Dokument: Scale-up in twin-screw wet granulation

Titel:Scale-up in twin-screw wet granulation
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=65379
URN (NBN):urn:nbn:de:hbz:061-20240416-080751-5
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Franke, Marcel Amin [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]17,32 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 26.03.2024 / geändert 26.03.2024
Beitragende:Prof. Dr. Dr. h.c. Kleinebudde, Peter [Gutachter]
Prof. Dr. Breitkreutz, Jörg [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibung:Over the last few decades continuous manufacturing has become a highly discussed topic in the pharmaceutical industry as it offers a multitude of benefits over traditional batch manufacturing. One technology that has been subject to thorough investigations is twin-screw wet granulation as a continuous alternative to traditional (batch) processes for wet granulation. However, despite its ability to scale out by increasing the runtime in continuous manufacturing, there is still a need to implement some scale-up steps between research and development, and commercial production of a globally relevant drug product as the difference in demand can vary by several orders of magnitude. Therefore, this thesis focusses on scaling up the twin-screw wet granulation process from a laboratory scale to a potential production scale.
In the first part of the thesis, the general impact of various process parameters on the granulation behavior was investigated on the smaller scale to ensure a sufficient process understanding of the selected setup and formulation. The results showed a strong impact of the applied liquid to solid ratio on granule and tablet properties and an overall high reproducibility when process parameters were kept constant. Therefore, in the next and central parts of the thesis, different scale-up strategies were developed and applied for further investigations. Even though major differences in the granule size distributions directly after the granulation process were found based on the device scale, the size distribution, granule properties and resulting tablet properties were unexpectedly similar when the granules were milled afterwards and the liquid to solid ratio kept constant among scales during granulation. The relatively high process robustness was then confirmed in further experiments with additional formulations, as it was initially unclear whether these observations were simply proof of a very robust formulation or if the process scale-up itself would be relatively robust.
There, the observed variations in e.g., the tensile strengths of tablets were slightly higher, which could not be explained by a systematic impact of any process parameter or scale-up strategy. However, the properties of milled granules and the resulting tablets for all formulations were still relatively similar independent of the applied scale-up strategy or device scale. As the milling process was identified as an essential processing step to achieve similar product properties, the final part of the thesis investigates whether the modus operandi of downstream processes after the granulation would impact the final product properties. Significant differences in both granule size distributions and tablet tensile strengths were found based on whether the downstream processing was performed fully continuously on the line or manually in isolated processes after granulation. The lower number of fines could be attributed to the vacuum applied for transportation during the fully continuous milling, that likely led to a shorter residence time within the mill. However, the significantly higher tensile strength for fully continuous runs could not be fully explained as the effect was seemingly not caused by the differences in granule size distribution but potentially connected to the additional storage time (~1 day) between granulation and tableting. These findings would have to be confirmed and further analyzed in additional studies to find a suitable explanation.
Overall, twin-screw wet granulation process itself offers a relatively broad design space for process scale-up if the liquid to solid ratio is kept constant. Differences in GSDs caused by the different granulator sizes are usually mitigated by a consecutive milling process. However, formulators should keep in mind that the fully continuous nature of additional up- and downstream processes might pose additional challenges regarding e.g., the flowability of the powder blend prior to granulation.
Quelle:[1] P. York, "The design of dosage forms", in Aulton’s Pharmaceutics the Design and Manufacture of Medicines, 6th ed., Churchill Livingstone, London, 2013, 1–12.
[2] A. Fahr, "Voigt Pharmazeutische Technologie : Für Studium und Beruf", 11th ed. Deutscher Apotheker Verlag, Gerlingen, 2021. doi: 10.52777/9783769277487.
[3] L. L. Augsburger and S. W. Hoag, Eds., "Pharmaceutical Dosage Forms - Tablets", 3rd ed. CRC Press, Boca Raton, 2016. doi: 10.1201/b15115.
[4] Council of Europe, "European Pharmacopoeia", 10th ed. EDQM, Strasbourg, France, 2020.
[5] S. P. Chaudhari and P. S. Patil, "Pharmaceutical Excipients: A review", Int J Adv Pharm Biol Chem 2012, 21–34.
[6] M. Jivraj, L. G. Martini, and C. M. Thomson, "An overview of the different excipients useful for the direct compression of tablets", Pharm. Sci. Technol. Today 3, 2000, 58–63, doi: 10.1016/S1461-5347(99)00237-0.
[7] M. Sohail Arshad, S. Zafar, B. Yousef, Y. Alyassin, R. Ali, A. AlAsiri, M.-W. Chang, Z. Ahmad, A. Ali Elkordy, A. Faheem, and K. Pitt, "A review of emerging technologies enabling improved solid oral dosage form manufacturing and processing", Adv. Drug Deliv. Rev. 178, 2021, 113840, doi: 10.1016/j.addr.2021.113840.
[8] R. Shaikh, D. P. O’Brien, D. M. Croker, and G. M. Walker, "The development of a pharmaceutical oral solid dosage forms", in Computer Aided Chemical Engineering, 41, Elsevier, 2018, 27–65. doi: 10.1016/B978-0-444-63963-9.00002-6.
[9] G. L. Amidon, H. Lennernäs, V. P. Shah, and J. R. Crison, "A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability", Pharm. Res. 12, 1995, 413–420, doi: 10.1023/A:1016212804288.
[10] M. Leane, K. Pitt, G. Reynolds, and The Manufacturing Classification System (MCS) Working Group, "A proposal for a drug product Manufacturing Classification System (MCS) for oral solid dosage forms", Pharm. Dev. Technol. 20, 2015, 12–21, doi: 10.3109/10837450.2014.954728.
[11] H. A. Lieberman, L. Lachman, and J. B. Schwartz, Eds., "Pharmaceutical dosage forms--tablets", 2nd ed., rev.Expanded. Dekker, New York, 1989.
[12] F. Stauffer, V. Vanhoorne, G. Pilcer, P.-F. Chavez, S. Rome, M. A. Schubert, L. Aerts, and T. De Beer, "Raw material variability of an active pharmaceutical ingredient and its relevance for processability in secondary continuous pharmaceutical manufacturing", Eur. J. Pharm. Biopharm. 127, 2018, 92–103, doi: 10.1016/j.ejpb.2018.02.017.
[13] P. Kleinebudde, "Roll compaction/dry granulation: pharmaceutical applications", Eur. J. Pharm. Biopharm. 58, 2004, 317–326, doi: 10.1016/j.ejpb.2004.04.014.
[14] C. C. Sun and P. Kleinebudde, "Mini review: Mechanisms to the loss of tabletability by dry granulation", Eur. J. Pharm. Biopharm. 106, 2016, 9–14, doi: 10.1016/j.ejpb.2016.04.003.
[15] H. G. Kristensen and T. Schaefer, "Granulation: A Review on Pharmaceutical Wet-Granulation", Drug Dev. Ind. Pharm. 13, 1987, 803–872, doi: 10.3109/03639048709105217.
[16] A. Faure, P. York, and R. C. Rowe, "Process control and scale-up of pharmaceutical wet granulation processes: a review", Eur. J. Pharm. Biopharm. 52, 2001, 269–277, doi: 10.1016/S0939-6411(01)00184-9.
[17] E. Keleb, A. Vermeire, C. Vervaet, and J. P. Remon, "Twin screw granulation as a simple and efficient tool for continuous wet granulation", Int. J. Pharm. 273, 2004, 183–194, doi: 10.1016/j.ijpharm.2004.01.001.
[18] S. L. Lee, T. F. O’Connor, X. Yang, C. N. Cruz, S. Chatterjee, R. D. Madurawe, C. M. V. Moore, L. X. Yu, and J. Woodcock, "Modernizing Pharmaceutical Manufacturing: from Batch to Continuous Production", J. Pharm. Innov. 10, 2015, Art. 3, doi: 10.1007/s12247-015-9215-8.
[19] C. Vervaet and J. P. Remon, "Continuous granulation in the pharmaceutical industry", Chem. Eng. Sci. 60, 2005, 3949–3957, doi: 10.1016/j.ces.2005.02.028.
[20] H. Leuenberger, "New trends in the production of pharmaceutical granules: batch versus continuous processing", Eur. J. Pharm. Biopharm. 52, 2001, 289–296, doi: 10.1016/S0939-6411(01)00199-0.
[21] V. Vanhoorne and C. Vervaet, "Recent progress in continuous manufacturing of oral solid dosage forms", Int. J. Pharm. 579, 2020, 119194, doi: 10.1016/j.ijpharm.2020.119194.
[22] K. Matsunami, T. Miyano, H. Arai, H. Nakagawa, M. Hirao, and H. Sugiyama, "Decision Support Method for the Choice between Batch and Continuous Technologies in Solid Drug Product Manufacturing", Ind. Eng. Chem. Res. 57, 2018, 9798–9809, doi: 10.1021/acs.iecr.7b05230.
[23] K. Matsunami, S. Tanabe, H. Nakagawa, M. Hirao, and H. Sugiyama, "Economic Evaluation of Batch and Continuous Manufacturing Technologies for Solid Drug Products during Clinical Development", in Computer Aided Chemical Engineering, 44, Elsevier, 2018, 2131–2136. doi: 10.1016/B978-0-444-64241-7.50350-5.
[24] C. Badman, C. L. Cooney, A. Florence, K. Konstantinov, M. Krumme, S. Mascia, M. Nasr, and B. L. Trout, "Why We Need Continuous Pharmaceutical Manufacturing and How to Make It Happen", J. Pharm. Sci. 108, 2019, 3521–3523, doi: 10.1016/j.xphs.2019.07.016.
[25] S. D. Schaber, D. I. Gerogiorgis, R. Ramachandran, J. M. B. Evans, P. I. Barton, and B. L. Trout, "Economic Analysis of Integrated Continuous and Batch Pharmaceutical Manufacturing: A Case Study", Ind. Eng. Chem. Res. 50, 2011, 10083–10092, doi: 10.1021/ie2006752.
[26] C. V. Rossi, "A Comparative Investment Analysis of Batch Versus Continuous Pharmaceutical Manufacturing Technologies", J. Pharm. Innov. 17, 2022, 1373–1391, doi: 10.1007/s12247-021-09612-y.
[27] J. M. Juran, "Juran on quality by design: the new steps for planning quality into goods and services". Simon and Schuster, New York, 1992.
[28] International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, "Pharmaceutical development Q8(R2)". Accessed: 2023. [Online]. Available: https://database.ich.org/sites/default/files/Q8%28R2%29%20Guideline.pdf
[29] International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, "Quality Risk Management (Q9)". Accessed: 2023. [Online]. Available: https://database.ich.org/sites/default/files/ICH_Q9%28R1%29_Guideline_Step4_2023_0126_0.pdf
[30] International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, "Pharmaceutical Quality Systems (Q10)". Accessed: 2023. [Online]. Available: https://database.ich.org/sites/default/files/Q10%20Guideline.pdf
[31] International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, "Development and Manufacture of Drug Substance (Q11)". Accessed: 2023. [Online]. Available: https://database.ich.org/sites/default/files/Q11_Q%26As_Q%26As.pdf
[32] S. Chatterjee, "FDA Perspective on Continuous Manufacturing", presented at the FPAC Annual Meeting, Baltimore, 2012, 34–42.
[33] J. Woodcock, "Modernizing pharmaceutical manufacturing–continuous manufacturing as a key enabler", in Proceedings of the MIT-CMAC International Symposium on Continuous Manufacturing of Pharmaceuticals, Cambridge, MA, USA, 2014.
[34] T. F. O’Connor, L. X. Yu, and S. L. Lee, "Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality", Int. J. Pharm. 509, 2016, 492–498, doi: 10.1016/j.ijpharm.2016.05.058.
[35] M. M. Nasr, M. Krumme, Y. Matsuda, B. L. Trout, C. Badman, S. Mascia, C. L. Cooney, K. D. Jensen, A. Florence, C. Johnston, K. Konstantinov, and S. L. Lee, "Regulatory Perspectives on Continuous Pharmaceutical Manufacturing: Moving From Theory to Practice", J. Pharm. Sci. 106, 2017, 3199–3206, doi: 10.1016/j.xphs.2017.06.015.
[36] G. Allison, Y. T. Cain, C. Cooney, T. Garcia, T. G. Bizjak, O. Holte, N. Jagota, B. Komas, E. Korakianiti, D. Kourti, R. Madurawe, E. Morefield, F. Montgomery, M. Nasr, W. Randolph, J.-L. Robert, D. Rudd, and D. Zezza, "Regulatory and Quality Considerations for Continuous Manufacturing May 20–21, 2014 Continuous Manufacturing Symposium", J. Pharm. Sci. 104, 2015, 803–812, doi: 10.1002/jps.24324.
[37] International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, "Continuous Manufacturing of Drug Substances and Drug Products (Q13)". Accessed: 2024. [Online]. Available: https://database.ich.org/sihttps://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-q13-continuous-manufacturing-drug-substances-and-drug-products-step-5_en.pdf
[38] J. Markarian, "Breaking Through Barriers to Continuous Manufacturing", Pharm. Technol. 46, 2022, 16–20.
[39] E. J. Kim, J. H. Kim, M.-S. Kim, S. H. Jeong, and D. H. Choi, "Process Analytical Technology Tools for Monitoring Pharmaceutical Unit Operations: A Control Strategy for Continuous Process Verification", Pharmaceutics 13, 2021, 919, doi: 10.3390/pharmaceutics13060919.
[40] M. Fonteyne, J. Vercruysse, F. De Leersnyder, B. Van Snick, C. Vervaet, J. P. Remon, and T. De Beer, "Process Analytical Technology for continuous manufacturing of solid-dosage forms", TrAC Trends Anal. Chem. 67, 2015, 159–166, doi: 10.1016/j.trac.2015.01.011.
[41] P.-F. Chavez, F. Stauffer, F. Eeckman, N. Bostijn, D. Didion, C. Schaefer, H. Yang, Y. El Aalamat, X. Lories, M. Warman, B. Mathieu, and J. Mantanus, "Control strategy definition for a drug product continuous wet granulation process: Industrial case study", Int. J. Pharm. 624, 2022, 121970, doi: 10.1016/j.ijpharm.2022.121970.
[42] Y. Roggo, V. Pauli, M. Jelsch, L. Pellegatti, F. Elbaz, S. Ensslin, P. Kleinebudde, and M. Krumme, "Continuous manufacturing process monitoring of pharmaceutical solid dosage form: A case study", J. Pharm. Biomed. Anal. 2019, 112971, doi: 10.1016/j.jpba.2019.112971.
[43] L. Chablani, M. K. Taylor, A. Mehrotra, P. Rameas, and W. C. Stagner, "Inline Real-Time Near-Infrared Granule Moisture Measurements of a Continuous Granulation–Drying–Milling Process", AAPS PharmSciTech 12, 2011, 1050–1055, doi: 10.1208/s12249-011-9669-z.
[44] J. G. Rosas, P. Brush, B. Thompson, C. Miller, P. Overton, N. Tugby, D. Stoliarskaia, S. Hurley, M. Ramasamy, and S. L. Conway, "Implementation of a fully integrated CM direct compression and coating process at a commercial pharmaceutical facility – Part 2: PAT and RTD results for normal operational conditions batches", Int. J. Pharm. 636, 2023, 122814, doi: 10.1016/j.ijpharm.2023.122814.
[45] J. M. Vargas, S. Nielsen, V. Cárdenas, A. Gonzalez, E. Y. Aymat, E. Almodovar, G. Classe, Y. Colón, E. Sanchez, and R. J. Romañach, "Process analytical technology in continuous manufacturing of a commercial pharmaceutical product", Int. J. Pharm. 538, 2018, 167–178, doi: 10.1016/j.ijpharm.2018.01.003.
[46] M. Jelsch, Y. Roggo, P. Kleinebudde, and M. Krumme, "Model predictive control in pharmaceutical continuous manufacturing: A review from a user’s perspective", Eur. J. Pharm. Biopharm. 159, 2021, 137–142, doi: 10.1016/j.ejpb.2021.01.003.
[47] C. M. V. Moore, "Regulatory Perspective on Real Time Release Testing (RTRT)", in Proceedings of the AAPS Annual Meeting, Washington DC, 2011, 32.
[48] P. Bawuah and J. A. Zeitler, "Advances in terahertz time-domain spectroscopy of pharmaceutical solids: A review", TrAC Trends Anal. Chem. 139, 2021, 116272, doi: 10.1016/j.trac.2021.116272.
[49] V. Kumar, M. K. Taylor, A. Mehrotra, and W. C. Stagner, "Real-Time Particle Size Analysis Using Focused Beam Reflectance Measurement as a Process Analytical Technology Tool for a Continuous Granulation–Drying–Milling Process", AAPS PharmSciTech 14, 2013, 523–530, doi: 10.1208/s12249-013-9934-4.
[50] W. Meng, A. D. Román-Ospino, S. S. Panikar, C. O’Callaghan, S. J. Gilliam, R. Ramachandran, and F. J. Muzzio, "Advanced process design and understanding of continuous twin-screw granulation via implementation of in-line process analytical technologies", Adv. Powder Technol. 30, 2019, 879–894, doi: 10.1016/j.apt.2019.01.017.
[51] M. Fonteyne, J. Arruabarrena, J. De Beer, M. Hellings, T. Van Den Kerkhof, A. Burggraeve, C. Vervaet, J. P. Remon, and T. De Beer, "NIR spectroscopic method for the in-line moisture assessment during drying in a six-segmented fluid bed dryer of a continuous tablet production line: Validation of quantifying abilities and uncertainty assessment", J. Pharm. Biomed. Anal. 100, 2014, 21–27, doi: 10.1016/j.jpba.2014.07.012.
[52] S. Mascia, P. L. Heider, H. Zhang, R. Lakerveld, B. Benyahia, P. I. Barton, R. D. Braatz, C. L. Cooney, J. M. B. Evans, T. F. Jamison, K. F. Jensen, A. S. Myerson, and B. L. Trout, "End-to-End Continuous Manufacturing of Pharmaceuticals: Integrated Synthesis, Purification, and Final Dosage Formation", Angew. Chem. 125, 2023, 12585–12589, doi: 10.1002/ange.201305429.
[53] L. Schenck, D. Erdemir, L. Saunders Gorka, J. M. Merritt, I. Marziano, R. Ho, M. Lee, J. Bullard, M. Boukerche, S. Ferguson, A. J. Florence, S. A. Khan, and C. C. Sun, "Recent Advances in Co-processed APIs and Proposals for Enabling Commercialization of These Transformative Technologies", Mol. Pharm. 17, 2020, 2232–2244, doi: 10.1021/acs.molpharmaceut.0c00198.
[54] B. Van Snick, J. Holman, V. Vanhoorne, A. Kumar, T. De Beer, J. P. Remon, and C. Vervaet, "Development of a continuous direct compression platform for low-dose drug products", Int. J. Pharm. 529, 2017, 329–346, doi: 10.1016/j.ijpharm.2017.07.003.
[55] O. N. Kavanagh, C. Wang, G. M. Walker, and C. C. Sun, "Modulation of the powder properties of lamotrigine by crystal forms", Int. J. Pharm. 595, 2021, 120274, doi: 10.1016/j.ijpharm.2021.120274.
[56] J. Rojas, I. Buckner, and V. Kumar, "Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance", Drug Dev. Ind. Pharm. 38, 2012, 1159–1170, doi: 10.3109/03639045.2011.645833.
[57] A. Schmidt, H. De Waard, P. Kleinebudde, and M. Krumme, "Continuous Single-Step Wet Granulation with Integrated in-Barrel-Drying", Pharm. Res. 35, 2018, 167, doi: 10.1007/s11095-018-2451-0.
[58] A. Domokos, B. Nagy, B. Szilágyi, G. Marosi, and Z. K. Nagy, "Integrated Continuous Pharmaceutical Technologies—A Review", Org. Process Res. Dev. 25, 2021, 721–739, doi: 10.1021/acs.oprd.0c00504.
[59] K. Kohlgrüber, "Co-rotating twin-screw extruder". Carl Hanser Verlag GmbH Co KG, Munich, 2012.
[60] N.-O. Lindberg, C. Tufvesson, and L. Olbjer, "Extrusion of an Effervescent Granulation with a Twin Screw Extruder, Baker Perkins MPF 50 D", Drug Dev. Ind. Pharm. 13, 1987, 1891–1913, doi: 10.3109/03639048709068698.
[61] R. Schroeder and K. Steffens, "A new system for continuous wet granulation", Pharm. Ind. 64, 2002, 283–288.
[62] T. C. Seem, N. A. Rowson, A. Ingram, Z. Huang, S. Yu, M. de Matas, I. Gabbott, and G. K. Reynolds, "Twin screw granulation - A literature review", Powder Technol. 276, 2015, 89–102, doi: 10.1016/j.powtec.2015.01.075.
[63] P. H. M. Janssen, S. S. Kulkarni, C. M. Torrecillas, F. Tegel, R. Weinekötter, B. Meir, and B. H. J. Dickhoff, "Effect of batch-to-batch variation of spray dried lactose on the performance of feeders", Powder Technol. 409, 2022, 117776, doi: 10.1016/j.powtec.2022.117776.
[64] R. Meier, M. Thommes, N. Rasenack, K.-P. Moll, M. Krumme, and P. Kleinebudde, "Granule size distributions after twin-screw granulation – Do not forget the feeding systems", Eur. J. Pharm. Biopharm. 106, 2016, 59–69, doi: 10.1016/j.ejpb.2016.05.011.
[65] W. E. Engisch and F. J. Muzzio, "Method for characterization of loss-in-weight feeder equipment", Powder Technol. 228, 2012, 395–403, doi: 10.1016/j.powtec.2012.05.058.
[66] W. E. Engisch and F. J. Muzzio, "Loss-in-Weight Feeding Trials Case Study: Pharmaceutical Formulation", J. Pharm. Innov. 10, 2015, 56–75, doi: 10.1007/s12247-014-9206-1.
[67] F. Stauffer, V. Vanhoorne, G. Pilcer, P.-F. Chavez, M. A. Schubert, C. Vervaet, and T. De Beer, "Managing active pharmaceutical ingredient raw material variability during twin-screw blend feeding", Eur. J. Pharm. Biopharm. 135, 2019, 49–60, doi: 10.1016/j.ejpb.2018.12.012.
[68] W. Engisch and F. Muzzio, "Using Residence Time Distributions (RTDs) to Address the Traceability of Raw Materials in Continuous Pharmaceutical Manufacturing", J. Pharm. Innov. 11, 2016, 64–81, doi: 10.1007/s12247-015-9238-1.
[69] J. Hanson, "Control of a system of loss-in-weight feeders for drug product continuous manufacturing", Powder Technol. 331, 2018, 236–243, doi: 10.1016/j.powtec.2018.03.027.
[70] B. Van Snick, A. Kumar, M. Verstraeten, K. Pandelaere, J. Dhondt, G. Di Pretoro, T. De Beer, C. Vervaet, and V. Vanhoorne, "Impact of material properties and process variables on the residence time distribution in twin screw feeding equipment", Int. J. Pharm. 556, 2019, 200–216, doi: 10.1016/j.ijpharm.2018.11.076.
[71] T. Ervasti, H. Niinikoski, E. Mäki-Lohiluoma, H. Leppinen, J. Ketolainen, O. Korhonen, and S. Lakio, "The Comparison of Two Challenging Low Dose APIs in a Continuous Direct Compression Process", Pharmaceutics 12, 2020, 279, doi: 10.3390/pharmaceutics12030279.
[72] P. Toson and J. G. Khinast, "Particle-level residence time data in a twin-screw feeder", Data Brief 27, 2019, 104672, doi: 10.1016/j.dib.2019.104672.
[73] R. M. Dhenge, J. J. Cartwright, D. G. Doughty, M. J. Hounslow, and A. D. Salman, "Twin screw wet granulation: Effect of powder feed rate", Adv. Powder Technol. 22, 2011, 162–166, doi: 10.1016/j.apt.2010.09.004.
[74] J. Vercruysse, D. Córdoba Díaz, E. Peeters, M. Fonteyne, U. Delaet, I. Van Assche, T. De Beer, J. P. Remon, and C. Vervaet, "Continuous twin screw granulation: Influence of process variables on granule and tablet quality", Eur. J. Pharm. Biopharm. 82, 2012, 205–211, doi: 10.1016/j.ejpb.2012.05.010.
[75] R. Meier, K.-P. Moll, M. Krumme, and P. Kleinebudde, "Impact of fill-level in twin-screw granulation on critical quality attributes of granules and tablets", Eur. J. Pharm. Biopharm. 115, 2017, 102–112, doi: 10.1016/j.ejpb.2017.02.010.
[76] Pohl, Sebastian, "Transfer of twin-screw granulation processes and predictions of barrel fill", Düsseldorf, Heinrich Heine University, 2022.
[77] M. R. Thompson, "Twin screw granulation – review of current progress", Drug Dev. Ind. Pharm. 41, 2015, 1223–1231, doi: 10.3109/03639045.2014.983931.
[78] M. R. Thompson and J. Sun, "Wet Granulation in a Twin‐Screw Extruder: Implications of Screw Design", J. Pharm. Sci. 99, 2010, 2090–2103, doi: 10.1002/jps.21973.
[79] R. M. Dhenge, K. Washino, J. J. Cartwright, M. J. Hounslow, and A. D. Salman, "Twin screw granulation using conveying screws: Effects of viscosity of granulation liquids and flow of powders", Powder Technol. 238, 2013, 77–90, doi: 10.1016/j.powtec.2012.05.045.
[80] J. Menth, M. Maus, and K. G. Wagner, "Continuous twin screw granulation and fluid bed drying: A mechanistic scaling approach focusing optimal tablet properties", Int. J. Pharm. 586, 2020, 119509, doi: 10.1016/j.ijpharm.2020.119509.
[81] J. Li, S. U. Pradhan, and C. R. Wassgren, "Granule transformation in a twin screw granulator: Effects of conveying, kneading, and distributive mixing elements", Powder Technol. 346, 2019, 363–372, doi: 10.1016/j.powtec.2018.11.099.
[82] D. Djuric and P. Kleinebudde, "Impact of screw elements on continuous granulation with a twin-screw extruder", J. Pharm. Sci. 97, 2008, 4934–4942, doi: 10.1002/jps.21339.
[83] J. Vercruysse, A. Burggraeve, M. Fonteyne, P. Cappuyns, U. Delaet, I. Van Assche, T. De Beer, J. P. Remon, and C. Vervaet, "Impact of screw configuration on the particle size distribution of granules produced by twin screw granulation", Int. J. Pharm. 479, 2015, 171–180, doi: 10.1016/j.ijpharm.2014.12.071.
[84] C. Portier, K. Pandelaere, U. Delaet, T. Vigh, G. Di Pretoro, T. De Beer, C. Vervaet, and V. Vanhoorne, "Continuous twin screw granulation: a complex interplay between formulation properties, process settings and screw design", Int. J. Pharm. 2020, 119004, doi: 10.1016/j.ijpharm.2019.119004.
[85] A. S. El Hagrasy and J. D. Litster, "Granulation rate processes in the kneading elements of a twin screw granulator", AIChE J. 59, 2013, 4100–4115, doi: 10.1002/aic.14180.
[86] R. Sayin, A. S. El Hagrasy, and J. D. Litster, "Distributive mixing elements: Towards improved granule attributes from a twin screw granulation process", Chem. Eng. Sci. 125, 2015, 165–175, doi: 10.1016/j.ces.2014.06.040.
[87] D. Djuric, B. Vanmelkebeke, P. Kleinebudde, J. Remon, and C. Vervaet, "Comparison of two twin-screw extruders for continuous granulation", Eur. J. Pharm. Biopharm. 71, 2009, 155–160, doi: 10.1016/j.ejpb.2008.06.033.
[88] A. Kumar, J. Vercruysse, M. Toiviainen, P.-E. Panouillot, M. Juuti, V. Vanhoorne, C. Vervaet, J. P. Remon, K. V. Gernaey, T. De Beer, and I. Nopens, "Mixing and transport during pharmaceutical twin-screw wet granulation: Experimental analysis via chemical imaging", Eur. J. Pharm. Biopharm. 87, 2014, 279–289, doi: 10.1016/j.ejpb.2014.04.004.
[89] H. Liu, S. C. Galbraith, B. Ricart, C. Stanton, B. Smith-Goettler, L. Verdi, T. O’Connor, S. Lee, and S. Yoon, "Optimization of critical quality attributes in continuous twin-screw wet granulation via design space validated with pilot scale experimental data", Int. J. Pharm. 525, 2017, 249–263, doi: 10.1016/j.ijpharm.2017.04.055.
[90] A. Kumar, G. M. Ganjyal, D. D. Jones, and M. A. Hanna, "Digital image processing for measurement of residence time distribution in a laboratory extruder", J. Food Eng. 75, 2006, 237–244, doi: 10.1016/j.jfoodeng.2005.04.025.
[91] J. Vercruysse, M. Toiviainen, M. Fonteyne, N. Helkimo, J. Ketolainen, M. Juuti, U. Delaet, I. Van Assche, J. P. Remon, C. Vervaet, and T. De Beer, "Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging", Eur. J. Pharm. Biopharm. 86, 2014, 383–392, doi: 10.1016/j.ejpb.2013.10.012.
[92] A. S. El Hagrasy, J. R. Hennenkamp, M. D. Burke, J. J. Cartwright, and J. D. Litster, "Twin screw wet granulation: Influence of formulation parameters on granule properties and growth behavior", Powder Technol. 238, 2013, 108–115, doi: 10.1016/j.powtec.2012.04.035.
[93] R. M. Dhenge, J. J. Cartwright, M. J. Hounslow, and A. D. Salman, "Twin screw wet granulation: Effects of properties of granulation liquid", Powder Technol. 229, 2012, 126–136, doi: 10.1016/j.powtec.2012.06.019.
[94] L. Vandevivere, P. Denduyver, C. Portier, O. Häusler, T. De Beer, C. Vervaet, and V. Vanhoorne, "Influence of binder attributes on binder effectiveness in a continuous twin screw wet granulation process via wet and dry binder addition", Int. J. Pharm. 585, 2020, 119466, doi: 10.1016/j.ijpharm.2020.119466.
[95] L. Vandevivere, E. Van Wijmeersch, O. Häusler, T. De Beer, C. Vervaet, and V. Vanhoorne, "The effect of screw configuration and formulation variables on liquid requirements and granule quality in a continuous twin screw wet granulation process", J. Drug Deliv. Sci. Technol. 68, 2022, 103042, doi: 10.1016/j.jddst.2021.103042.
[96] R. M. Dhenge, J. J. Cartwright, M. J. Hounslow, and A. D. Salman, "Twin screw granulation: Steps in granule growth", Int. J. Pharm. 438, 2012, 20–32, doi: 10.1016/j.ijpharm.2012.08.049.
[97] A. Ito and P. Kleinebudde, "Influence of granulation temperature on particle size distribution of granules in twin-screw granulation (TSG)", Pharm. Dev. Technol. 24, 2019, 874–882, doi: 10.1080/10837450.2019.1615089.
[98] V. Vanhoorne, B. Vanbillemont, J. Vercruysse, F. De Leersnyder, P. Gomes, T. D. Beer, J. P. Remon, and C. Vervaet, "Development of a controlled release formulation by continuous twin screw granulation: Influence of process and formulation parameters", Int. J. Pharm. 505, 2016, doi: 10.1016/j.ijpharm.2016.03.058.
[99] Y. Liu, M. R. Thompson, K. P. O’Donnell, and N. S. Grasman, "Effect of temperature on the wetting behavior of hydroxypropyl methylcellulose in a twin-screw granulator", Powder Technol. 302, 2016, 63–74, doi: 10.1016/j.powtec.2016.08.032.
[100] A. K. Meena, D. Desai, and A. T. M. Serajuddin, "Development and Optimization of a Wet Granulation Process at Elevated Temperature for a Poorly Compactible Drug Using Twin Screw Extruder for Continuous Manufacturing", J. Pharm. Sci. 106, 2017, 589–600, doi: 10.1016/j.xphs.2016.10.020.
[101] A. Haser, N. Kittikunakorn, E. Dippold, J. C. DiNunzio, and W. Blincoe, "Continuous Twin-Screw wet granulation process with In-Barrel drying and NIR setup for Real-Time Moisture Monitoring", Int. J. Pharm. 630, 2023, 122377, doi: 10.1016/j.ijpharm.2022.122377.
[102] K. Kiricenko and P. Kleinebudde, "Drying behavior of a horizontal vibrated fluidized bed dryer for continuous manufacturing", Pharm. Dev. Technol. 2023, 1–12, doi: 10.1080/10837450.2023.2205932.
[103] R. Meier, D. Emanuele, and P. Harbaum, "Important elements in continuous granule drying processes: Experiences from lab and production scale.", TechnoPharm 10, 2020, 92–101.
[104] R. Meier and D. Emanuele, "Kontinuierliche Feuchtgranulierung und Wirbelschichttrocknung: Experimentelle Untersuchung eines neuartigen, revolutionaeren Systems", TechnoPharm 8, 2018, 124.
[105] G. Fülöp, A. Domokos, D. Galata, E. Szabó, M. Gyürkés, B. Szabó, A. Farkas, L. Madarász, B. Démuth, T. Lendér, T. Nagy, D. Kovács-Kiss, F. Van Der Gucht, G. Marosi, and Z. K. Nagy, "Integrated twin-screw wet granulation, continuous vibrational fluid drying and milling: A fully continuous powder to granule line", Int. J. Pharm. 594, 2021, 120126, doi: 10.1016/j.ijpharm.2020.120126.
[106] J. N. Michaels, L. Farber, G. S. Wong, K. Hapgood, S. J. Heidel, J. Farabaugh, J.-H. Chou, and G. I. Tardos, "Steady states in granulation of pharmaceutical powders with application to scale-up", Powder Technol. 189, 2009, 295–303, doi: 10.1016/j.powtec.2008.04.028.
[107] K. M. Kyttä, S. Lakio, H. Wikström, A. Sulemanji, M. Fransson, J. Ketolainen, and P. Tajarobi, "Comparison between twin-screw and high-shear granulation - The effect of filler and active pharmaceutical ingredient on the granule and tablet properties", Powder Technol. 376, 2020, 187–198, doi: 10.1016/j.powtec.2020.08.030.
[108] A. Megarry, A. Taylor, A. Gholami, H. Wikström, and P. Tajarobi, "Twin-screw granulation and high-shear granulation: The influence of mannitol grade on granule and tablet properties", Int. J. Pharm. 590, 2020, 119890, doi: 10.1016/j.ijpharm.2020.119890.
[109] Y. Miyazaki, V. Lenhart, and P. Kleinebudde, "Switch of tablet manufacturing from high shear granulation to twin-screw granulation using quality by design approach", Int. J. Pharm. 579, 2020, 119139, doi: 10.1016/j.ijpharm.2020.119139.
[110] P. Beer, D. Wilson, Z. Huang, and M. De Matas, "Transfer from High‐Shear Batch to Continuous Twin Screw Wet Granulation: A Case Study in Understanding the Relationship Between Process Parameters and Product Quality Attributes", J. Pharm. Sci. 103, 2014, 3075–3082, doi: 10.1002/jps.24078.
[111] K. T. Lee, A. Ingram, and N. A. Rowson, "Comparison of granule properties produced using Twin Screw Extruder and High Shear Mixer: A step towards understanding the mechanism of twin screw wet granulation", Powder Technol. 238, 2013, 91–98, doi: 10.1016/j.powtec.2012.05.031.
[112] E. I. Keleb, A. Vermeire, C. Vervaet, and J. P. Remon, "Extrusion Granulation and High Shear Granulation of Different Grades of Lactose and Highly Dosed Drugs: A Comparative Study", Drug Dev. Ind. Pharm. 30, 2004, 679–691, doi: 10.1081/DDC-120039338.
[113] J. G. Osorio, R. Sayin, A. V. Kalbag, J. D. Litster, L. Martinez-Marcos, D. A. Lamprou, and G. W. Halbert, "Scaling of continuous twin screw wet granulation", AIChE J. 63, 2017, 921–932, doi: 10.1002/aic.15459.
[114] B. Liu, J. Wang, J. Zeng, L. Zhao, Y. Wang, Y. Feng, and R. Du, "A review of high shear wet granulation for better process understanding, control and product development", Powder Technol. 381, 2021, 204–223, doi: 10.1016/j.powtec.2020.11.051.
[115] G. I. Tardos, K. P. Hapgood, O. O. Ipadeola, and J. N. Michaels, "Stress measurements in high-shear granulators using calibrated “test” particles: application to scale-up", Powder Technol. 140, 2004, 217–227, doi: 10.1016/j.powtec.2004.01.015.
[116] J. Tao, P. Pandey, D. S. Bindra, J. Z. Gao, and A. S. Narang, "Evaluating Scale-Up Rules of a High-Shear Wet Granulation Process", J. Pharm. Sci. 104, 2015, 2323–2333, doi: 10.1002/jps.24504.
[117] G. Horsthuis, J. Vanlaarhoven, R. Vanrooij, and H. Vromans, "Studies on upscaling parameters of the Gral high shear granulation process", Int. J. Pharm. 92, 1993, 143–150, doi: 10.1016/0378-5173(93)90273-I.
[118] J. D. Litster, K. P. Hapgood, J. N. Michaels, A. Sims, M. Roberts, and S. K. Kameneni, "Scale-up of mixer granulators for effective liquid distribution", Powder Technol. 124, 2002, 272–280, doi: 10.1016/S0032-5910(02)00023-2.
[119] A. Hassanpour, C. C. Kwan, B. H. Ng, N. Rahmanian, Y. L. Ding, S. J. Antony, X. D. Jia, and M. Ghadiri, "Effect of granulation scale-up on the strength of granules", Powder Technol. 189, 2009, 304–312, doi: 10.1016/j.powtec.2008.04.023.
[120] A. Faure, I. M. Grimsey, R. C. Rowe, P. York, and M. J. Cliff, "Applicability of a scale-up methodology for wet granulation processes in Collette Gral high shear mixer-granulators", Eur. J. Pharm. Sci. 8, 1999, 85–93, doi: 10.1016/S0928-0987(98)00063-3.
[121] H. Leuenberger, B. Luy, and J. Studer, "New development in the control of a moist agglomeration and pelletization process", STP Pharma 6, 1990, 303–309.
[122] H. Leuenberger, M. Puchkov, E. Krausbauer, and G. Betz, "Manufacturing pharmaceutical granules: Is the granulation end-point a myth?", Powder Technol. 189, 2009, 141–148, doi: 10.1016/j.powtec.2008.04.005.
[123] A. Kumar, K. V. Gernaey, T. D. Beer, and I. Nopens, "Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production – A critical review", Eur. J. Pharm. Biopharm. 85, 2013, 814–832, doi: 10.1016/j.ejpb.2013.09.013.
[124] K. Kolter, M. Karl, A. Gryczke, and B. Ludwigshafen am Rhein, "Hot-melt extrusion with BASF pharma polymers: extrusion compendium". BASF, 2012.
[125] M. Franke, T. Riedel, R. Meier, C. Schmidt, and P. Kleinebudde, "Comparison of scale-up strategies in twin-screw wet granulation", Int. J. Pharm. 2023, 123052, doi: 10.1016/j.ijpharm.2023.123052.
[126] S. Bandari, D. Nyavanandi, V. R. Kallakunta, K. Y. Janga, S. Sarabu, A. Butreddy, and M. A. Repka, "Continuous twin screw granulation – An advanced alternative granulation technology for use in the pharmaceutical industry", Int. J. Pharm. 580, 2020, 119215, doi: 10.1016/j.ijpharm.2020.119215.
[127] R. M. Dhenge, R. S. Fyles, J. J. Cartwright, D. G. Doughty, M. J. Hounslow, and A. D. Salman, "Twin screw wet granulation: Granule properties", Chem. Eng. J. 164, 2010, 322–329, doi: 10.1016/j.cej.2010.05.023.
[128] K.-M. Hwang, C.-H. Cho, S.-D. Yoo, K.-I. Cha, and E.-S. Park, "Continuous twin screw granulation: Impact of the starting material properties and various process parameters", Powder Technol. 356, 2019, 847–857, doi: 10.1016/j.powtec.2019.08.062.
[129] R. Sayin, L. Martinez-Marcos, J. G. Osorio, P. Cruise, I. Jones, G. W. Halbert, D. A. Lamprou, and J. D. Litster, "Investigation of an 11 mm diameter twin screw granulator: Screw element performance and in-line monitoring via image analysis", Int. J. Pharm. 496, 2015, 24–32, doi: 10.1016/j.ijpharm.2015.09.024.
[130] A. Kumar, J. Dhondt, J. Vercruysse, F. De Leersnyder, V. Vanhoorne, C. Vervaet, J. P. Remon, K. V. Gernaey, T. De Beer, and I. Nopens, "Development of a process map: A step towards a regime map for steady-state high shear wet twin screw granulation", Powder Technol. 300, 2016, 73–82, doi: 10.1016/j.powtec.2015.11.067.
[131] B. Van Melkebeke, C. Vervaet, and J. P. Remon, "Validation of a continuous granulation process using a twin-screw extruder", Int. J. Pharm. 356, 2008, 224–230, doi: 10.1016/j.ijpharm.2008.01.012.
[132] C. Portier, K. Pandelaere, U. Delaet, T. Vigh, A. Kumar, G. Di Pretoro, T. De Beer, C. Vervaet, and V. Vanhoorne, "Continuous twin screw granulation: Influence of process and formulation variables on granule quality attributes of model formulations", Int. J. Pharm. 576, 2020, 118981, doi: 10.1016/j.ijpharm.2019.118981.
[133] M. F. Saleh, R. M. Dhenge, J. J. Cartwright, M. J. Hounslow, and A. D. Salman, "Twin screw wet granulation: Effect of process and formulation variables on powder caking during production", Int. J. Pharm. 496, 2015, 571–582, doi: 10.1016/j.ijpharm.2015.10.069.
[134] S. Lute, R. Dhenge, and A. Salman, "Twin Screw Granulation: An Investigation of the Effect of Barrel Fill Level", Pharmaceutics 10, 2018, 67, doi: 10.3390/pharmaceutics10020067.
[135] A. Kumar, J. Vercruysse, V. Vanhoorne, M. Toiviainen, P.-E. Panouillot, M. Juuti, C. Vervaet, J. P. Remon, K. V. Gernaey, T. D. Beer, and I. Nopens, "Conceptual framework for model-based analysis of residence time distribution in twin-screw granulation", Eur. J. Pharm. Sci. 71, 2015, 25–34, doi: 10.1016/j.ejps.2015.02.004.
[136] "MODDE® 12 User Guide". Accessed: 2023. [Online]. Available: https://www.sartorius.com/download/544636/modde-12-user-guide-en-b-00090-sartorius-data.pdf
[137] T. Köhler and H. Schubert, "Influence of the Particle Size Distribution on the flow behaviour of fine powders", Part. Part. Syst. Charact. 8, 1991, 101–104, doi: 10.1002/ppsc.19910080119.
[138] S. M. Iveson, J. D. Litster, K. Hapgood, and B. J. Ennis, "Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review", Powder Technol. 117, 2001, Art. 1–2, doi: 10.1016/S0032-5910(01)00313-8.
[139] S. V. Lute, R. M. Dhenge, M. J. Hounslow, and A. D. Salman, "Twin screw granulation: Understanding the mechanism of granule formation along the barrel length", Chem. Eng. Res. Des. 110, 2016, 43–53, doi: 10.1016/j.cherd.2016.03.008.
[140] L. G. Wang, S. U. Pradhan, C. Wassgren, D. Barrasso, D. Slade, and J. D. Litster, "A breakage kernel for use in population balance modelling of twin screw granulation", Powder Technol. 363, 2020, 525–540, doi: 10.1016/j.powtec.2020.01.024.
[141] L. G. Wang, J. P. Morrissey, D. Barrasso, D. Slade, S. Clifford, G. Reynolds, J. Y. Ooi, and J. D. Litster, "Model driven design for twin screw granulation using mechanistic-based population balance model", Int. J. Pharm. 607, 2021, 120939, doi: 10.1016/j.ijpharm.2021.120939.
[142] R. Meier, K.-P. Moll, M. Krumme, and P. Kleinebudde, "Simplified, High Drug-Loaded Formulations Containing Hydrochlorothiazide for Twin-Screw Granulation", Chem. Ing. Tech. 89, 2017, 1025–1033, doi: 10.1002/cite.201600134.
[143] D. Djuric and P. Kleinebudde, "Continuous granulation with a twin-screw extruder: Impact of material throughput", Pharm. Dev. Technol. 15, 2010, 518–525, doi: 10.3109/10837450903397578.
[144] R. M. Dhenge, R. S. Fyles, J. J. Cartwright, D. G. Doughty, M. J. Hounslow, and A. D. Salman, "Twin screw wet granulation: Granule properties", Chem. Eng. J. 164, 2010, doi: 10.1016/j.cej.2010.05.023.
[145] L. J. Gorringe, G. S. Kee, M. F. Saleh, N. H. Fa, and R. G. Elkes, "Use of the channel fill level in defining a design space for twin screw wet granulation", Int. J. Pharm. 519, 2017, 165–177, doi: 10.1016/j.ijpharm.2017.01.029.
[146] N. A. M. Tamimi and P. Ellis, "Drug Development: From Concept to Marketing!", Nephron Clin. Pract. 113, 2009, 125–131, doi: 10.1159/000232592.
[147] G. I. Taylor, "Diffusion and Mass Transport in Tubes", Proc. Phys. Soc. Sect. B 67, 1954, 857–869, doi: 10.1088/0370-1301/67/12/301.
[148] L. Kotamarthy and R. Ramachandran, "Mechanistic understanding of the effects of process and design parameters on the mixing dynamics in continuous twin-screw granulation", Powder Technol. 390, 2021, 73–85, doi: 10.1016/j.powtec.2021.05.071.
[149] E. Reitz, H. Podhaisky, D. Ely, and M. Thommes, "Residence time modeling of hot melt extrusion processes", Eur. J. Pharm. Biopharm. 85, 2013, Art. 3, doi: 10.1016/j.ejpb.2013.07.019.
[150] A. C. Shah and A. R. Mlodozeniec, "Mechanism of Surface Lubrication: Influence of Duration of Lubricant-Excipient Mixing on Processing Characteristics of Powders and Properties of Compressed Tablets", J. Pharm. Sci. 66, 1977, 1377–1382, doi: 10.1002/jps.2600661006.
[151] J.-I. Kikuta and N. Kitamori, "Effect of Mixing Time on the Lubricating Properties of Magnesium Stearate and the Final Characteristics of the Compressed Tablets", Drug Dev. Ind. Pharm. 20, 1994, 343–355, doi: 10.3109/03639049409050187.
[152] V. Mazel and P. Tchoreloff, "Lamination of Pharmaceutical Tablets: Classification and Influence of Process Parameters", J. Pharm. Sci. 111, 2022, doi: 10.1016/j.xphs.2021.10.025.
[153] M. Franke, T. Riedel, R. Meier, C. Schmidt, and P. Kleinebudde, "Scale-up in Twin-screw wet granulation: Impact of formulation properties", Pharm. Dev. Technol. 28, 2023, 948–961, doi: 10.1080/10837450.2023.2276791.
[154] N. Willecke, A. Szepes, M. Wunderlich, J. P. Remon, C. Vervaet, and T. De Beer, "A novel approach to support formulation design on twin screw wet granulation technology: Understanding the impact of overarching excipient properties on drug product quality attributes", Int. J. Pharm. 545, 2018, 128–143, doi: 10.1016/j.ijpharm.2018.04.017.
[155] R. Meier, M. Thommes, N. Rasenack, M. Krumme, K.-P. Moll, and P. Kleinebudde, "Simplified formulations with high drug loads for continuous twin-screw granulation", Int. J. Pharm. 496, 2015, 12–23, doi: 10.1016/j.ijpharm.2015.05.060.
[156] M. R. Thompson and K. P. O’Donnell, "“Rolling” phenomenon in twin screw granulation with controlled-release excipients", Drug Dev. Ind. Pharm. 41, 2015, 482–492, doi: 10.3109/03639045.2013.879723.
[157] A. W. Jenike, "Storage and flow of solids", Bulletin 123, Engineering Experiment Station, University of Utah, 1964. doi: 10.2172/5240257.
[158] T. Kojima and J. A. Elliott, "Effect of silica nanoparticles on the bulk flow properties of fine cohesive powders", Chem. Eng. Sci. 101, 2013, 315–328, doi: 10.1016/j.ces.2013.06.056.
[159] S. Yu, G. K. Reynolds, Z. Huang, M. De Matas, and A. D. Salman, "Granulation of increasingly hydrophobic formulations using a twin screw granulator", Int. J. Pharm. 475, 2014, 82–96, doi: 10.1016/j.ijpharm.2014.08.015.
[160] H. Li, M. R. Thompson, and K. P. O’Donnell, "Examining drug hydrophobicity in continuous wet granulation within a twin screw extruder", Int. J. Pharm. 496, 2015, 3–11, doi: 10.1016/j.ijpharm.2015.07.070.
[161] A. N. Chandran, S. S. Rao, and Y. B. G. Varma, "Fluidized bed drying of solids", AIChE J. 36, 1990, 29–38, doi: 10.1002/aic.690360106.
[162] B. Kozanoglu, J. Martinez, S. Alvarez, J. A. Guerrero-Beltrán, and J. Welti-Chanes, "Influence of Particle Size on Vacuum–Fluidized Bed Drying", Dry. Technol. 30, 2012, 138–145, doi: 10.1080/07373937.2011.628427.
[163] C. Portier, C. De Vriendt, T. Vigh, G. Di Pretoro, T. De Beer, C. Vervaet, and V. Vanhoorne, "Continuous twin screw granulation: Robustness of lactose/MCC-based formulations", Int. J. Pharm. 588, 2020, 119756, doi: 10.1016/j.ijpharm.2020.119756.
[164] S. Lakio, P. Tajarobi, H. Wikström, M. Fransson, J. Arnehed, T. Ervasti, S.-P. Simonaho, J. Ketolainen, S. Folestad, and S. Abrahmsén-Alami, "Achieving a robust drug release from extended release tablets using an integrated continuous mixing and direct compression line", Int. J. Pharm. 511, 2016, 659–668, doi: 10.1016/j.ijpharm.2016.07.052.
[165] J. Siepmann, K. Podual, M. Sriwongjanya, N. A. Peppas, and R. Bodmeier, "A New Model Describing the Swelling and Drug Release Kinetics from Hydroxypropyl Methylcellulose Tablets", J. Pharm. Sci. 88, 1999, 65–72, doi: 10.1021/js9802291.
[166] A. Vanarase, R. Aslam, S. Oka, and F. Muzzio, "Effects of mill design and process parameters in milling dry extrudates", Powder Technol. 278, 2015, 84–93, doi: 10.1016/j.powtec.2015.02.021.
[167] J. J. A. M. Verheezen, K. Van Der Voort Maarschalk, F. Faassen, and H. Vromans, "Milling of agglomerates in an impact mill", Int. J. Pharm. 278, 2004, 165–172, doi: 10.1016/j.ijpharm.2004.03.006.
[168] L. Schenck and R. Plank, "Impact milling of pharmaceutical agglomerates in the wet and dry states", Int. J. Pharm. 348, 2008, 18–26, doi: 10.1016/j.ijpharm.2007.07.029.
[169] L. Kotamarthy, N. Metta, and R. Ramachandran, "Understanding the Effect of Granulation and Milling Process Parameters on the Quality Attributes of Milled Granules", Processes 8, 2020, 683, doi: 10.3390/pr8060683.
[170] J. J. Motzi and N. R. Anderson, "The Quantitative Evaluation of a Granulation Milling Process II. Effect of Ouput Screen Size, Mill Speed and Impeller Shape", Drug Dev. Ind. Pharm. 10, 1984, 713–728, doi: 10.3109/03639048409040779.
[171] A. Mckenna and D. F. Mccafferty, "Effect of particle size on the compaction mechanism and tensile strength of tablets", J. Pharm. Pharmacol. 34, 2011, 347–351, doi: 10.1111/j.2042-7158.1982.tb04727.x.
[172] G. Ragnarsson and J. Sjögren, "Force-displacement measurements in tableting", J. Pharm. Pharmacol. 37, 2011, 145–150, doi: 10.1111/j.2042-7158.1985.tb05029.x.
[173] C. Sun and M. W. Himmelspach, "Reduced tabletability of roller compacted granules as a result of granule size enlargement", J. Pharm. Sci. 95, 2006, 200–206, doi: 10.1002/jps.20531.
[174] E. Shotton and D. Ganderton, "The Strength of Compressed Tablets", J. Pharm. Pharmacol. 13, 1961, 144T-152T, doi: 10.1111/j.2042-7158.1961.tb10506.x.
[175] C. E. Ruegger and M. Çelick, "The Effect of Compression and Decompression Speed on the Mechanical Strength of Compacts", Pharm. Dev. Technol. 5, 2000, 485–494, doi: 10.1081/PDT-100102032.
[176] R. Ishino, H. Yoshino, Y. Hirakawa, and K. Noda, "Influence of tabletting speed on compactibility and compressibility of two direct compressible powders under high speed compression.", Chem. Pharm. Bull. (Tokyo) 38 7, 1990, 1987–92.
[177] C. K. Tye, C. Sun, and G. E. Amidon, "Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction", J. Pharm. Sci. 94, 2005, 465–472, doi: 10.1002/jps.20262.
[178] G. Alderborn and C. Ahlneck, "Moisture adsorption and tabletting. III. Effect on tablet strenght-post compaction storage time profiles", Int. J. Pharm. 73, 1991, 249–258, doi: 10.1016/0378-5173(91)90417-M.
[179] M. Eriksson and G. Alderborn, "Mechanisms for post-compaction changes in tensile strength of sodium chloride compacts prepared from particles of different dimensions", Int. J. Pharm. 109, 1994, 59–72, doi: 10.1016/0378-5173(94)90121-X.
[180] C. Ahlneck and G. Alderborn, "Moisture adsorption and tabletting. I. Effect on volume reduction properties and tablet strength for some crystalline materials", Int. J. Pharm. 54, 1989, 131–141, doi: 10.1016/0378-5173(89)90332-3.
[181] A. Hartung, M. Knoell, U. Schmidt, and P. Langguth, "Role of continuous moisture profile monitoring by inline NIR spectroscopy during fluid bed granulation of an Enalapril formulation", Drug Dev. Ind. Pharm. 37, 2011, 274–280, doi: 10.3109/03639045.2010.509725.
[182] I. P. Gabbott, F. Al Husban, and G. K. Reynolds, "The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes", Eur. J. Pharm. Biopharm. 106, 2016, 70–78, doi: 10.1016/j.ejpb.2016.03.022.
[183] O.-R. Arndt and P. Kleinebudde, "Roll Compaction and Tableting of High Loaded Metformin Formulations Using Efficient Binders", AAPS PharmSciTech 19, 2018, 2068–2076, doi: 10.1208/s12249-018-1012-5.
[184] N. O. Sierra-Vega, A. Román-Ospino, J. Scicolone, F. J. Muzzio, R. J. Romañach, and R. Méndez, "Assessment of blend uniformity in a continuous tablet manufacturing process", Int. J. Pharm. 560, 2019, 322–333, doi: 10.1016/j.ijpharm.2019.01.073.
[185] A. U. Vanarase, M. Alcalà, J. I. Jerez Rozo, F. J. Muzzio, and R. J. Romañach, "Real-time monitoring of drug concentration in a continuous powder mixing process using NIR spectroscopy", Chem. Eng. Sci. 65, 2010, 5728–5733, doi: 10.1016/j.ces.2010.01.036.
[186] A. S. El Hagrasy, P. Cruise, I. Jones, and J. D. Litster, "In-line Size Monitoring of a Twin Screw Granulation Process Using High-Speed Imaging", J. Pharm. Innov. 8, 2013, 90–98, doi: 10.1007/s12247-013-9149-y.
[187] A. Kumar, J. Dhondt, F. De Leersnyder, J. Vercruysse, V. Vanhoorne, C. Vervaet, J. P. Remon, K. V. Gernaey, T. De Beer, and I. Nopens, "Evaluation of an in-line particle imaging tool for monitoring twin-screw granulation performance", Powder Technol. 285, 2015, 80–87, doi: 10.1016/j.powtec.2015.05.031.
[188] K. T. Lee, A. Ingram, and N. A. Rowson, "Twin screw wet granulation: The study of a continuous twin screw granulator using Positron Emission Particle Tracking (PEPT) technique", Eur. J. Pharm. Biopharm. 81, 2012, 666–673, doi: 10.1016/j.ejpb.2012.04.011.
[189] A. Kumar, M. Alakarjula, V. Vanhoorne, M. Toiviainen, F. De Leersnyder, J. Vercruysse, M. Juuti, J. Ketolainen, C. Vervaet, J. P. Remon, K. V. Gernaey, T. De Beer, and I. Nopens, "Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation", Eur. J. Pharm. Sci. 90, 2016, 25–37, doi: 10.1016/j.ejps.2015.12.021.
[190] A. U. Vanarase, M. Järvinen, J. Paaso, and F. J. Muzzio, "Development of a methodology to estimate error in the on-line measurements of blend uniformity in a continuous powder mixing process", Powder Technol. 241, 2013, 263–271, doi: 10.1016/j.powtec.2013.02.012.
[191] L. Martínez, A. Peinado, L. Liesum, and G. Betz, "Use of near-infrared spectroscopy to quantify drug content on a continuous blending process: Influence of mass flow and rotation speed variations", Eur. J. Pharm. Biopharm. 84, 2013, 606–615, doi: 10.1016/j.ejpb.2013.01.016.
[192] Y. Roggo, M. Jelsch, P. Heger, S. Ensslin, and M. Krumme, "Deep learning for continuous manufacturing of pharmaceutical solid dosage form", Eur. J. Pharm. Biopharm. 153, 2020, 95–105, doi: 10.1016/j.ejpb.2020.06.002.
[193] B. Nagy, D. L. Galata, A. Farkas, and Z. K. Nagy, "Application of Artificial Neural Networks in the Process Analytical Technology of Pharmaceutical Manufacturing—a Review", AAPS J. 24, 2022, 74, doi: 10.1208/s12248-022-00706-0.
[194] H. Lou, B. Lian, and M. J. Hageman, "Applications of Machine Learning in Solid Oral Dosage Form Development", J. Pharm. Sci. 110, 2021, 3150–3165, doi: 10.1016/j.xphs.2021.04.013.
[195] D. Markl, M. Warman, M. Dumarey, E.-L. Bergman, S. Folestad, Z. Shi, L. F. Manley, D. J. Goodwin, and J. A. Zeitler, "Review of real-time release testing of pharmaceutical tablets: State-of-the art, challenges and future perspective", Int. J. Pharm. 582, 2020, 119353, doi: 10.1016/j.ijpharm.2020.119353.
[196] S. Sacher, J. Poms, J. Rehrl, and J. G. Khinast, "PAT implementation for advanced process control in solid dosage manufacturing – A practical guide", Int. J. Pharm. 613, 2022, 121408, doi: 10.1016/j.ijpharm.2021.121408.
[197] E. Reitz, H. Podhaisky, D. Ely, and M. Thommes, "Residence time modeling of hot melt extrusion processes", Eur. J. Pharm. Biopharm. 85, 2013, 1200–1205, doi: 10.1016/j.ejpb.2013.07.019.
[198] J. Vercruysse, U. Delaet, I. Van Assche, P. Cappuyns, F. Arata, G. Caporicci, T. De Beer, J. P. Remon, and C. Vervaet, "Stability and repeatability of a continuous twin screw granulation and drying system", Eur. J. Pharm. Biopharm. 85, 2013, 1031–1038, doi: 10.1016/j.ejpb.2013.05.002.
[199] Y. Rubner, C. Tomasi, and L. J. Guibas, "The Earth Mover’s Distance as a Metric for Image Retrieval", International Journal of Computer Vision 2000, 99–121.
[200] Zhenghua Yu and G. Herman, "On the Earth Mover’S Distance as a Histogram Similarity Metric for Image Retrieval", in 2005 IEEE International Conference on Multimedia and Expo, IEEE, Amsterdam, The Netherlands, 2005, 686–689. doi: 10.1109/ICME.2005.1521516.
[201] Qi Zhao, Zhi Yang, and Hai Tao, "Differential Earth Mover’s Distance with Its Applications to Visual Tracking", IEEE Trans. Pattern Anal. Mach. Intell. 32, 2010, 274–287, doi: 10.1109/TPAMI.2008.299.
[202] M. Hu, X. Jiang, M. Absar, S. Choi, D. Kozak, M. Shen, Y.-T. Weng, L. Zhao, and R. Lionberger, "Equivalence Testing of Complex Particle Size Distribution Profiles Based on Earth Mover’s Distance", AAPS J. 20, 2018, Art. 3, doi: 10.1208/s12248-018-0212-y.
[203] "The Earth Mover’s Distance". The University of Edinburgh, School of Informatics. Accessed: 2023. [Online]. Available: https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm
[204] Granutools, "Granutools | GranuPack", Granutools. Accessed: 2023. [Online]. Available: https://www.granutools.com/en/granupack
[205] M. J. Adams, M. A. Mullier, and J. P. K. Seville, "Agglomerate strength measurement using a uniaxial confined compression test", Powder Technol. 78, 1994, 5–13, doi: 10.1016/0032-5910(93)02777-8.
[206] O.-R. Arndt, R. Baggio, A. K. Adam, J. Harting, E. Franceschinis, and P. Kleinebudde, "Impact of Different Dry and Wet Granulation Techniques on Granule and Tablet Properties: A Comparative Study", J. Pharm. Sci. 107, 2018, 3143–3152, doi: 10.1016/j.xphs.2018.09.006.
[207] J. T. Fell and J. M. Newton, "Determination of Tablet Strength by the Diametral-Compression Test", J. Pharm. Sci. 59, 1970, 688–691, doi: 10.1002/jps.2600590523.
[208] K. G. Pitt, J. M. Newton, and P. Stanley, "Tensile fracture of doubly-convex cylindrical discs under diametral loading", J. Mater. Sci. 23, 1988, 2723–2728, doi: 10.1007/BF00547442.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Bezug:ca. November 2019 - März 2024
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Pharmazie » Pharmazeutische Technologie und Biopharmazie
Dokument erstellt am:16.04.2024
Dateien geändert am:16.04.2024
Promotionsantrag am:12.12.2023
Datum der Promotion:08.03.2024
english
Benutzer
Status: Gast
Aktionen