Dokument: Stellt die morphologische Dichtemessung der Lungentextur in der Computertomographie bei Patienten mit mechanischer Kreislaufunterstützung einen Prognoseparameter bei Covid-19 positiven Patienten dar?
Titel: | Stellt die morphologische Dichtemessung der Lungentextur in der Computertomographie bei Patienten mit mechanischer Kreislaufunterstützung einen Prognoseparameter bei Covid-19 positiven Patienten dar? | |||||||
Weiterer Titel: | Does the morphological density measurement of the lung texture in computed tomography in patients with mechanical circulatory support represent a prognostic parameter in Covid-19 positive patients? | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=65382 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20240327-141635-5 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Domröse, Nils [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | PD Dr. med. Dalyanoglu, Hannan [Gutachter] PD Dr. med. Kirchner, Julian [Gutachter] | |||||||
Stichwörter: | Covid-19, ECMO, CT, Dichtemessungen | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Diese Studie untersucht die prognostische Aussagefähigkeit der computertomographischen Dichtemessung des Thorax bei ECMO-pflichtigen Covid-19 positiven Patienten. Physiologisches Lungen¬gewebe weist im Durchschnitt eine niedrige Dichte um -870 Hounsfield units (HU) auf. Bei höheren Dichtewerten liegt eine pathologische Veränderung vor.
Für die retrospektive Beurteilung eines Zusammenhangs zwischen der im Verlauf auftretenden Dichteveränderung und der Überlebenswahrscheinlichkeit bei Covid-19 positiven Patienten wurden in der klinischen Routine durchgeführten CT-Untersuchungen von 66 Patienten genutzt. Zusätzlich wurde eine Kontrollgruppe aus 32 Patienten mit einer venovenösen extrakorporalen Membran¬oyxgenierung ohne Covid-19 gebildet. Für die Dichtemessungen in den CT-Untersuchungen wurde in jedem Lungenlappen jeweils zentral und peripher die Dichte des Lungenparenchyms gemessen (insgesamt 10 Regions of Interest). Danach wurden die sequenziellen Dichte¬veränderungen betrachtet und abschließend ein Vergleich mit der Covid-19 negativen Kontrollgruppe evaluiert. Die statistische Auswertung erfolgte mit dem Statistikprogramm SPSS. Die Covid-19-Patienten wurden in zwei Subgruppen aufgeteilt: Die eine Subgruppe hatte eine überdurchschnittlich hohe Lungendichte, die andere eine niedrigere Lungendichte. Durch eine ROC-Kurve konnte ein optimierter Trennwert von -313,1 HU ermittelt werden. Die Covid-19-Patienten mit einer höheren Dichte als -313,1 HU wiesen dabei eine höhere Überlebenswahrscheinlichkeit (χ²(1) = 3,88, p = 0,049, φ = 0,049). Diese bessere Prognose zeigt sich auch in Überlebenskurven (Log-Rank-Test: χ²(1) = 7,96, p = 0,005) auf. Die Hazard Ratio für Covid-19-Patienten mit niedriger Dichte war mehr als zwei Mal so groß (eB = 2,232; 95%-KI: 1,247-3,995). Die mittlere Überlebenszeit lag 14 Tage höher. Dieses Ergebnis ist auf den ersten Blick überraschend. Möglicherweise führten bei den Patienten mit niedrigeren Dichtewerten vorrangig andere Ursachen zum Tod, sodass sie weniger von einer ECMO-Therapie profitieren. Bei allen Covid-19-Patienten ergab sich innerhalb der Verlaufsuntersuchungen eine signifikante Reduktion der Dichtemittelwerte (p < 0,001). Innerhalb der Kontrollgruppe gab es keinen Zusammenhang zwischen einer hohen Lungendichte und dem Überleben. Die hier gefundenen Daten zeigen für Patienten mit schwerer Covid-19-Pneumonie, dass eine extrakorporale Membranoxygenierung besonders dann einen Überlebensvorteil bietet, wenn die durchschnittliche Lungendichte besonders hoch ist.This study investigates the prognostic value of computed tomographic density measurement of the thorax in ECMO-requiring Covid-19 positive patients. Physiological lung tissue has a low average density of -870 Hounsfield units (HU). Higher density values indicate a pathological change. For the retrospective assessment of a correlation between the density change occurring during the course and the probability of survival in Covid-19-positive patients, CT examinations of 66 patients performed in routine clinical practice were used. In addition, a control group of 32 patients with venovenous extracorporeal membrane oxygenation without Covid-19 was formed. For the density measurements in the CT scans, the density of the lung parenchyma was measured centrally and peripherally in each lung lobe (a total of 10 regions of interest). Then the sequential density changes were considered and finally a comparison with the Covid-19-negative control group was evaluated. Statistical analysis was performed using the SPSS statistical programme. The Covid-19-patients were divided into two subgroups: One subgroup had a higher-than-average lung density, the other a lower lung density. Through an ROC curve, an optimised separation value of -313,1 HU could be determined. The Covid-19-patients with a higher density than -313,1 HU showed a higher probability of survival (χ²(1) = 3,88, p = 0,049, φ = 0,049). This better prognosis is also reflected in survival curves (log-rank test: χ²(1) = 7,96, p = 0,005). The hazard ratio for low-density Covid-19-patients was more than two times greater (eB = 2,232; 95% CI: 1,247-3,995). The median survival time was 14 days higher. This result is surprising at first sight. It is possible that the patients with lower density values died primarily from other causes, so that they benefit less from ECMO therapy. In all Covid-19-patients, there was a significant reduction in mean density values within the follow-up examinations (p < 0,001). Within the control group, there was no association between high lung density and survival. The data found here show for patients with severe Covid-19-pneumonia that extracorporeal membrane oxygenation offers a survival advantage especially when the mean lung density is particularly high. | |||||||
Quelle: | Adams, H. J. A., Kwee, T. C., & Kwee, R. M. (2020). Coronavirus Disease 2019 and Chest CT: Do Not Put the Sensitivity Value in the Isolation Room and Look Beyond the Numbers. Radiology, 297(1), E236–E237. https://doi.org/10.1148/radiol.2020201709
Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., & Xia, L. (2020). Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, 296(2), E32–E40. https://doi.org/10.1148/radiol.2020200642 Albert, E., Torres, I., Bueno, F., Huntley, D., Molla, E., Fernández-Fuentes, M. Á., Martínez, M., Poujois, S., Forqué, L., Valdivia, A., Solano de la Asunción, C., Ferrer, J., Colomina, J., & Navarro, D. (2021). Field evaluation of a rapid antigen test (PanbioTM COVID-19 Ag Rapid Test Device) for COVID-19 diagnosis in primary healthcare centres. Clinical Microbiology and Infection, 27(3), 472.e7-472.e10. https://doi.org/10.1016/j.cmi.2020.11.004 Albes, G., Lippek, V., Müller, B., & Weier, C. (2017). Facharztprüfung Radiologie: 1450 kommentierte Prüfungsfragen (4. Aufl., S. b-004-140274). Georg Thieme Verlag. https://doi.org/10.1055/b-004-140274 Alkadhi, H. (Hrsg.). (2011). Wie funktioniert CT? Eine Einführung in Physik, Funktionsweise und klinische Anwendungen der Computertomographie. Springer. American College of Radiology. (2020). ACR Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infection. https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection Anatomie Physiologie (2., aktualisierte Auflage, 2. korrigierter Nachdruck). (2020). Georg Thieme Verlag. https://doi.org/10.1055/b-006-163254 Aubin, H., Petrov, G., Dalyanoglu, H., Richter, M., Saeed, D., Akhyari, P., Kindgen-Milles, D., Albert, A., & Lichtenberg, A. (2017). Four-year experience of providing mobile extracorporeal life support to out-of-center patients within a suprainstitutional network—Outcome of 160 consecutively treated patients. Resuscitation, 121, 151–157. https://doi.org/10.1016/j.resuscitation.2017.08.237 Aubin, H., Petrov, G., Dalyanoglu, H., Saeed, D., Akhyari, P., Paprotny, G., Richter, M., Westenfeld, R., Schelzig, H., Kelm, M., Kindgen-Milles, D., Lichtenberg, A., & Albert, A. (2016). A Suprainstitutional Network for Remote Extracorporeal Life Support. JACC: Heart Failure, 4(9), 698–708. https://doi.org/10.1016/j.jchf.2016.03.018 AWMF. (2022). S3-Leitlinie—Empfehlungen zur stationären Therapie von Patienten mit COVID-19. https://www.awmf.org/uploads/tx_szleitlinien/113-001LGl_S3_Empfehlungen-zur-stationaeren-Therapie-von-Patienten-mit-COVID-19_2022-03.pdf Bai, H. X., Hsieh, B., Xiong, Z., Halsey, K., Choi, J. W., Tran, T. M. L., Pan, I., Shi, L.-B., Wang, D.-C., Mei, J., Jiang, X.-L., Zeng, Q.-H., Egglin, T. K., Hu, P.-F., Agarwal, S., Xie, F.-F., Li, S., Healey, T., Atalay, M. K., & Liao, W.-H. (2020). Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. Radiology, 296(2), E46–E54. https://doi.org/10.1148/radiol.2020200823 Bai, H. X., Wang, R., Xiong, Z., Hsieh, B., Chang, K., Halsey, K., Tran, T. M. L., Choi, J. W., Wang, D.-C., Shi, L.-B., Mei, J., Jiang, X.-L., Pan, I., Zeng, Q.-H., Hu, P.-F., Li, Y.-H., Fu, F.-X., Huang, R. Y., Sebro, R., … Liao, W.-H. (2020). Artificial Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Origin at Chest CT. Radiology, 296(3), E156–E165. https://doi.org/10.1148/radiol.2020201491 Bartlett, R. H., & Deatrick, K. B. (2016). Current and future status of extracorporeal life support for respiratory failure in adults: Current Opinion in Critical Care, 22(1), 80–85. https://doi.org/10.1097/MCC.0000000000000274 Bertini, P., Guarracino, F., Falcone, M., Nardelli, P., Landoni, G., Nocci, M., & Paternoster, G. (2022). ECMO in COVID-19 Patients: A Systematic Review and Meta-analysis. Journal of Cardiothoracic and Vascular Anesthesia, 36(8), 2700–2706. https://doi.org/10.1053/j.jvca.2021.11.006 Betit, P. (2018). Technical Advances in the Field of ECMO. Respiratory Care, 63(9), 1162–1173. https://doi.org/10.4187/respcare.06320 Bindslev, L., Eklund, J., Norlander, O., Swedenborg, J., Olsson, P., Nilsson, E., Larm, O., Gouda, I., Malmberg, A., & Scholander, E. (1987). Treatment of Acute Respiratory Failure by Extracorporeal Carbon Dioxide Elimination Performed with a Surface Heparinized Artificial Lung. Anesthesiology, 67(1), 117–119. https://doi.org/10.1097/00000542-198707000-00024 Bösch, D. (2014). Lunge und Atemwege (J. Steffel & T. Lüscher, Hrsg.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28223-2 Bressem, K., Adams, L., Albrecht, J., Petersen, A., Thieß, H.-M., Niehues, A., Niehues, S., & Vahldiek, J. (2020). Is lung density associated with severity of COVID-19? Polish Journal of Radiology, 85(1), 600–606. https://doi.org/10.5114/pjr.2020.100788 Bundeszentrale für gesundheitliche Aufklärung. (2022). Alltag in Zeiten von Corona: Schutz durch AHA+L+A. https://www.infektionsschutz.de/coronavirus/alltag-in-zeiten-von-corona/ Burgstahler, C., & Nieß, A. M. (2021). Return to Sports nach COVID-19. Sports Orthopaedics and Traumatology, 37(3), 249–254. https://doi.org/10.1016/j.orthtr.2021.06.002 Burki, T. K. (2021). Lifting of COVID-19 restrictions in the UK and the Delta variant. The Lancet Respiratory Medicine, 9(8), e85. https://doi.org/10.1016/S2213-2600(21)00328-3 Caruso, D., Zerunian, M., Polici, M., Pucciarelli, F., Polidori, T., Rucci, C., Guido, G., Bracci, B., De Dominicis, C., & Laghi, A. (2020). Chest CT Features of COVID-19 in Rome, Italy. Radiology, 296(2), E79–E85. https://doi.org/10.1148/radiol.2020201237 Chen, X., Tang, Y., Mo, Y., Li, S., Lin, D., Yang, Z., Yang, Z., Sun, H., Qiu, J., Liao, Y., Xiao, J., Chen, X., Wu, X., Wu, R., & Dai, Z. (2020). A diagnostic model for coronavirus disease 2019 (COVID-19) based on radiological semantic and clinical features: A multi-center study. European Radiology, 30(9), 4893–4902. https://doi.org/10.1007/s00330-020-06829-2 Chung, M., Bernheim, A., Mei, X., Zhang, N., Huang, M., Zeng, X., Cui, J., Xu, W., Yang, Y., Fayad, Z. A., Jacobi, A., Li, K., Li, S., & Shan, H. (2020). CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology, 295(1), 202–207. https://doi.org/10.1148/radiol.2020200230 Colombi, D., Bodini, F. C., Petrini, M., Maffi, G., Morelli, N., Milanese, G., Silva, M., Sverzellati, N., & Michieletti, E. (2020). Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia. Radiology, 296(2), E86–E96. https://doi.org/10.1148/radiol.2020201433 Combes, A., Price, S., Slutsky, A. S., & Brodie, D. (2020). Temporary circulatory support for cardiogenic shock. The Lancet, 396(10245), 199–212. https://doi.org/10.1016/S0140-6736(20)31047-3 Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5(4), 536–544. https://doi.org/10.1038/s41564-020-0695-z Dangis, A., Gieraerts, C., De Bruecker, Y., Janssen, L., Valgaeren, H., Obbels, D., Gillis, M., Van Ranst, M., Frans, J., Demeyere, A., & Symons, R. (2020). Accuracy and Reproducibility of Low-Dose Submillisievert Chest CT for the Diagnosis of COVID-19. Radiology: Cardiothoracic Imaging, 2(2), e200196. https://doi.org/10.1148/ryct.2020200196 Dashraath, P., Wong, J. L. J., Lim, M. X. K., Lim, L. M., Li, S., Biswas, A., Choolani, M., Mattar, C., & Su, L. L. (2020). Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. American Journal of Obstetrics and Gynecology, 222(6), 521–531. https://doi.org/10.1016/j.ajog.2020.03.021 Elicker, B. M. (2021). What Is the Performance and Role of CT in Suspected COVID-19 Infection? Radiology, 298(2), E109–E111. https://doi.org/10.1148/radiol.20202040130 Eng, J., & Bluemke, D. A. (2020). Imaging Publications in the COVID-19 Pandemic: Applying New Research Results to Clinical Practice. Radiology, 297(1), E228–E231. https://doi.org/10.1148/radiol.2020201724 Falke, K. J. (2017). Wie alles begann: Die Behandlung des akuten Lungenversagens mit extra korporalem Gasaustausch in Deutschland und erste klinische Anwendung von inhaliertem Stickstoffmonoxid bei ARDS. 58. Jahrgang, 691–698. Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., & Ji, W. (2020). Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology, 296(2), E115–E117. https://doi.org/10.1148/radiol.2020200432 Feng, X., Ding, X., & Zhang, F. (2020). Dynamic evolution of lung abnormalities evaluated by quantitative CT techniques in patients with COVID-19 infection. Epidemiology and Infection, 148, e136. https://doi.org/10.1017/S0950268820001508 Francone, M., Iafrate, F., Masci, G. M., Coco, S., Cilia, F., Manganaro, L., Panebianco, V., Andreoli, C., Colaiacomo, M. C., Zingaropoli, M. A., Ciardi, M. R., Mastroianni, C. M., Pugliese, F., Alessandri, F., Turriziani, O., Ricci, P., & Catalano, C. (2020). Chest CT score in COVID-19 patients: Correlation with disease severity and short-term prognosis. European Radiology, 30(12), 6808–6817. https://doi.org/10.1007/s00330-020-07033-y Franquet, T. (2011). Imaging of pulmonary viral pneumonia. Radiology, 260(1), 18–39. https://doi.org/10.1148/radiol.11092149 Gattinoni, L., Pesenti, A., Rossi, G. P., Vesconi, S., Fox, U., Kolobow, T., Agostoni, A., Pelizzola, A., Langer, M., Uziel, L., Longoni, F., & Damia, G. (1980). TREATMENT OF ACUTE RESPIRATORY FAILURE WITH LOW-FREQUENCY POSITIVE-PRESSURE VENTILATION AND EXTRACORPOREAL REMOVAL OF CO2. The Lancet, 316(8189), 292–294. https://doi.org/10.1016/S0140-6736(80)90237-8 Gavriatopoulou, M., Ntanasis-Stathopoulos, I., Korompoki, E., Fotiou, D., Migkou, M., Tzanninis, I.-G., Psaltopoulou, T., Kastritis, E., Terpos, E., & Dimopoulos, M. A. (2021). Emerging treatment strategies for COVID-19 infection. Clinical and Experimental Medicine, 21(2), 167–179. https://doi.org/10.1007/s10238-020-00671-y Grasselli, G., Pesenti, A., Marcolin, R., Patroniti, N., Isgró, S., Tagliabue, P., Lucchini, A., & Fumagalli, R. (2010). Percutaneous Vascular Cannulation for Extracorporeal Life Support (ECLS): A Modified Technique. The International Journal of Artificial Organs, 33(8), 553–557. https://doi.org/10.1177/039139881003300806 Hadied, M. O., Patel, P. Y., Cormier, P., Poyiadji, N., Salman, M., Klochko, C., Nadig, J., Song, T., Peterson, E., & Reeser, N. (2020). Interobserver and Intraobserver Variability in the CT Assessment of COVID-19 Based on RSNA Consensus Classification Categories. Academic Radiology, 27(11), 1499–1506. https://doi.org/10.1016/j.acra.2020.08.038 Heremans, A., Verschakelen, J. A., Van fraeyenhoven, L., & Demedts, M. (1992). Measurement of Lung Density by Means of Quantitative CT Scanning. Chest, 102(3), 805–811. https://doi.org/10.1378/chest.102.3.805 Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 Hüll, M. (2021). Delir als einziges Symptom von COVID-19. InFo Neurologie + Psychiatrie, 23(1), 21–21. https://doi.org/10.1007/s15005-020-1787-2 Huppert, L., Matthay, M., & Ware, L. (2019). Pathogenesis of Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 40(01), 031–039. https://doi.org/10.1055/s-0039-1683996 Inui, S., Fujikawa, A., Jitsu, M., Kunishima, N., Watanabe, S., Suzuki, Y., Umeda, S., & Uwabe, Y. (2020). Chest CT Findings in Cases from the Cruise Ship Diamond Princess with Coronavirus Disease (COVID-19). Radiology: Cardiothoracic Imaging, 2(2), e200110. https://doi.org/10.1148/ryct.2020200110 Ito, K., Piantham, C., & Nishiura, H. (2022). Relative instantaneous reproduction number of Omicron SARS‐CoV‐2 variant with respect to the Delta variant in Denmark. Journal of Medical Virology, 94(5), 2265–2268. https://doi.org/10.1002/jmv.27560 Jiang, S., Xia, S., Ying, T., & Lu, L. (2020). A novel coronavirus (2019-nCoV) causing pneumonia-associated respiratory syndrome. Cellular & Molecular Immunology, 17(5), 554–554. https://doi.org/10.1038/s41423-020-0372-4 Jin, J.-M., Bai, P., He, W., Wu, F., Liu, X.-F., Han, D.-M., Liu, S., & Yang, J.-K. (2020). Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Frontiers in Public Health, 8, 152. https://doi.org/10.3389/fpubh.2020.00152 Ke, Z., Oton, J., Qu, K., Cortese, M., Zila, V., McKeane, L., Nakane, T., Zivanov, J., Neufeldt, C. J., Cerikan, B., Lu, J. M., Peukes, J., Xiong, X., Kräusslich, H.-G., Scheres, S. H. W., Bartenschlager, R., & Briggs, J. A. G. (2020). Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 588(7838), 498–502. https://doi.org/10.1038/s41586-020-2665-2 Khan, I., Ahmed, Z., Sarwar, A., Jamil, A., & Anwer, F. (2020). The Potential Vaccine Component for COVID-19: A Comprehensive Review of Global Vaccine Development Efforts. Cureus. https://doi.org/10.7759/cureus.8871 Khatami, F., Saatchi, M., Zadeh, S. S. T., Aghamir, Z. S., Shabestari, A. N., Reis, L. O., & Aghamir, S. M. K. (2020). A meta-analysis of accuracy and sensitivity of chest CT and RT-PCR in COVID-19 diagnosis. Scientific Reports, 10(1), 22402. https://doi.org/10.1038/s41598-020-80061-2 Kim, H., Hong, H., & Yoon, S. H. (2020). Diagnostic Performance of CT and Reverse Transcriptase Polymerase Chain Reaction for Coronavirus Disease 2019: A Meta-Analysis. Radiology, 296(3), E145–E155. https://doi.org/10.1148/radiol.2020201343 Kitajima, H., Hirashima, T., Suzuki, H., Arai, T., Tamura, Y., Hashimoto, S., Morishita, H., Matsuoka, H., Kashiwa, Y., Han, Y., Minamoto, S., Tanaka, T., & Nagai, T. (2021). Scoring system for identifying Japanese patients with COVID-19 at risk of requiring oxygen supply: A retrospective single-center study. Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy, 27(8), 1217–1222. https://doi.org/10.1016/j.jiac.2021.05.002 Kligerman, S. J., Franks, T. J., & Galvin, J. R. (2013). From the radiologic pathology archives: Organization and fibrosis as a response to lung injury in diffuse alveolar damage, organizing pneumonia, and acute fibrinous and organizing pneumonia. Radiographics: A Review Publication of the Radiological Society of North America, Inc, 33(7), 1951–1975. https://doi.org/10.1148/rg.337130057 Kolobow, T., Spragg, R. G., Pierce, J. E., & Zapol, W. M. (1971). Extended term (to 16 days) partial extracorporeal blood gas exchange with the spiral membrane lung in unanesthetized lambs. Transactions - American Society for Artificial Internal Organs, 17, 350–354. Koppe, U., Wilking, H., Harder, T., Haas, W., Rexroth, U., & Hamouda, O. (2021). COVID-19-Patientinnen und -Patienten in Deutschland: Expositionsrisiken und assoziierte Faktoren für Hospitalisierungen und schwere Krankheitsverläufe. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 64(9), 1107–1115. https://doi.org/10.1007/s00103-021-03391-0 Krüttgen, A., Cornelissen, C. G., Dreher, M., Hornef, M. W., Imöhl, M., & Kleines, M. (2021). Comparison of the SARS-CoV-2 Rapid antigen test to the real star Sars-CoV-2 RT PCR kit. Journal of Virological Methods, 288, 114024. https://doi.org/10.1016/j.jviromet.2020.114024 Larsen, R. (2016). Herzinsuffizienz und kardiogener Schock. In R. Larsen, Anästhesie und Intensivmedizin für die Fachpflege (S. 675–679). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-50444-4_49 Lawrence Panchali, M. J., Oh, H. J., Lee, Y. M., Kim, C.-M., Tariq, M., Seo, J.-W., Kim, D. Y., Yun, N. R., & Kim, D.-M. (2022). Accuracy of Real-Time Polymerase Chain Reaction in COVID-19 Patients. Microbiology Spectrum, 10(1), e00591-21. https://doi.org/10.1128/spectrum.00591-21 Li, C., Ji, F., Wang, L., Wang, L., Hao, J., Dai, M., Liu, Y., Pan, X., Fu, J., Li, L., Yang, G., Yang, J., Yan, X., & Gu, B. (2020). Asymptomatic and Human-to-Human Transmission of SARS-CoV-2 in a 2-Family Cluster, Xuzhou, China. Emerging Infectious Diseases, 26(7), 1626–1628. https://doi.org/10.3201/eid2607.200718 Li, K., Fang, Y., Li, W., Pan, C., Qin, P., Zhong, Y., Liu, X., Huang, M., Liao, Y., & Li, S. (2020). CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). European Radiology, 30(8), 4407–4416. https://doi.org/10.1007/s00330-020-06817-6 Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., & Xia, J. (2020). Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71. https://doi.org/10.1148/radiol.2020200905 Li, X., Fang, X., Bian, Y., & Lu, J. (2020). Comparison of chest CT findings between COVID-19 pneumonia and other types of viral pneumonia: A two-center retrospective study. European Radiology, 30(10), 5470–5478. https://doi.org/10.1007/s00330-020-06925-3 Liu, M., Zeng, W., Wen, Y., Zheng, Y., Lv, F., & Xiao, K. (2020). COVID-19 pneumonia: CT findings of 122 patients and differentiation from influenza pneumonia. European Radiology, 30(10), 5463–5469. https://doi.org/10.1007/s00330-020-06928-0 Ludwig, M., Jacob, J., Basedow, F., Andersohn, F., & Walker, J. (2021). Clinical outcomes and characteristics of patients hospitalized for Influenza or COVID-19 in Germany. International Journal of Infectious Diseases, 103, 316–322. https://doi.org/10.1016/j.ijid.2020.11.204 Majumder, J., & Minko, T. (2021). Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. The AAPS Journal, 23(1), 14. https://doi.org/10.1208/s12248-020-00532-2 Mak, G. C., Cheng, P. K., Lau, S. S., Wong, K. K., Lau, C., Lam, E. T., Chan, R. C., & Tsang, D. N. (2020). Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. Journal of Clinical Virology, 129, 104500. https://doi.org/10.1016/j.jcv.2020.104500 Miller, B. J., Gibbon, J. H., & Gibbon, M. H. (1951). RECENT ADVANCES IN THE DEVELOPMENT OF A MECHANICAL HEART AND LUNG APPARATUS*: Annals of Surgery, 134(4), 694–708. https://doi.org/10.1097/00000658-195113440-00016 Mols, G. (2001). Zehn Jahre Erfahrung mit extra-korporaler Membranoxygenierung (ECMO). AINS - Anästhesiologie · Intensivmedizin · Notfallmedizin · Schmerztherapie, 36(01), 4–14. https://doi.org/10.1055/s-2001-10241 Muellenbach, R. M. (2018). Extrakorporale Membranoxygenierung. Lotz C, Muellenbach RM: Extrakorporale Membranoxygenierung, 6–2018, 316–325. https://doi.org/10.19224/ai2018.316 Nachtigall, I., Lenga, P., Jóźwiak, K., Thürmann, P., Meier-Hellmann, A., Kuhlen, R., Brederlau, J., Bauer, T., Tebbenjohanns, J., Schwegmann, K., Hauptmann, M., & Dengler, J. (2020). Clinical course and factors associated with outcomes among 1904 patients hospitalized with COVID-19 in Germany: An observational study. Clinical Microbiology and Infection, 26(12), 1663–1669. https://doi.org/10.1016/j.cmi.2020.08.011 National Institutes of Health (US). (2021). Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health (US). http://www.ncbi.nlm.nih.gov/books/NBK570371/ Nishiura, H., Ito, K., Anzai, A., Kobayashi, T., Piantham, C., & Rodríguez-Morales, A. J. (2021). Relative Reproduction Number of SARS-CoV-2 Omicron (B.1.1.529) Compared with Delta Variant in South Africa. Journal of Clinical Medicine, 11(1), 30. https://doi.org/10.3390/jcm11010030 Pan, F., Ye, T., Sun, P., Gui, S., Liang, B., Li, L., Zheng, D., Wang, J., Hesketh, R. L., Yang, L., & Zheng, C. (2020). Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology, 295(3), 715–721. https://doi.org/10.1148/radiol.2020200370 Peek, G. J., Mugford, M., Tiruvoipati, R., Wilson, A., Allen, E., Thalanany, M. M., Hibbert, C. L., Truesdale, A., Clemens, F., Cooper, N., Firmin, R. K., & Elbourne, D. (2009). Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): A multicentre randomised controlled trial. The Lancet, 374(9698), 1351–1363. https://doi.org/10.1016/S0140-6736(09)61069-2 Penha, D., Pinto, E. G., Matos, F., Hochhegger, B., Monaghan, C., Taborda-Barata, L., Irion, K., & Marchiori, E. (2021). CO-RADS: Coronavirus Classification Review. Journal of Clinical Imaging Science, 11, 9. https://doi.org/10.25259/JCIS_192_2020 Petrosillo, N., Viceconte, G., Ergonul, O., Ippolito, G., & Petersen, E. (2020). COVID-19, SARS and MERS: Are they closely related? Clinical Microbiology and Infection, 26(6), 729–734. https://doi.org/10.1016/j.cmi.2020.03.026 Phua, J., Weng, L., Ling, L., Egi, M., Lim, C.-M., Divatia, J. V., Shrestha, B. R., Arabi, Y. M., Ng, J., Gomersall, C. D., Nishimura, M., Koh, Y., & Du, B. (2020). Intensive care management of coronavirus disease 2019 (COVID-19): Challenges and recommendations. The Lancet Respiratory Medicine, 8(5), 506–517. https://doi.org/10.1016/S2213-2600(20)30161-2 Piroth, L., Cottenet, J., Mariet, A.-S., Bonniaud, P., Blot, M., Tubert-Bitter, P., & Quantin, C. (2021). Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: A nationwide, population-based retrospective cohort study. The Lancet Respiratory Medicine, 9(3), 251–259. https://doi.org/10.1016/S2213-2600(20)30527-0 Pontone, G., Scafuri, S., Mancini, M. E., Agalbato, C., Guglielmo, M., Baggiano, A., Muscogiuri, G., Fusini, L., Andreini, D., Mushtaq, S., Conte, E., Annoni, A., Formenti, A., Gennari, A. G., Guaricci, A. I., Rabbat, M. R., Pompilio, G., Pepi, M., & Rossi, A. (2021). Role of computed tomography in COVID-19. Journal of Cardiovascular Computed Tomography, 15(1), 27–36. https://doi.org/10.1016/j.jcct.2020.08.013 Prokop, M., van Everdingen, W., van Rees Vellinga, T., Quarles van Ufford, H., Stöger, L., Beenen, L., Geurts, B., Gietema, H., Krdzalic, J., Schaefer-Prokop, C., van Ginneken, B., Brink, M., & COVID-19 Standardized Reporting Working Group of the Dutch Radiological Society. (2020). CO-RADS: A Categorical CT Assessment Scheme for Patients Suspected of Having COVID-19-Definition and Evaluation. Radiology, 296(2), E97–E104. https://doi.org/10.1148/radiol.2020201473 Robert Koch Institut. (2021). Epidemiologischer Steckbrief zu SARS-CoV-2 und COVID-19. https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html;jsessionid=71CD00B30A2C4CACB13871D0372E000D.internet061?nn=13490888#doc13776792bodyText2 Rossaint, R. (1990). Extracorporeal CO2-removal with a heparin coated extracorporeal system. Intensive Care Medicine, 16(5), 344–345. https://doi.org/10.1007/BF01706369 Salehi, S., Abedi, A., Balakrishnan, S., & Gholamrezanezhad, A. (2020). Coronavirus disease 2019 (COVID-19) imaging reporting and data system (COVID-RADS) and common lexicon: A proposal based on the imaging data of 37 studies. European Radiology, 30(9), 4930–4942. https://doi.org/10.1007/s00330-020-06863-0 Salkind, N. J. (2010). Encyclopedia of research design. Sage. https://dx.doi.org/10.4135/9781412961288 Sayeed, S., Faiz, B. Y., Aslam, S., Masood, L., & Saeed, R. (2021). CT Chest Severity Score for COVID 19 Pneumonia: A Quantitative Imaging Tool for Severity Assessment of Disease. Journal of the College of Physicians and Surgeons--Pakistan: JCPSP, 30(4), 388–392. https://doi.org/10.29271/jcpsp.2021.04.388 Schilling, J., Lehfeld, A.-S., Schumacher, D., Diercke, M., Buda, S., Haas, W., & RKI COVID-19 Study Group. (2020). Krankheitsschwere der ersten COVID-19-Welle in Deutschland basierend auf den Meldungen gemäß Infektionsschutzgesetz. https://doi.org/10.25646/7169 Schulte, H., Bircks, W., & Dudziak, R. (1972). Erste Erfahrungen mit der BRAMSON-Membran-Lunge. The Thoracic and Cardiovascular Surgeon, 20(01), 54–59. https://doi.org/10.1055/s-0028-1098975 Sidebotham, D. (2011). Troubleshooting adult ECMO. The Journal of Extra-Corporeal Technology, 43(1), P27-32. Simonson, T. S., Baker, T. L., Banzett, R. B., Bishop, T., Dempsey, J. A., Feldman, J. L., Guyenet, P. G., Hodson, E. J., Mitchell, G. S., Moya, E. A., Nokes, B. T., Orr, J. E., Owens, R. L., Poulin, M., Rawling, J. M., Schmickl, C. N., Watters, J. J., Younes, M., & Malhotra, A. (2021). Silent hypoxaemia in COVID‐19 patients. The Journal of Physiology, 599(4), 1057–1065. https://doi.org/10.1113/JP280769 Simpson, S., Kay, F. U., Abbara, S., Bhalla, S., Chung, J. H., Chung, M., Henry, T. S., Kanne, J. P., Kligerman, S., Ko, J. P., & Litt, H. (2020). Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA - Secondary Publication. Journal of Thoracic Imaging, 35(4), 219–227. https://doi.org/10.1097/RTI.0000000000000524 Song, F., Shi, N., Shan, F., Zhang, Z., Shen, J., Lu, H., Ling, Y., Jiang, Y., & Shi, Y. (2020). Emerging 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology, 295(1), 210–217. https://doi.org/10.1148/radiol.2020200274 Stiller, W. (2011). Grundlagen der Mehrzeilendetektor-Computertomographie: Teil 1: Technischer Aufbau und physikalisch-technische Grundlagen. Der Radiologe, 51(7), 625–640. https://doi.org/10.1007/s00117-011-2189-8 Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. (2016). Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 24(6), 490–502. https://doi.org/10.1016/j.tim.2016.03.003 Swenson, K. E., Ruoss, S. J., & Swenson, E. R. (2021). The Pathophysiology and Dangers of Silent Hypoxemia in COVID-19 Lung Injury. Annals of the American Thoracic Society, 18(7), 1098–1105. https://doi.org/10.1513/AnnalsATS.202011-1376CME Tobin, M. J., Laghi, F., & Jubran, A. (2020). Why COVID-19 Silent Hypoxemia Is Baffling to Physicians. American Journal of Respiratory and Critical Care Medicine, 202(3), 356–360. https://doi.org/10.1164/rccm.202006-2157CP Torres, I., Poujois, S., Albert, E., Colomina, J., & Navarro, D. (2021). Evaluation of a rapid antigen test (PanbioTM COVID-19 Ag rapid test device) for SARS-CoV-2 detection in asymptomatic close contacts of COVID-19 patients. Clinical Microbiology and Infection, 27(4), 636.e1-636.e4. https://doi.org/10.1016/j.cmi.2020.12.022 Tschammler, A., Kenn, W., Dinkel, H., Sandstede, J., Keberle, M., & Tschammler, S. (2005). Individueller Dosisbedarf bei Spiral-CT-Untersuchungen des Abdomens. RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 177(08), 1123–1130. https://doi.org/10.1055/s-2005-858323 Udugama, B., Kadhiresan, P., Kozlowski, H. N., Malekjahani, A., Osborne, M., Li, V. Y. C., Chen, H., Mubareka, S., Gubbay, J. B., & Chan, W. C. W. (2020). Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano, 14(4), 3822–3835. https://doi.org/10.1021/acsnano.0c02624 Umakanthan, S., Sahu, P., Ranade, A. V., Bukelo, M. M., Rao, J. S., Abrahao-Machado, L. F., Dahal, S., Kumar, H., & Kv, D. (2020). Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgraduate Medical Journal, 96(1142), 753–758. https://doi.org/10.1136/postgradmedj-2020-138234 Villapol, S. (2020). Gastrointestinal symptoms associated with COVID-19: Impact on the gut microbiome. Translational Research, 226, 57–69. https://doi.org/10.1016/j.trsl.2020.08.004 von Rüden, C., Bühren, V., & Perl, M. (2017). Polytraumamanagement – Behandlung des Schwerverletzten in Schockraum und OP. Zeitschrift für Orthopädie und Unfallchirurgie, 155(05), 603–622. https://doi.org/10.1055/s-0042-124275 Waller, J. V., Kaur, P., Tucker, A., Lin, K. K., Diaz, M. J., Henry, T. S., & Hope, M. (2020). Diagnostic Tools for Coronavirus Disease (COVID-19): Comparing CT and RT-PCR Viral Nucleic Acid Testing. American Journal of Roentgenology, 215(4), 834–838. https://doi.org/10.2214/AJR.20.23418 Wang, H., Wei, R., Rao, G., Zhu, J., & Song, B. (2020). Characteristic CT findings distinguishing 2019 novel coronavirus disease (COVID-19) from influenza pneumonia. European Radiology, 30(9), 4910–4917. https://doi.org/10.1007/s00330-020-06880-z Weir, C. B., & Jan, A. (2021). BMI Classification Percentile And Cut Off Points. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK541070/ Welte, T. (2014). Imaging in the Diagnosis of Lung Disease. Deutsches Ärzteblatt international. https://doi.org/10.3238/arztebl.2014.0179 Werlein, C., Braubach, P., Schmidt, V., Dickgreber, N. J., Märkl, B., Laenger, F., & Jonigk, D. (2020). COVID-19 – eine vaskuläre Systemerkrankung: Klinische Obduktionen als Instrument zur Klärung der organspezifischen Pathophysiologie. Der Klinikarzt, 49(10), 418–421. https://doi.org/10.1055/a-1261-8676 WHO. (2020). Naming the coronavirus disease (COVID-19) and the virus that causes it. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it World Health Organization. (2020). Novel Coronavirus (2019-nCoV): Situation report, 1. https://apps.who.int/iris/handle/10665/330760 Xu, B., Xing, Y., Peng, J., Zheng, Z., Tang, W., Sun, Y., Xu, C., & Peng, F. (2020). Chest CT for detecting COVID-19: A systematic review and meta-analysis of diagnostic accuracy. European Radiology, 30(10), 5720–5727. https://doi.org/10.1007/s00330-020-06934-2 Yadav, H., Thompson, B. T., & Gajic, O. (2017). F IFTY Y EARS OF R ESEARCH IN ARDS.Is Acute Respiratory Distress Syndrome a Preventable Disease? American Journal of Respiratory and Critical Care Medicine, 195(6), 725–736. https://doi.org/10.1164/rccm.201609-1767CI Yamayoshi, S., Sakai-Tagawa, Y., Koga, M., Akasaka, O., Nakachi, I., Koh, H., Maeda, K., Adachi, E., Saito, M., Nagai, H., Ikeuchi, K., Ogura, T., Baba, R., Fujita, K., Fukui, T., Ito, F., Hattori, S., Yamamoto, K., Nakamoto, T., … Kawaoka, Y. (2020). Comparison of Rapid Antigen Tests for COVID-19. Viruses, 12(12), 1420. https://doi.org/10.3390/v12121420 Yang, R., Li, X., Liu, H., Zhen, Y., Zhang, X., Xiong, Q., Luo, Y., Gao, C., & Zeng, W. (2020). Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19. Radiology: Cardiothoracic Imaging, 2(2), e200047. https://doi.org/10.1148/ryct.2020200047 Zapol, W. M. (1979). Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA: The Journal of the American Medical Association, 242(20), 2193–2196. https://doi.org/10.1001/jama.242.20.2193 Zhang, H., Zhou, P., Wei, Y., Yue, H., Wang, Y., Hu, M., Zhang, S., Cao, T., Yang, C., Li, M., Guo, G., Chen, X., Chen, Y., Lei, M., Liu, H., Zhao, J., Peng, P., Wang, C.-Y., & Du, R. (2020). Histopathologic Changes and SARS-CoV-2 Immunostaining in the Lung of a Patient With COVID-19. Annals of Internal Medicine, 172(9), 629–632. https://doi.org/10.7326/M20-0533 Zhao, W., Zhong, Z., Xie, X., Yu, Q., & Liu, J. (2020). Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. American Journal of Roentgenology, 214(5), 1072–1077. https://doi.org/10.2214/AJR.20.22976 Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017 | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Bezug: | 2020-2024 | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 27.03.2024 | |||||||
Dateien geändert am: | 27.03.2024 | |||||||
Promotionsantrag am: | 26.10.2023 | |||||||
Datum der Promotion: | 26.03.2024 |