., & Holmqvist, K. (2010). Effect of compressed offline foveated video on viewing behavior and subjective quality. ACM Transactions on Multimedia Computing, Communications and Applications, 6(1), 0–14. https://doi.org/10.1145/1671954.1671958 O’Connor, D., Potler, N. V., Kovacs, M., Xu, T., Ai, L., Pellman, J., … Milham, M. P. (2017). The healthy brain network serial scanning initiative: A resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions. GigaScience, 6(2), 1–14. https://doi.org/10.1093/gigascience/giw011 Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4 Oliveira, E., Martins, P., & Chambel, T. (2013). Accessing movies based on emotional impact. Multimedia Systems, 19(6), 559–576. https://doi.org/10.1007/s00530-013-0303-7 Palomba, D., Sarlo, M., Angrilli, A., Mini, A., & Stegagno, L. (2000). Cardiac responses associated with affective processing of unpleasant film stimuli. International Journal of Psychophysiology, 36(1), 45–57. https://doi.org/10.1016/S0167-8760(99)00099-9 Pan, J., Zhan, L., Hu, C. L., Yang, J., Wang, C., Gu, L., … Wu, X. (2018). Emotion regulation and complex brain networks: Association between expressive suppression and efficiency in the fronto-parietal network and default-mode network. Frontiers in Human Neuroscience, 12(March), 1–12. https://doi.org/10.3389/fnhum.2018.00070 Pervaiz, U., Vidaurre, D., Woolrich, M. W., & Smith, S. M. (2020). Optimising network modelling methods for fMRI. NeuroImage, 211(November 2019), 116604. https://doi.org/10.1016/j.neuroimage.2020.116604 Porter, A., Nielsen, A., Dorn, M., Dworetsky, A., Edmonds, D., & Gratton, C. (2023). Masked features of task states found in individual brain networks. Cerebral Cortex, 33(6), 2879–2900. https://doi.org/10.1093/cercor/bhac247 Power, J. D., Braver, T. S., Petersen, S. E., Cole, M. W., & Bassett, D. S. (2014). Intrinsic and Task-Evoked Network Architectures of the Human Brain. Neuron, 83(1), 238–251. https://doi.org/10.1016/j.neuron.2014.05.014 Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (n.d.). Functional network organization of the human brain. Bone, 72(4), 665–678. https://doi.org/10.1016/j.neuron.2011.09.006 Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320–341. https://doi.org/10.1016/j.neuroimage.2013.08.048 Preti, M. G., Bolton, T. A., & Van De Ville, D. (2017). The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage, 160(December 2016), 41–54. https://doi.org/10.1016/j.neuroimage.2016.12.061 Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage, 112, 267–277. https://doi.org/10.1016/j.neuroimage.2015.02.064 Ramasubramanian, S. (2011). The impact of stereotypical versus counterstereotypical media exemplars on racial attitudes, causal attributions, and support for affirmative action. Communication Research, 38(4), 497–516. https://doi.org/10.1177/0093650210384854 Ramasubramanian, S., Doshi, M. J., & Saleem, M. (2017). Mainstream versus ethnic media: How they shape ethnic pride and self-esteem among ethnic minority audiences. International Journal of Communication, 11(January 2017), 1879–1899. Raz, G., Touroutoglou, A., Wilson-Mendenhall, C., Gilam, G., Lin, T., Gonen, T., … Barrett, L. F. (2016). Functional connectivity dynamics during film viewing reveal common networks for different emotional experiences. Cognitive, Affective and Behavioral Neuroscience, 16(4), 709–723. https://doi.org/10.3758/s13415-016-0425-4 Redcay, E., & Moraczewski, D. (2019). Social cognition in context: A naturalistic imaging approach. NeuroImage, (October), 116392. https://doi.org/10.1016/j.neuroimage.2019.116392 Redcay, E., & Schilbach, L. (2019). Using second-person neuroscience to elucidate the mechanisms of social interaction. Nature Reviews Neuroscience, 20(8), 495–505. https://doi.org/10.1038/s41583-019-0179-4 Reggente, N., Essoe, J. K. Y., Aghajan, Z. M., Tavakoli, A. V., McGuire, J. F., Suthana, N. A., & Rissman, J. (2018). Enhancing the ecological validity of fMRI memory research using virtual reality. Frontiers in Neuroscience, 12(JUN), 1–9. https://doi.org/10.3389/fnins.2018.00408 Ren, Y., Nguyen, V. T., Sonkusare, S., Lv, J., Pang, T., Guo, L., … Guo, C. C. (2018). Effective connectivity of the anterior hippocampus predicts recollection confidence during natural memory retrieval. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-07325-4 Reuter, M., Panksepp, J., Davis, K., Montag, C. (2017). Affective Neuroscience Personality Scales (ANPS): Deutsche Version. 1. Auflage. Göttingen: Hogrefe. Rindermann, H. (2009). Emotionale-Kompetenz-Fragebogen: Einschätzung emotionaler Kompetenzen und emotionaler Intelligenz aus Selbst- und Fremdsicht. 1. Auflage. Göttingen: Hogrefe. Rizzolatti, G. (2005). The mirror neuron system and its function in humans. Anatomy and Embryology, 210(5–6), 419–421. https://doi.org/10.1007/s00429-005-0039-z Rizzolatti, G., & Fabbri-Destro, M. (2008). The mirror system and its role in social cognition. Current Opinion in Neurobiology, 18(2), 179–184. https://doi.org/10.1016/j.conb.2008.08.001 Rizzolatti, G., & Sinigaglia, C. (2016). The mirror mechanism: A basic principle of brain function. Nature Reviews Neuroscience, 17(12), 757–765. https://doi.org/10.1038/nrn.2016.135 Rohrmann, S., Hodapp, V., Schnell, K., Tibubos, A., Schwenkmezger, P., Spielberger, C.D. (2013). Das State-Trait-Ärgerausdrucks-Inventar - 2: Deutschsprachige Adaptation des State-Trait Anger Expression Inventory-2 (STAXI-2) von Charles D. Spielberger. Bern: Huber. Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., … Eickhoff, S. B. (2012). Modelling neural correlates of working memory: A coordinate-based meta-analysis. NeuroImage, 60(1), 830–846. https://doi.org/10.1016/j.neuroimage.2011.11.050 Saarimäki, H. (2021). Naturalistic Stimuli in Affective Neuroimaging: A Review. Frontiers in Human Neuroscience, 15(June). https://doi.org/10.3389/fnhum.2021.675068 Sabatinelli, D., Fortune, E. E., Li, Q., Siddiqui, A., Krafft, C., Oliver, W. T., … Jeffries, J. (2011). Emotional perception: Meta-analyses of face and natural scene processing. NeuroImage, 54(3), 2524–2533. https://doi.org/10.1016/j.neuroimage.2010.10.011 Salehi, M., Karbasi, A., Barron, D. S., Scheinost, D., & Constable, R. T. (2020). Individualized functional networks reconfigure with cognitive state. NeuroImage, 206(September 2019), 116233. https://doi.org/10.1016/j.neuroimage.2019.116233 Salerno, J. M., & Peter-Hagene, L. C. (2013). The Interactive Effect of Anger and Disgust on Moral Outrage and Judgments. Psychological Science, 24(10), 2069–2078. https://doi.org/10.1177/0956797613486988 Salmi, J., Roine, U., Glerean, E., Lahnakoski, J., Nieminen-Von Wendt, T., Tani, P., … Sams, M. (2013). The brains of high functioning autistic individuals do not synchronize with those of others. NeuroImage: Clinical, 3, 489–497. https://doi.org/10.1016/j.nicl.2013.10.011 Samson, A. C., Kreibig, S. D., Soderstrom, B., Wade, A. A., & Gross, J. J. (2016). Eliciting positive, negative and mixed emotional states: A film library for affective scientists. Cognition and Emotion, 30(5), 827–856. https://doi.org/10.1080/02699931.2015.1031089 Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E., … Wolf, D. H. (2013). An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage, 64(1), 240–256. https://doi.org/10.1016/j.neuroimage.2012.08.052 Sawahata, Y., Khosla, R., Komine, K., Hiruma, N., Itou, T., Watanabe, S., … Issiki, N. (2008). Determining comprehension and quality of TV programs using eye-gaze tracking. Pattern Recognition, 41(5), 1610–1626. https://doi.org/10.1016/j.patcog.2007.10.010 Schaefer, Alexander, Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., … Yeo, B. T. T. (2017). Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cerebral Cortex, (July 2017), 1–20. https://doi.org/10.1093/cercor/bhx179 Schaefer, Alexandre, Nils, F., Philippot, P., & Sanchez, X. (2010). Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers. Cognition and Emotion, 24(7), 1153–1172. https://doi.org/10.1080/02699930903274322 Scharrer, E., Ramasubramanian, S., & Banjo, O. (2022). Media, Diversity, and Representation in the U.S.: A Review of the Quantitative Research Literature on Media Content and Effects. Journal of Broadcasting and Electronic Media, 66(4), 723–749. https://doi.org/10.1080/08838151.2022.2138890 Schermer, J. A., Kwiatkowska, M. M., Kowalski, C. M., Aquino, S., Ardi, R., Bolló, H., … Crusius, J. (2019). Humor styles across 28 countries. Current Psychology, 1–16. Schmidt, S., Petermann, F. (2009). ADHS-Screening für Erwachsene: Ein Verfahren zur Erfassung von Symptomen einer ADHS. 2., korrigierte und überarbeitete Auflage. Frankfurt am Main: Pearson Assessment. Schoon, I. (2021). Towards an Integrative Taxonomy of Social-Emotional Competences. Frontiers in Psychology, 12(March), 1–9. https://doi.org/10.3389/fpsyg.2021.515313 Schwarz, G. (1982). Estimating the Dimension of a Model. Annals of Statistics, 6(2), 461–464. Sengupta, A., Kaule, F. R., Guntupalli, J. S., Hoffmann, M. B., Häusler, C., Stadler, J., & Hanke, M. (2016). A studyforrest extension, retinotopic mapping and localization of higher visual areas. Scientific Data, 3, 1–14. https://doi.org/10.1038/sdata.2016.93 Shafto, M. A., Tyler, L. K., Dixon, M., Taylor, J. R., Rowe, J. B., Cusack, R., … Matthews, F. E. (2014). The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurology, 14(204), 1-25. https://doi.org/10.1038/nrn1809 Shaheen J. G. (2003). Reel bad Arabs: How Hollywood vilifies a people. Annals of the American Academy of Political and Social Science, 588, 171–193. https://doi.org/10.1177/0002716203588001011 Shamay-Tsoory, S. G., & Mendelsohn, A. (2019). Real-Life Neuroscience: An Ecological Approach to Brain and Behavior Research. Perspectives on Psychological Science, 14(5), 841–859. https://doi.org/10.1177/1745691619856350 Simony, E., & Chang, C. (2020). Analysis of stimulus-induced brain dynamics during naturalistic paradigms. NeuroImage, 216(July 2019), 116461. https://doi.org/10.1016/j.neuroimage.2019.116461 Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., & Hasson, U. (2016). Dynamic reconfiguration of the default mode network during narrative comprehension. Nature Communications, 7(May 2015), 1–13. https://doi.org/10.1038/ncomms12141 Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., … Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045. https://doi.org/10.1073/pnas.0905267106 Smith, T. J., & Mital, P. K. (2013). Attentional synchrony and the influence of viewing task on gaze behavior in static and dynamic scenes. Journal of Vision, 13(8), 1–24. https://doi.org/10.1167/13.8.16 Soleymani, M., Chanel, G., Kierkels, J. J. M., & Pun, T. (2009). Movie Scenes Based on Content Analysis and Physiological Changes. International Journal of Semantic Computing, 3(2), 235–254. https://doi.org/10.1142/S1793351X09000744 Soleymani, M., Pantic, M., & Pun, T. (2015). Multimodal emotion recognition in response to videos (Extended abstract). 2015 International Conference on Affective Computing and Intelligent Interaction, ACII 2015, 3(2), 491–497. https://doi.org/10.1109/ACII.2015.7344615 Song, H., & Rosenberg, M. D. (2021). Predicting attention across time and contexts with functional brain connectivity. Current Opinion in Behavioral Sciences, 40, 33–44. https://doi.org/10.1016/j.cobeha.2020.12.007 Sonkusare, S., Breakspear, M., & Guo, C. (2019, August 1). Naturalistic Stimuli in Neuroscience: Critically Acclaimed. Trends in Cognitive Sciences. Elsevier Ltd. https://doi.org/10.1016/j.tics.2019.05.004 Soto, C. J., Napolitano, C. M., & Roberts, B. W. (2021). Taking Skills Seriously: Toward an Integrative Model and Agenda for Social, Emotional, and Behavioral Skills. Current Directions in Psychological Science, 30(1), 26–33. https://doi.org/10.1177/0963721420978613 Spearman, C. (1904). “General Intelligence,” Objectively Determined and Measured. The American Journal of Psychology, 15(2), 201–292. Spielberger, C.D., Gorsuch, R.L. & Lushene, R.E.: Manual for the State-Trait-Anxiety Inventory. Palo Alto, Calif.: Consulting Psychologists Press, 1970. Spielberger, C. D. (1972). Anxiety As an Emotional State. Anxiety. ACADEMIC PRESS, INC. https://doi.org/10.1016/b978-0-12-657401-2.50009-5 Spielberger, C. D., & Reheiser, E. C. (2009). Assessment of Emotions: Anxiety, Anger, Depression, and Curiosity. Applied Psychology: Health and Well-Being, 1(3), 271–302. https://doi.org/10.1111/j.1758-0854.2009.01017.x Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17(5), 652–660. https://doi.org/10.1038/nn.3690 Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2008). The Common Neural Basis of Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default Mode: A Quantitative Meta-analysis, 489–510. https://doi.org/10.1162/jocn.2008.21029 Sun, Y., Ma, J., Huang, M., Yi, Y., Wang, Y., Gu, Y., … Dai, Z. (2022). Functional connectivity dynamics as a function of the fluctuation of tension during film watching. Brain Imaging and Behavior, 16(3), 1260–1274. https://doi.org/10.1007/s11682-021-00593-7 Tarvainen, J., Member, S., Sjöberg, M., Member, G. S., & Westman, S. (2014). Content-Based Prediction ofMovie Style, Aesthetics, and Affect: Data Set and Baseline Experiments. IEEE TRANSACTIONS ON MULTIMEDIA, 16(8), 2085–2098. https://doi.org/10.3989/sefarad.2006.v66.i2.415 Tarvainen, J., Westman, S., & Oittinen, P. (2015). The way films feel: Aesthetic features and mood in film. Psychology of Aesthetics, Creativity, and the Arts, 9(3), 254–265. https://doi.org/10.1037/a0039432 Taylor, G. J. ., Ryan, D., & Bagby, R. M. (1985). Toward the Development of a New Self-Report Alexithymia Scale. Psychotherapy and Psychosomatics, 44(4), 191–199. https://doi.org/https://doi.org/10.1159/000287912 Teixeira, R. M. A., Yamasaki, T., & Aizawa, K. (2012). Determination of emotional content of video clips by low-level audiovisual features: A dimensional and categorial experimental approach. Multimedia Tools and Applications, 61(1), 21–49. https://doi.org/10.1007/s11042-010-0702-0 Thomas Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. https://doi.org/10.1152/jn.00338.2011 Tian, Leimin, Muszynski, M., Lai, C., Moore, J. D., Kostoulas, T., Lombardo, P., … Chanel, G. (2018). Recognizing induced emotions of movie audiences: Are induced and perceived emotions the same? 2017 7th International Conference on Affective Computing and Intelligent Interaction, ACII 2017, 2018-Janua, 28–35. https://doi.org/10.1109/ACII.2017.8273575 Tian, Lixia, Ye, M., Chen, C., Cao, X., & Shen, T. (2021). NeuroImage Consistency of functional connectivity across different movies. NeuroImage, 233(March), 117926. https://doi.org/10.1016/j.neuroimage.2021.117926 Treiblmaier, H., & Filzmoser, P. (2010). Exploratory factor analysis revisited: How robust methods support the detection of hidden multivariate data structures in IS research. Information and Management, 47(4), 197–207. https://doi.org/10.1016/j.im.2010.02.002 Tupes, E. C., & Christal, R. E. (1992). Recurrent Personality Factors Based on Trait Ratings (Tech. Rep. No. ASD-TR-61-97). Journal of Personality, 60(2), 225–251. Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320. https://doi.org/10.1109/TMI.2010.2046908 Van Atteveldt, N., Van Kesteren, M. T. R., Braams, B., & Krabbendam, L. (2018). Neuroimaging of learning and development: Improving ecological validity. Frontline Learning Research, 6(3), 186–203. https://doi.org/10.14786/flr.v6i3.366 Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., & Ugurbil, K. (2013). The WU-Minn Human Connectome Project: An overview. NeuroImage, 80, 62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041 Vanderwal, T., Eilbott, J., & Castellanos, F. X. (2019). Movies in the magnet: Naturalistic paradigms in developmental functional neuroimaging. Developmental Cognitive Neuroscience, 36(October 2018), 100600. https://doi.org/10.1016/j.dcn.2018.10.004 Vanderwal, T., Eilbott, J., Finn, E. S., Craddock, R. C., Turnbull, A., & Castellanos, F. X. (2017). Individual differences in functional connectivity during naturalistic viewing conditions. NeuroImage, 157(June), 521–530. https://doi.org/10.1016/j.neuroimage.2017.06.027 Vanderwal, T., Kelly, C., Eilbott, J., Mayes, L. C., & Castellanos, F. X. (2015). Inscapes: A movie paradigm to improve compliance in functional magnetic resonance imaging. NeuroImage, 122, 222–232. https://doi.org/10.1016/j.neuroimage.2015.07.069 Van Dijk, Wilco W., and Jaap W. Ouwerkerk. (2014). Schadenfreude: Understanding Pleasure at the Misfortune of Others. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139084246 Vig, E., Dorr, M., & Barth, E. (2009). Efficient visual coding and the predictability of eye movements on natural movies. Spatial Vision, 22(5), 397–408. https://doi.org/10.1163/156856809789476065 Viinikainen, M., Glerean, E., Jääskeläinen, I. P., Kettunen, J., Sams, M., & Nummenmaa, L. (2012). Nonlinear neural representation of emotional feelings elicited by dynamic naturalistic stimulation. Open Journal of Neuroscience, 2(1). Visconti di Oleggio Castello, M., Chauhan, V., Jiahui, G., & Gobbini, M. I. (2020). The Grand Budapest Hotel: an fMRI dataset in response to a socially-rich, naturalistic movie. Scientific Data, 1–9. https://doi.org/10.1101/2020.07.14.203257 Wang, H. L., & Cheong, L. F. (2006). Affective understanding in film. IEEE Transactions on Circuits and Systems for Video Technology, 16(6), 689–704. https://doi.org/10.1109/TCSVT.2006.873781 Wang, J., Ren, Y., Hu, X., Nguyen, V. T., Guo, L., Han, J., & Guo, C. C. (2017). Test–retest reliability of functional connectivity networks during naturalistic fMRI paradigms. Human Brain Mapping, 38(4), 2226–2241. https://doi.org/10.1002/hbm.23517 Wang, Y. P., & Gorenstein, C. (2013). Psychometric properties of the Beck Depression Inventory-II: A comprehensive review. Revista Brasileira de Psiquiatria, 35(4), 416–431. https://doi.org/10.1590/1516-4446-2012-1048 Wang, Z., Yang, J., Zheng, Z., Cao, W., Dong, L., Li, H., … Yao, D. (2023). Trait- and State-Dependent Changes in Cortical–Subcortical Functional Networks Across the Adult Lifespan. Journal of Magnetic Resonance Imaging, 58(3), 720–731. https://doi.org/10.1002/jmri.28599 Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. Journal of Personality and Social Psychology, 54(6), 1063–1070. https://doi.org/10.1051/epjconf/201714006017 Wender, P. H. (1995). Attention-Deficit Hyperactivity Disorder in Adults. New York: Oxford University Press. Westermann, R., Spies, K., Stahl, G., & Hesse, F. W. (1996). Relative effectiveness and validity of mood induction procedures: a meta- analysis RAINER. European Journal of Social Psychology, 26, 557–580. Whitton, A. E., Henry, J. D., Rendell, P. G., & Grisham, J. R. (2014). Disgust, but not anger provocation, enhances levator labii superioris activity during exposure to moral transgressions. Biological Psychology, 96(1), 48–56. https://doi.org/10.1016/j.biopsycho.2013.11.012 Witt, S. T., Meyerand, M. E., & Laird, A. R. (2008). Functional neuroimaging correlates of finger tapping task variations: An ALE meta-analysis, 71(2), 233–236. https://doi.org/10.1038/mp.2011.182.doi Wolf, I., Dziobek, I., & Heekeren, H. R. (2010). Neural correlates of social cognition in naturalistic settings: A model-free analysis approach. NeuroImage, 49(1), 894–904. https://doi.org/10.1016/j.neuroimage.2009.08.060 Yates, C. & Dennedy, D. MLT framework (Version 0.8.0) [computer program]. http://www.mltframework.org Retrieved from the Debian archive at version 0.8.0-4 (2012). Yik, M. S. M., Russell, J. A., & Barrett, L. F. (1999). Structure of self-reported current affect: Integration and beyond. Journal of Personality and Social Psychology, 77(3), 600–619. https://doi.org/10.1037/0022-3514.77.3.600 Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57. https://doi.org/10.1109/42.906424 Zrida, J., Birdwell, J. D., & Cockett, J. R. B. (1987). State Estimation for Static Systems Defined By Stochastic Decision Trees. Proceedings of the Annual Southeastern Symposium on System Theory, 38(7), 487–491. Zwir, I., Arnedo, J., Mesa, A., del Val, C., de Erausquin, G. A., & Cloninger, C. R. (2023). Temperament & Character account for brain functional connectivity at rest: A diathesis-stress model of functional dysregulation in psychosis. Molecular Psychiatry, 28(6), 2238–2253. https://doi.org/10.1038/s41380-023-02039-6 | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 08.05.2024 | |||||||
Dateien geändert am: | 08.05.2024 | |||||||
Promotionsantrag am: | 10.12.2023 | |||||||
Datum der Promotion: | 26.04.2024 |