Dokument: Inzidenteller Traceruptake in 18F-FDG-PET/CT Untersuchungen: Nutzen der kontrastmittelgestützten Computertomographie zur diagnostischen Einordnung in Korrelation zur Koloskopie

Titel:Inzidenteller Traceruptake in 18F-FDG-PET/CT Untersuchungen: Nutzen der kontrastmittelgestützten Computertomographie zur diagnostischen Einordnung in Korrelation zur Koloskopie
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=65269
URN (NBN):urn:nbn:de:hbz:061-20240408-090015-3
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Kour, Firas Saleh [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]11,64 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 20.03.2024 / geändert 20.03.2024
Beitragende: Kirchner, Julian [Gutachter]
Matuschek, Christiane [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Ziel dieser Dissertation war es, den Nutzen morphologischer Informationen aus der kontrastmittelgestützten Computertomographie (CT) für die weitere Charakterisierung der zufälligen fokalen FDG-Aufnahme im Kolon in 18F-Fluordesoxyglucose-Positronenemissionstomographie (18F-FDG-PET) /CT-Untersuchungen zu evaluieren. Die vorliegende retrospektive Studie schloss 125 Patienten (weiblich: n = 53, männlich: n = 72) ein, bei denen innerhalb von sechs Monaten nach kontrastmittelgestützter PET/CT-Untersuchung eine Koloskopie durchgeführt wurde. Alle PET/CT-Untersuchungen wurden zunächst auf eine umschriebene Tracer-Aufnahme im Bereich des Kolons analysiert. Anschließend wurden die sich daraus ergebenden Befunde mit morphologischen Veränderungen der Kolonwand (zum Beispiel Wandverdickung, intraluminale knotige Veränderungen und Kontrastmittelaufnahme) aus den kontrastmittelgestützten CT-Bildern verglichen. Die zugehörigen Koloskopieberichte und Pathologiebefunde wurden hinsichtlich benigner, entzündlicher, polypoider, prämaligner und maligner Läsionen ausgewertet und dienten als Referenzstandard. Es wurden die Sensitivität, die Spezifität, der positive (PPV) und negative (NPV) prädiktive Wert und die diagnostische Genauigkeit zum Nachweis therapeutisch relevanter Befunde für (a) eine alleinige fokale Tracer-Aufnahme sowie (b) eine fokale Tracer-Aufnahme mit korrelierenden, kontrastmittelgestützten CT-Befunden berechnet. Im Ergebnis konnte bei 38,4% (48/125) der Patienten in 67 Läsionen eine fokale 18F-FDG-Aufnahme festgestellt werden. Bei elf Patienten wurden maligne Läsionen endoskopisch und histopathologisch diagnostiziert, neun von diesen wurden durch die fokale 18F-FDG-Aufnahme nachgewiesen. Insgesamt wurden 34 Läsionen, entweder prä- oder maligne, mit Auswirkungen auf das kurz- oder langfristige Patientenmanagement festgestellt. Von den prämalignen wurden 14, von den malignen Läsionen zwei übersehen. Die Sensitivität betrug 54%, die Spezifität konnte mit 69% festgestellt werden. Der PPV, NPV und die diagnostische Genauigkeit für die alleinige 18F-FDG-Aufnahme für diese kombinierte Gruppe betrugen 29%, 85% und 65%. Entsprechende Ergebnisse für die fokale 18F-FDG-Aufnahme mit korrelierenden CT-Befunden waren 38%, 90%, 50%, 86% und 80%. Dies führte zu einem statistisch signifikanten Unterschied für die diagnostische Genauigkeit (p = 0,0001). Durch die Analyse zusätzlicher morphologischer Informationen aus der kontrastmittelgestützten CT-Bildgebung kann die Spezifität der fokalen 18F-FDG-Aufnahme im Kolon für präkanzeröse und kanzeröse Läsionen zwar gesteigert werden, führt jedoch gleichzeitig zu einem nicht unerheblichen Verlust an Sensitivität. Daher sollte jede fokale18F-FDG-Aufnahme im Bereich des Kolons ergänzend mit Hilfe der Koloskopie überprüft werden.

The aim of this study was to evaluate the utility of morphologic information from contrast-enhanced computed tomography (CT) for further characterization of incidental focal FDG uptake in the colon in 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET)/CT examinations. The present retrospective study included 125 patients (female: n = 53, male: n = 72) who underwent colonoscopy within six months of contrast-enhanced PET/CT examination. All PET/CT examinations were first analysed for circumscribed tracer uptake in the colon. Subsequently, the resulting findings were compared with morphologic changes of the colon wall (for example, wall thickening, intraluminal nodular changes, and contrast uptake) from the contrast-enhanced CT images. The associated colonoscopy reports and pathology findings were evaluated for benign, inflammatory, polypoid, premalignant, and malignant lesions and served as a reference standard. Sensitivity, specificity, positive (PPV) and negative (NPV) predictive value, as well as diagnostic accuracy for detecting therapeutically relevant findings were calculated for (a) focal tracer imaging alone and (b) focal tracer imaging with correlating contrast-enhanced CT findings. As a result, focal 18F-FDG uptake was detected in 67 lesions in 38.4% (48/125) of patients. Malignant lesions were diagnosed endoscopically and histopathologically in 11 patients, nine of whom were detected by focal 18F-FDG uptake. A total of 34 lesions, either premalignant or malignant, were identified with implications for short- or long-term patient management. Of the premalignant lesions, 14 were missed, and of the malignant lesions, two were missed. Sensitivity was 54%, and specificity was found to be 69%. The PPV, NPV, and diagnostic accuracy for 18F-FDG uptake alone for this combined group were 29%, 85%, and 65%, respectively. Corresponding results for focal 18F-FDG uptake with correlating CT findings were 38%, 90%, 50%, 86%, and 80%. This resulted in a statistically significant difference for diagnostic accuracy (p = 0.0001). Analysis of additional morphologic information from contrast-enhanced CT imaging may increase the specificity of focal 18F-FDG imaging in the colon for precancerous and cancerous lesions, but at the same time results in a loss of sensitivity. Therefore, any focal 18F-FDG uptake in the colon should be complementarily verified by colonoscopy.
Quelle:1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29. doi: 10.3322/caac.21208. Cited: in: : PMID: 24399786.
2. Kaatsch P, Spix C, Katalinic A, Hentschel S, Luttmann S, Stegmaier C, Caspritz S, Christ M, Ernst A, Folkerts J, et al. Krebs in Deutschland 2011/2012. 2015;10. doi: 10.25646/3174.
3. Goeckenjan G, Sitter H, Thomas M, Branscheid D, Flentje M, Griesinger F, Niederle N, Stuschke M, Blum T, Deppermann K-M, et al. Prevention, diagnosis, therapy, and follow-up of lung cancer: interdisciplinary guideline of the German Respiratory Society and the German Cancer Society. Pneumologie. 2011;65:39–59. doi: 10.1055/s-0030-1255961. Cited: in: : PMID: 21157688.
4. Wolff K-D, Follmann M, Nast A. The diagnosis and treatment of oral cavity cancer. Dtsch Arztebl Int. 2012;109:829–835. doi: 10.3238/arztebl.2012.0829. Cited: in: : PMID: 23248713.
5. Rancea M, Engert A, von Tresckow B, Halbsguth T, Behringer K, Skoetz N. Hodgkin’s Lymphoma in Adults. Dtsch Arztebl Int. 2013;110:177–183. doi: 10.3238/arztebl.2013.0177. Cited: in: : PMID: 23555321.
6. Sobic-Saranovic D. The utility of 18F-FDG PET/CT for diagnosis and adjustment of therapy in patients with active chronic sarcoidosis. J Nucl Med. 2012;53:1543–1549.
7. Meller J and S CO and K, A. Scheel, 18F-FDG PET and PET/CT in fever of unknown origin. J Nucl Med. 2007;48:35–45.
8. Belhocine T. 18FDG PET in oncology: the best and the worst (Review. Int J Oncol. 2006;28:1249–1261.
9. Chrapko BE. Role of 18F-FDG PET/CT in the diagnosis of inflammatory and infectious vascular disease. Nucl Med Rev Cent East Eur. 2016;19:28–36.
10. Jamar F. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–658.
11. Fuchs SG and N Eckhardt and H, Busse and R, Wild and C. PET/PET-CT evidence for needs-based planning in Germany and Austria: Update 2018. 2018;
12. Antoch G. Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology. 2003;229:526–533.
13. Antoch G. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA. 2003;290:3199–3206.
14. Bar-Shalom R. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med. 2003;44:1200–1209.
15. Lardinois D. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med. 2003;348:2500–2507.
16. Jadvar H, Colletti PM, Delgado-Bolton R, Esposito G, Krause BJ, Iagaru AH, Nadel H, Quinn DI, Rohren E, Subramaniam RM, et al. Appropriate Use Criteria for 18 F-FDG PET/CT in Restaging and Treatment Response Assessment of Malignant Disease. J Nucl Med. 2017;58:2026–2037. doi: 10.2967/jnumed.117.197988.
17. Rankin S. PET/CT for staging and monitoring non small cell lung cancer. Cancer Imaging. 2008;8:S27–S31. doi: 10.1102/1470-7330.2008.9006.
18. Shim SS, Lee KS, Kim B-T, Chung MJ, Lee EJ, Han J, Choi JY, Kwon OJ, Shim YM, Kim S. Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology. 2005;236:1011–1019. doi: 10.1148/radiol.2363041310. Cited: in: : PMID: 16014441.
19. Pandey M. Primary lymphoma of the colon: report of two cases and review of literature. World J Surg Oncol. 2019;17:18.
20. Pennant M and T Y and Pennant, L. A systematic review of positron emission tomography (PET) and positron emission tomography/computed tomography (PET/CT) for the diagnosis of breast cancer recurrence. Health Technol Assess. 2010;14:1–103.
21. Champion L and B E and Giraudet, AL. Breast cancer recurrence diagnosis suspected on tumor marker rising: value of whole-body 18FDG-PET/CT imaging and impact on patient management. Cancer. 2011;117:1621–1629.
22. Dirisamer A and H BS and Flory, D. Integrated contrast-enhanced diagnostic whole-body PET/CT as a first-line restaging modality in patients with suspected metastatic recurrence of breast cancer. Eur J Radiol. 2010;73:294–299.
23. Schabel C. Improving CT-Based PET Attenuation Correction in the Vicinity of Metal Implants by an Iterative Metal Artifact Reduction Algorithm of CT Data and Its Comparison to Dual-Energy-Based Strategies: A Phantom Study. Invest Radiol; 2017. p. 65.
24. Gould MK, Sanders GD, Barnett PG, Rydzak CE, Maclean CC, McClellan MB, Owens DK. Cost-effectiveness of alternative management strategies for patients with solitary pulmonary nodules. Ann Intern Med. 2003;138:724–735. doi: 10.7326/0003-4819-138-9-200305060-00009. Cited: in: : PMID: 12729427.
25. Groheux D, Giacchetti S, Delord M, de Roquancourt A, Merlet P, Hamy AS, Espié M, Hindié E. Prognostic impact of 18F-FDG PET/CT staging and of pathological response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Nucl Med Mol Imaging. 2015;42:377–385. doi: 10.1007/s00259-014-2941-1. Cited: in: : PMID: 25432784.
26. Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, Ricaud M, Bourbouloux E, Doutriaux I, Clouet M, et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006;24:5366–5372. doi: 10.1200/JCO.2006.05.7406. Cited: in: : PMID: 17088570.
27. Riedl CC, Pinker K, Ulaner GA, Ong LT, Baltzer P, Jochelson MS, McArthur HL, Gönen M, Dickler M, Weber WA. Comparison of FDG-PET/CT and contrast-enhanced CT for monitoring therapy response in patients with metastatic breast cancer. Eur J Nucl Med Mol Imaging. 2017;44:1428–1437. doi: 10.1007/s00259-017-3703-7. Cited: in: : PMID: 28462446.
28. Ben-Haim S and G S and Israel, O. Cardiovascular infection and inflammation. Semin Nucl Med; 2009. p. 14.
29. Cho ZH, Chan JK, Ericksson L, Singh M, Graham S, MacDonald NS, Yano Y. Positron ranges obtained from biomedically important positron-emitting radionuclides. J Nucl Med. 1975;16:1174–1176. Cited: in: : PMID: 1194970.
30. Beyer T. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369–1379.
31. Lewis P, Griffin S, Marsden P, Gee T, Nunan T, Malsey M, Dussek J. Whole-body 18F-fluorodeoxyglucose positron emission tomography in preoperative evaluation of lung cancer. Lancet. 1994;344:1265–1266. doi: 10.1016/s0140-6736(94)90753-6. Cited: in: : PMID: 7967988.
32. Marom EM. Staging non-small cell lung cancer with whole-body PET. Radiology; 1999. p. 9.
33. van Tinteren H, Hoekstra OS, Smit EF, van den Bergh JHAM, Schreurs AJM, Stallaert RALM, van Velthoven PCM, Comans EFI, Diepenhorst FW, Verboom P, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet. 2002;359:1388–1393. doi: 10.1016/s0140-6736(02)08352-6. Cited: in: : PMID: 11978336.
34. Rossi F, Aizzuddin Abd Rahni A. Joint Segmentation Methods of Tumor Delineation in PET – CT Images: A Review. IJET. 2018;7:137. doi: 10.14419/ijet.v7i3.32.18414.
35. Israel O. PET/CT detection of unexpected gastrointestinal foci of 18F-FDG uptake: incidence, localization patterns, and clinical significance. J Nucl Med. 2005;46:758–762.
36. Even-Sapir E. The presentation of malignant tumours and premalignant lesions incidentally found on PET-CT. Eur J Nucl Med Mol Imaging. 2006;33:541–552.
37. Agress Jr H and Cooper, BZ. Detection of clinically unexpected malignant and premalignant tumors with whole-body FDG PET: histopathologic comparison. Radiology. 2004;230:417–422.
38. Kei PL. Incidental finding of focal FDG uptake in the bowel during PET/CT: CT features and correlation with histopathologic results. AJR Am J Roentgenol. 2010;194:401–406.
39. Abdel-Nabi H, Doerr RJ, Lamonica DM, Cronin VR, Galantowicz PJ, Carbone GM, Spaulding MB. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology. 1998;206:755–760. doi: 10.1148/radiology.206.3.9494497. Cited: in: : PMID: 9494497.
40. Gupta NC, Falk PM, Frank AL, Thorson AM, Frick MP, Bowman B. Pre-operative staging of colorectal carcinoma using positron emission tomography. Nebr Med J. 1993;78:30–35. Cited: in: : PMID: 8441482.
41. Tatlidil R. Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology. 2002;224:783–787.
42. Kamel EM. Significance of incidental 18F-FDG accumulations in the gastrointestinal tract in PET/CT: correlation with endoscopic and histopathologic results. J Nucl Med. 2004;45:1804–1810.
43. Zhang Q, Gao X, Wei G, Qiu C, Qu H, Zhou X. Prognostic value of MTV, SUVmax and the T/N ratio of PET/CT in patients with glioma: a systematic review and meta-analysis. Journal of Cancer. 2019;10:1707.
44. Albano D. Clinical and prognostic value of 18F-FDG-PET/CT in the restaging process of recurrent cutaneous melanoma. Curr Radiopharm; 2019.
45. Takada K. 18)F-FDG uptake in PET/CT is a potential predictive biomarker of response to anti-PD-1 antibody therapy in non-small cell lung cancer. Sci Rep. 2019;9:13362.
46. Kouwen MC. 2-(18F)-fluoro-2-deoxy-D-glucose positron emission tomography detects clinical relevant adenomas of the colon: a prospective study. J Clin Oncol. 2005;23:3713–3717.
47. Treglia G. Clinical significance of incidental focal colorectal (18)Ffluorodeoxyglucose uptake: our experience and a review of the literature. Colorectal Dis. 2012;14:174–180.
48. Gutman F. Incidental colonic focal lesions detected by FDG PET/CT. AJR Am J Roentgenol. 2005;185:495–500.
49. Liu DD. Prognostic value of metabolic tumor volume and total lesion glycolysis from (1)(8)F-FDG PET/CT in lymph node metastases and risk stratification of endometrial carcinoma. J Gynecol Oncol. 2019;30:89.
50. Heinzel A. 68)Ga-PSMA PET/CT for monitoring response to (177)Lu-PSMA-617 radioligand therapy in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2019;46:1054–1062.
51. Moses WW. Fundamental Limits of Spatial Resolution in PET. Nucl Instrum Methods Phys Res A. 2011;
52. Cook GJR and F I and Maisey, MN. Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron emission tomography scanning: potential for error in interpretation. Semin Nucl Med. 1996;26:308–314.
53. Prabhakar HB and S DV and Fischman, AJ and Mueller, PR and Blake, MA. Bowel hot spots at PET-CT. Radiographics. 2007;27:145–159.
54. Kostakoglu L and H R and Mirtcheva, R and Goldsmith, SJ. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics. 2004;24:1411–1431.
55. Zhuang H and H M and Chacko, TK and Duarte, PS and Nakhoda, KZ and Feng, Q. Incidental detection of colon cancer by FDG positron emission tomography in patients examined for pulmonary nodules. Clin Nucl Med. 2002;27:628–632.
56. Vansteenkiste JF and S SG. The role of positron emission tomography with 18F-fluoro-2-deoxy-D-glucose in respiratory oncology. Eur Respir J. 2001;17:802–820.
57. Putora PM and M J and Borovicka, J and Plasswilm, L and Schmidt, F. Relevance of incidental colorectal FDG-PET-CT-enhanced lesions. Onkologie. 2013;36:200–204.
58. Drenth JP and N FM and Oyen, WJ. Evaluation of (pre-)malignant colonic abnormalities: endoscopic validation of FDG-PET findings. Eur J Nucl Med. 2001;28:1766–1769.
59. Oh JR. A stepwise approach using metabolic volume and SUVmax to differentiate malignancy and dysplasia from benign colonic uptakes on 18F-FDG PET/CT. Clin Nucl Med. 2012;37:134–140.
60. Luboldt W. Detection of relevant colonic neoplasms with PET/CT: promising accuracy with minimal CT dose and a standardised PET cutoff. Eur Radiol. 2010;20:2274–2285.
61. Keyzer C. Colonoscopic Findings in Patients With Incidental Colonic Focal FDG Uptake. AJR Am J Roentgenol. 2015;204:586–591.
62. Rigo P. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med. 1996;23:1641–1674.
63. Bar-Shalom R and V AY and Blaufox, MD. PET imaging in oncology. Semin Nucl Med; 2000. p. 85.
64. Ganguly BN, Mondal NN, Nandy M, Roesch F. Some physical aspects of positron annihilation tomography: A critical review. J Radioanal Nucl Chem. 2009;279:685–698. doi: 10.1007/s10967-007-7256-2.
65. Shukla AK, Kumar U. Positron emission tomography: An overview. J Med Phys. 2006;31:13–21. doi: 10.4103/0971-6203.25665. Cited: in: : PMID: 21206635.
66. depts.washington.edu. https://depts.washington.edu/imreslab/from%20old%20SITE/pet_intro/intro_src/section2.html. Accessed on 27 January 2023. 2022.
67. Minn H, Soini I. [18F]Fluorodeoxyglucose scintigraphy in diagnosis and follow up of treatment in advanced breast cancer. Eur J Nucl Med. 1989;15:61–66. doi: 10.1007/BF00702620.
68. Strauss LG, Clorius JH, Schlag P, Lehner B, Kimmig B, Engenhart R, Marin-Grez M, Helus F, Oberdorfer F, Schmidlin P. Recurrence of colorectal tumors: PET evaluation. Radiology. 1989;170:329–332. doi: 10.1148/radiology.170.2.2783494. Cited: in: : PMID: 2783494.
69. Wahl RL, Kaminski MS, Ethier SP, Hutchins GD. The potential of 2-deoxy-2[18F]fluoro-D-glucose (FDG) for the detection of tumor involvement in lymph nodes. J Nucl Med. 1990;31:1831–1835. Cited: in: : PMID: 2230996.
70. Wikipedia. https://de.wikipedia.org/wiki/Datei:Fluorodeoxyglucose_skeletal.svg. Accessed on 27 January 2023. 2022.
71. Thorens B and M M. Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab. 2010;298:141–145.
72. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013;34:121–138. doi: 10.1016/j.mam.2012.07.001. Cited: in: : PMID: 23506862.
73. Abdelbaky A, Tawakol A. Noninvasive Positron Emission Tomography Imaging of Coronary Arterial Inflammation. Curr Cardiovasc Imaging Rep. 2011;4:41–49. doi: 10.1007/s12410-010-9062-4.
74. Grosse J, Menhart K, Hellwig D. FDG-PET/CT: Spektrum physiologischer Normvarianten der Traceraufnahme. Nuklearmediziner. 2015;38:259–274. doi: 10.1055/s-0035-1564176.
75. Chung JK. Comparison of [18F]fluorodeoxyglucose uptake with glucose transporter-1 expression and proliferation rate in human glioma and non-small-cell lung cancer. Nucl Med Commun. 2004;25:11–17.
76. Gallagher BM. Metabolic trapping as a principle of oradiopharmaceutical design: some factors resposible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med. 1978;19:1154–1161.
77. Minn H. Uptake of 2-fluoro-2-deoxy-D-[U-14C]-glucose during chemotherapy in murine Lewis lung tumor. Int J Rad Appl Instrum B. 1992;19:55–63.
78. Nelson CA. The interaction among glucose transport, hexokinase, and glucose-6-phosphatase with respect to 3H-2deoxyglucose retention in murine tumor models. Nucl Med Biol. 1996;23:533–541.
79. Zhuang H. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med. 2001;42:1412–1417.
80. Blautzik J. What and how should we measure in paediatric oncology FDG-PET/CT? Comparison of commonly used SUV metrics for differentiation between paediatric tumours. EJNMMI Res. 2019;9:115.
81. Krak NC. Measuring [(18)F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. Eur J Nucl Med Mol Imaging. 2003;30:674–681.
82. Graham MM and P LM and Hayward, RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol. 2000;27:647–655.
83. Boellaard R. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–354.
84. Wahl RL. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;
85. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, Pruim J, Price P. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer. 1999;35:1773–1782. doi: 10.1016/s0959-8049(99)00229-4. Cited: in: : PMID: 10673991.
86. Lin C, Itti E, Haioun C, Petegnief Y, Luciani A, Dupuis J, Paone G, Talbot J-N, Rahmouni A, Meignan M. Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med. 2007;48:1626–1632. doi: 10.2967/jnumed.107.042093. Cited: in: : PMID: 17873129.
87. Itti E, Meignan M, Berriolo-Riedinger A, Biggi A, Cashen AF, Véra P, Tilly H, Siegel BA, Gallamini A, Casasnovas R-O, et al. An international confirmatory study of the prognostic value of early PET/CT in diffuse large B-cell lymphoma: comparison between Deauville criteria and ΔSUVmax. Eur J Nucl Med Mol Imaging. 2013;40:1312–1320. doi: 10.1007/s00259-013-2435-6. Cited: in: : PMID: 23649463.
88. Yamamoto T. Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun. 1990;170:223–230.
89. Brock CS and M SR and Price, P. Does fluorine-18 fluorodeoxyglucose metabolic imaging of tumours benefit oncology? Eur J Nucl Med. 1997;24:691–705.
90. Kaneta T. Evaluation of the relationship between physiological FDG uptake in the heart and age, blood glucose level, fasting period, and hospitalization. Ann Nucl Med. 2006;20:203–208.
91. documentation.clearcanvas.ca. https://documentation.clearcanvas.ca/Documentation/UsersGuide/Personal/13_1/index.html?suv.htm. Accessed on 27 January 2023. 2022.
92. Farina FA. Metabolic regulation and enzyme alterations in the Morris hepatomas. Cancer Res. 1968;28:1897–1900.
93. Vanderhoek M and P SB and Jeraj, R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med. 2012;53:4–11.
94. Keyes J JW. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–1839.
95. Stroobants S and G J and Seegers, M. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec. Eur J Cancer. 2003;39:2012–2020.
96. Hutchings M and L A and Hansen, M. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107:52–59.
97. Kidd EA and S BA and Dehdashti, F and Grigsby, PW. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer. 2007;110:1738–1744.
98. Benz MR and A-A MS and Eilber, FC. Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcomas. J Nucl Med. 2008;49:1579–1584.
99. Tiling R and L R and Untch, M. 18F-FDG PET and 99mTc-sestamibi scinti-mammography for monitoring breast cancer response to neoadjuvant chemotherapy: a comparative study. Eur J Nucl Med. 2001;28:711–720.
100. Shankar LK and H JM and Bacharach, S. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med. 2006;47:1059–1066.
101. Krak NC and B R and Hoekstra, OS and Twisk, JW and Hoekstra, CJ and Lammertsma, AA. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging. 2005;32:294–301.
102. Choi NC and F AJ and Niemierko, A. Dose-response relationship between probability of pathologic tumor control and glucose metabolic rate measured with FDG PET after preoperative chemoradiotherapy in locally advanced nonsmall-cell lung cancer. Int J Radiat Oncol Biol Phys. 2002;54:1024–1035.
103. Brun E and K E and Tennvall, J. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck. 2002;24:127–135.
104. Campbell JM and W CO and Muzik, O and Marples, B and Joiner, M and Burmeister, J. Early dose response to yttrium-90 microsphere treatment of metastatic liver cancer by a patient-specific method using single photon emission computed tomography and positron emission tomography. Int J Radiat Oncol Biol Phys. 2009;74:313–320.
105. Hong D and L S and Kim, EE. Value of baseline positron emission tomography for predicting overall survival in patient with nonmetastatic esophageal or gastroesophageal junction carcinoma. Cancer. 2005;104:1620–1626.
106. Hawkins DS and S SM and Butrynski, JE. 18F]fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol. 2005;23:8828–8834.
107. Ott K and W WA and Lordick, F. Metabolic imaging predicts response, survival, and recurrence in adenocarcinomas of the esophagogastric junction. J Clin Oncol. 2006;24:4692–4698.
108. Townsend DW. Combined positron emission tomography-computed tomography: the historical perspective. Semin Ultrasound CT MR,. 2008;29:232–235.
109. Beyer T. Grundlagen. PET/CT-Atlas [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006 [cited 2023 Jan 27]. p. 11–42. Available from: http://link.springer.com/10.1007/3-540-31215-3_2.
110. Mohnike W, Hör G. PET/CT-Atlas: Ein interdisziplinärer Leitfaden der onkologischen PET/CT-Diagnostik [Internet]. Berlin, Heidelberg: Springer; 2006 [cited 2023 Jan 27]. Available from: https://link.springer.com/10.1007/3-540-31215-3.
111. Lonsdale MN, Beyer T. Dual-modality PET/CT instrumentation-today and tomorrow. Eur J Radiol. 2010;73:452–460. doi: 10.1016/j.ejrad.2009.12.021. Cited: in: : PMID: 20096520.
112. Carney JPJ, Townsend DW, Rappoport V, Bendriem B. Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys. 2006;33:976–983. doi: 10.1118/1.2174132. Cited: in: : PMID: 16696474.
113. Lee T-C, Alessio A, Miyaoka R, Kinahan P. Morphology supporting function: attenuation correction for SPECT/CT, PET/CT, and PET/MR imaging. The quarterly journal of nuclear medicine and molecular imaging: official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of. 2016;60:25–39.
114. Marino-Enriquez A, Fletcher CDM. Shouldn’t we care about the biology of benign tumours? Nat Rev Cancer. 2014;14:701–702. doi: 10.1038/nrc3845.
115. Konishi M, Kikuchi-Yanoshita R, Tanaka K, Muraoka M, Onda A, Okumura Y, Kishi N, Iwama T, Mori T, Koike M, et al. Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology. 1996;111:307–317. doi: 10.1053/gast.1996.v111.pm8690195. Cited: in: : PMID: 8690195.
116. Iino H, Fukayama M, Maeda Y, Koike M, Mori T, Takahashi T, Kikuchi-Yanoshita R, Miyaki M, Mizuno S, Watanabe S. Molecular genetics for clinical management of colorectal carcinoma. 17p, 18q, and 22q loss of heterozygosity and decreased DCC expression are correlated with the metastatic potential. Cancer. 1994;73:1324–1331. doi: 10.1002/1097-0142(19940301)73:5<1324::aid-cncr2820730503>3.0.co;2-w. Cited: in: : PMID: 7906606.
117. Calderwood AH, Lasser KE, Roy HK. Colon adenoma features and their impact on risk of future advanced adenomas and colorectal cancer. World J Gastrointest Oncol. 2016;8:826–834. doi: 10.4251/wjgo.v8.i12.826. Cited: in: : PMID: 28035253.
118. Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi DJ, John A, Lim YC, Kibria KMK, Mohiuddin AKM, Ming LC, et al. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers (Basel). 2022;14:1732. doi: 10.3390/cancers14071732. Cited: in: : PMID: 35406504.
119. Haumaier F and S W and Vieth, M. Histological and molecular classification of gastrointestinal polyps. Best Pract Res Clin Gastroenterol; 2017. p. 379.
120. Kubota K. Differential diagnosis of lung tumor with positron emission tomography: a prospective study. J Nucl Med. 1990;31:1927–1932.
121. Messmann H, editor. Lehratlas der Koloskopie: Das Referenzwerk zur Untersuchungstechnik und Befundinterpretation [Internet]. 2nd ed. Stuttgart: Georg Thieme Verlag; 2015 [cited 2023 Jan 27]. p. b-002-96283. Available from: http://www.thieme-connect.de/products/ebooks/book/10.1055/b-002-96283.
122. Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T, Przybyłowicz KE. A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers (Basel). 2021;13:2025. doi: 10.3390/cancers13092025. Cited: in: : PMID: 33922197.
123. Leslie A. The colorectal adenoma-carcinoma sequence. Br J Surg. 2002;89:845–860.
124. Ambe PC, Jansen S, Zirngibl H. New trend in colorectal cancer in Germany: are young patients at increased risk for advanced colorectal cancer? World J Surg Onc. 2017;15:159. doi: 10.1186/s12957-017-1227-z.
125. Marmol I. Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. Int J Mol Sci. 2017;18.
126. Krebsdaten.de. https://www.krebsdaten.de/Krebs/EN/Content/Cancer_sites/Colorectal_cancer/colorectal_cancer_node.html#:~:text=About%20one%20in%20eight%20incident,colorectal%20cancer%20during%20their%20lifetimes. Accessed on 27 January 2023. 2022.
127. Amin MB, American Joint Committee on Cancer, American Cancer Society, editors. AJCC cancer staging manual. Eight edition / editor-in-chief, Mahul B. Amin, MD, FCAP ; editors, Stephen B. Edge, MD, FACS [and 16 others] ; Donna M. Gress, RHIT, CTR-Technical editor ; Laura R. Meyer, CAPM-Managing editor. Chicago IL: American Joint Committee on Cancer, Springer; 2017.
128. S3-Leitlinie Kolorektales Karzinom. https://register.awmf.org/assets/guidelines/021-007OLl_S3_Kolorektales-Karzinom-KRK_2019-01.pdf. Accessed on 27 January 2023. 2022.
129. Strum WB. Colorectal Adenomas. N Engl J Med. 2016;374:1065–1075. doi: 10.1056/NEJMra1513581. Cited: in: : PMID: 26981936.
130. Rex DK. Relative sensitivity of colonoscopy and barium enema for detection of colorectal cancer in clinical practice. Gastroenterology. 1997;112:17–23.
131. Nowicki A and K Z and Dobrzyn, P. Clinical value of colonoscopy and positron emission tomography with computed tomography for colorectal cancer diagnosis. Pol Przegl Chir; 2019. p. 9.
132. Bokemeyer B. Screening colonoscopy for colorectal cancer prevention: results from a German online registry on 269000 cases. Eur J Gastroenterol Hepatol. 2009;21:650–655.
133. Stoop EM. Participation and yield of colonoscopy versus noncathartic CT colonography in population-based screening for colorectal cancer: a randomised controlled trial. Lancet Oncol; 2012.
134. Schoen RE. Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy. N Engl J Med. 2012;366:234557.
135. Nishihara R. Long-term colorectal-cancer incidence and mortality after lower endoscopy. N Engl J Med. 2013;369:1095–1105.
136. Chin BB and L R. Wahl, 18F-Fluoro-2-deoxyglucose positron emission tomography in the evaluation of gastrointestinal malignancies. Gut,. 2003;
137. Kim SK. Accuracy of PET/CT in characterization of solitary pulmonary lesions. J Nucl Med. 2007;48:214–220.
138. Albano D. 18F-FDG PET/CT in primary brain lymphoma. J Neurooncol. 2018;136:577–583.
139. Shim JH. Clinical significance of incidental colonic 18F-FDG uptake on PET/CT images in patients with gastric adenocarcinoma. J Gastrointest Surg. 2012;16:1847–1853.
140. Kim S. Relationship between Gastrointestinal F-18fluorodeoxyglucose Accumulation and Gastrointestinal Symptoms in Whole-Body PET. Clin Positron Imaging; 1999. p. 279.
141. Erdi YE. Limits of Tumor Detectability in Nuclear Medicine and PET. Mol Imaging Radionucl Ther. 2012;21:23–28. doi: 10.4274/Mirt.138. Cited: in: : PMID: 23486256.
142. Maruyama M. Radiographic diagnosis of early colorectal cancer, with special reference to the superficial type of invasive carcinoma. World J Surg. 2000;24:1036–1046.
143. Reddy S. PET/CT imaging: detection of choroidal melanoma. British Journal of Ophthalmology. 2005;89:1265–1269. doi: 10.1136/bjo.2005.066399.
144. Klein JL. Distribution, size and shape of colorectal adenomas as determined by a colonoscopist with a high lesion detection rate: Influence of age, sex and colonoscopy indication. United European Gastroenterol J; 2016. p. 48.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät » Institute » Institut für Diagnostische Radiologie
Dokument erstellt am:08.04.2024
Dateien geändert am:08.04.2024
Promotionsantrag am:28.02.2023
Datum der Promotion:22.02.2024
english
Benutzer
Status: Gast
Aktionen