Dokument: Mitochondrialer Energiestoffwechsel und Inflammation im Myokard bei Herzinsuffizienz unterschiedlicher Ätiologie

Titel:Mitochondrialer Energiestoffwechsel und Inflammation im Myokard bei Herzinsuffizienz unterschiedlicher Ätiologie
Weiterer Titel:Mitochondrial Energy Metabolism and Inflammation in the Myocardium in Different Heart Failure Etiologies
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=65109
URN (NBN):urn:nbn:de:hbz:061-20240308-112332-7
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Borger, Julius Benedict Erwin [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,16 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 02.03.2024 / geändert 02.03.2024
Beitragende:Prof. Dr. med. Polzin, Amin [Gutachter]
PD Dr. med. Buchbender, Christian [Gutachter]
Stichwörter:Mitochondrien; Herzinsuffizienz; Inflammation
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Herzinsuffizienz (HF) ist der häufigste Grund für Krankenhauseinweisungen in Deutschland und kann verschiedene zugrundeliegende Ätiologien haben. Obwohl mitochondriale Dysfunktion, oxidativer Stress, myokardiale Inflammation und Fibrose zentrale Merkmale der HF sind, ist unklar, inwiefern sich verschiedene Ätiologien diesbezüglich unterscheiden. Bei Patienten mit nicht-ischämischer HF und myokardialer Inflammation hat immunsuppressive Therapie zu verbesserter linksventrikulärer Pumpfunktion und Überleben beigetragen. Zur Wirksamkeit von Immunsuppression bei ischämisch bedingter HF liegen kaum Erkenntnisse vor.
Ziel der vorliegenden Studie war, den mitochondrialen Energiestoffwechsel bei Patienten mit ischämischer bzw. dilatativer Kardiomyopathie (ICM bzw. DCM) genauer zu beschreiben und das Ausmaß myokardialer Inflammation bei diesen verschiedenen Ätiologien zu erfassen. Hierfür stellten wir die Hypothesen auf: Patienten mit ICM bzw. DCM unterscheiden sich hinsichtlich [1] der mitochondrialen oxidativen Kapazität und [2] des Ausmaßes myokardialer Inflammation und Fibrose. [3] Außerdem korrelieren Fibrose und Inflammation mit myokardialer oxidativer Kapazität und oxidativem Stress.
Hierzu wurden 81 Patienten (n=44 ICM, n=37 DCM) eingeschlossen, welche aufgrund terminaler HF ein Linksherzunterstützungssystem (n=59) bzw. eine Herztransplantation (n=22) erhielten. Die mitochondriale Respiration im intraoperativ entfernten linksventrikulären Myokard wurde mittels hochauflösender Respirometrie bestimmt, Citratsynthase-Aktivität (CSA) als Marker mitochondrialer Dichte spektrophotometrisch gemessen und mittels Immunhistochemie die lymphozytäre Infiltration des Myokards und Fibrosierung quantifiziert. Lymphozytäre Infiltration mit mehr als 14 Zellen pro mm2 wurde als Schwelle zu relevanter Inflammation betrachtet.
Die Patienten unterschieden sich nicht hinsichtlich des Alters (61,5±5,7 vs. 56,5±12,7 Jahre, p=0,164), des Geschlechts (86% vs. 84% männlich, p=0,725), des Auftretens von Typ 2 Diabetes mellitus (34% vs. 18%, p=0,126) oder chronischer Niereninsuffizienz (8% vs. 11%, p=0,994). Die mitochondriale oxidative Kapazität war bei Patienten mit ICM um 23% geringer als bei DCM (108,6±41,4 vs. 141,9±59,9 pmol/(s*mg), p=0,006). CSA war in ICM gegenüber DCM reduziert (359,6±164,1 vs. 503,0±198,5 nmol/min/mg Protein, p=0,002). Patienten mit ICM wiesen größere fibrosierte Areale auf (20,9±21,2 vs. 7,2±5,6% des Querschnitts, p=0,002); dies hing nicht mit oxidativer Kapazität zusammen (r=-0,13, p=0,327). Patienten mit ICM zeigten häufiger relevante myokardiale Inflammation verglichen zu DCM-Patienten (27% vs. 6%, p=0,024). Höhere myokardiale Inflammation war mit geringerer oxidativer Kapazität assoziiert (r=-0,296, p=0,019).
Bei Patienten mit ICM zeigte sich eine gesteigerte myokardiale Infiltration mit inflammatorischen Zellen, welche mit reduzierter mitochondrialer oxidativer Kapazität einherging. Zukünftige Studien sollten auf den Einfluss höherer myokardialer Inflammation auf den klinischen Verlauf von ICM-Patienten eingehen, um die Wirksamkeit immunsuppressiver Therapie zu untersuchen. Hierdurch könnte eine bereits etablierte Therapiestrategie einer neuen Patientengruppe zugänglich gemacht werden.

Heart Failure (HF) is the most frequent reason for hospital admissions in Germany. The underlying etiologies are variable. Mitochondrial dysfunction, oxidative stress, myocardial inflammation, and fibrosis are hallmarks of HF pathophysiology, yet it is unclear whether patients with different HF-etiologies differ in these aspects. In non-ischemic HF with marked myocardial inflammation, immunosuppression has yielded benefits in left ventricular ejection fraction, and survival. However, little is known about possible benefits of immunosuppression in ischemic HF.
We aimed at characterizing mitochondrial metabolism in patients with ischemic or dilated cardiomyopathy (ICM or DCM), respectively, and at evaluating the extent of myocardial inflammation in these different etiologies. We hypothesized that patients with ICM or DCM would exhibit [1] different mitochondrial oxidative capacity, and [2] different myocardial inflammation and fibrosis, and that [3] oxidative capacity and oxidative stress correlate with myocardial inflammation and fibrosis.
We included 81 patients with advanced HF (n=44 ICM, n=37 DCM) undergoing implantation of a left ventricular assist device (n=59) or heart transplantation (n=22). Left ventricular myocardium was excised intraoperatively. We assessed mitochondrial respiration via high resolution respirometry, and citrate synthase activity (CSA), as a marker of mitochondrial content, spectrophotometrically. Myocardial inflammation and fibrosis were quantified using immunohistochemistry staining. Lymphocytic infiltration of more than 14 cells per mm2 was considered relevant inflammation.
Patient with ICM or DCM did not differ regarding age (61.5±5.7 vs. 56.5±12.7 years, p=0.164), sex (86% vs. 84% male, p=0.725), Type 2 Diabetes mellitus (34% vs. 18%, p=0.126), or chronic kidney disease (8% vs. 11%, p=0.994). Mitochondrial oxidative capacity was 23% lower in patients with ICM than DCM (108.6±41.4 vs. 141.9±59.9 pmol/(s*mg), p=0.006), and CSA was reduced in ICM compared with DCM (359.6±164.1 vs. 503.0±198.5 nmol/min/mg protein, p=0.002). Despite greater fibrotic area in ICM than DCM (20.9±21.2 vs. 7.2±5.6% of area, p=0.002), no association of fibrosis with oxidative capacity was found (r=-0.13, p=0.327). Patients with ICM had relevant myocardial inflammation more often than patients with DCM (27% vs. 6%, p=0.024). Higher inflammation was associated with lower oxidative capacity (r=-0.296, p=0.019).
We found enhanced myocardial infiltration with inflammatory cells in patients with ICM compared with DCM that was associated with impaired mitochondrial oxidative capacity. Future studies should address possible influences of myocardial inflammation on the clinical course in patients with ischemic HF to evaluate a potential efficacy of immunosuppression in ICM. This could make an already established therapy available to a new group of patients.
Quelle:1. McDonagh, T.A., et al., 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J, 2021. 42(36): p. 3599-3726.
2. Katz, A.M. and Katz, P.B., Diseases of the heart in the works of Hippocrates. Br Heart J, 1962. 24: p. 257-64.
3. Katz, A.M., Heart Failure: Pathophysiology, Molecular Biology, and Clinical Management. 2000, Philadelphia, PA: Lippincott Williams & Wilkins.
4. Packer, M., Development and Evolution of a Hierarchical Clinical Composite End Point for the Evaluation of Drugs and Devices for Acute and Chronic Heart Failure: A 20-Year Perspective. Circulation, 2016. 134(21): p. 1664-1678.
5. Packer, M., How should physicians view heart failure? The philosophical and physiological evolution of three conceptual models of the disease. Am J Cardiol, 1993. 71(9): p. 3C-11C.
6. Bloom, M.W., et al., Heart failure with reduced ejection fraction. Nat Rev Dis Primers, 2017. 3: p. 17058.
7. Kurmani, S. and Squire, I., Acute Heart Failure: Definition, Classification and Epidemiology. Curr Heart Fail Rep, 2017. 14(5): p. 385-392.
8. GBD 2019 Diseases and Injuries Collaborators, Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020. 396(10258): p. 1204-1222.
9. Roth, G.A., et al., Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol, 2020. 76(25): p. 2982-3021.
10. Bragazzi, N.L., et al., Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur J Prev Cardiol, 2021.
11. Stork, S., et al., Epidemiology of heart failure in Germany: a retrospective database study. Clin Res Cardiol, 2017. 106(11): p. 913-922.
12. Dorr, M., et al., Hospitalizations for heart failure: still major differences between East and West Germany 30 years after reunification. ESC Heart Fail, 2021. 8(4): p. 2546-2555.
13. Cook, C., et al., The annual global economic burden of heart failure. Int J Cardiol, 2014. 171(3): p. 368-76.
14. Ziaeian, B. and Fonarow, G.C., Epidemiology and aetiology of heart failure. Nat Rev Cardiol, 2016. 13(6): p. 368-78.
15. Baldasseroni, S., et al., Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J, 2002. 143(3): p. 398-405.
16. Stevenson, L.W., et al., INTERMACS profiles of advanced heart failure: the current picture. J Heart Lung Transplant, 2009. 28(6): p. 535-41.
17. Saeed, D., et al., The 2023 International Society for Heart and Lung Transplantation Guidelines for Mechanical Circulatory Support: A 10- Year Update. J Heart Lung Transplant, 2023. 42(7): p. e1-e222.
18. Brown, D.A., et al., Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol, 2017. 14(4): p. 238-250.
19. Bayeva, M., Gheorghiade, M., and Ardehali, H., Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol, 2013. 61(6): p. 599-610.
20. Sabbah, H.N., Targeting the Mitochondria in Heart Failure: A Translational Perspective. JACC Basic Transl Sci, 2020. 5(1): p. 88-106.
21. Ahuja, P., et al., Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation, 2013. 127(19): p. 1957-67.
22. Neubauer, S., The failing heart--an engine out of fuel. N Engl J Med, 2007. 356(11): p. 1140-51.
23. Hom, J. and Sheu, S.S., Morphological dynamics of mitochondria--a special emphasis on cardiac muscle cells. J Mol Cell Cardiol, 2009. 46(6): p. 811-20.
24. Stanley, W.C., Recchia, F.A., and Lopaschuk, G.D., Myocardial substrate metabolism in the normal and failing heart. Physiol Rev, 2005. 85(3): p. 1093-129.
25. Neupert, W. and Herrmann, J.M., Translocation of proteins into mitochondria. Annu Rev Biochem, 2007. 76: p. 723-49.
26. Reichert, A.S. and Neupert, W., Contact sites between the outer and inner membrane of mitochondria-role in protein transport. Biochim Biophys Acta, 2002. 1592(1): p. 41-9.
27. Annesley, S.J. and Fisher, P.R., Mitochondria in Health and Disease. Cells, 2019. 8(7).
28. Nunnari, J. and Suomalainen, A., Mitochondria: in sickness and in health. Cell, 2012. 148(6): p. 1145-59.
29. Bertero, E. and Maack, C., Metabolic remodelling in heart failure. Nat Rev Cardiol, 2018. 15(8): p. 457-470.
30. Cook, S.A., Sugden, P.H., and Clerk, A., Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential. Circ Res, 1999. 85(10): p. 940-9.
31. Taegtmeyer, H., et al., Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci, 2004. 1015: p. 202-13.
32. Greenwell, A.A., Gopal, K., and Ussher, J.R., Myocardial Energy Metabolism in Non-ischemic Cardiomyopathy. Front Physiol, 2020. 11: p. 570421.
33. Karwi, Q.G. and Lopaschuk, G.D., Ketone bodies are important metabolic fuel for the heart. J Physiol, 2021.
34. Taegtmeyer, H., Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol, 1994. 19(2): p. 59-113.
35. Lopaschuk, G.D., et al., Myocardial fatty acid metabolism in health and disease. Physiol Rev, 2010. 90(1): p. 207-58.
36. Berger, J. and Moller, D.E., The mechanisms of action of PPARs. Annu Rev Med, 2002. 53: p. 409-35.
37. Ingwall, J.S., Energy metabolism in heart failure and remodelling. Cardiovasc Res, 2009. 81(3): p. 412-9.
38. Arany, Z., et al., Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab, 2005. 1(4): p. 259-71.
39. St-Pierre, J., et al., Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 2006. 127(2): p. 397-408.
40. Puigserver, P., et al., A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998. 92(6): p. 829-39.
41. Oka, S.I., et al., Multiple Levels of PGC-1alpha Dysregulation in Heart Failure. Front Cardiovasc Med, 2020. 7: p. 2.
42. Letts, J.A. and Sazanov, L.A., Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol, 2017. 24(10): p. 800-808.
43. Heinrich, P.C., Müller, M. and Graeve, L., Löffler/Petrides Biochemie und Pathobiochemie. 9. Auflage, 2014, Berlin, Heidelberg: Springer.
44. Zweck, E., Energiestoffwechsel des humanen Myokards bei Herzinsuffizienz und Diabetes Mellitus Typ 2. Dissertation im Fach Medizin, 2021, Heinrich-Heine Universität Düsseldorf.
45. Gnaiger, E., Mitochondrial Pathways and Respiratory Control: An Introduction to OXPHOS Analysis. 4th ed. 2014, Innsbruck: Mitochondr Physiol Network 19.12.
46. Gnaiger, E., Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol, 2009. 41(10): p. 1837-45.
47. Eaton, S., Control of mitochondrial beta-oxidation flux. Prog Lipid Res, 2002. 41(3): p. 197-239.
48. Chance, B. and Williams, G.R., Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem, 1955. 217(1): p. 409-27.
49. Pesta, D. and Gnaiger, E., High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol, 2012. 810: p. 25-58.
50. Munzel, T., et al., Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series. J Am Coll Cardiol, 2017. 70(2): p. 212-229.
51. Taegtmeyer, H., Cardiac metabolism as a target for the treatment of heart failure. Circulation, 2004. 110(8): p. 894-6.
52. Doenst, T., Nguyen, T.D. and Abel, E.D., Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res, 2013. 113(6): p. 709-24.
53. Sharov, V.G., et al., Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol, 2000. 32(12): p. 2361-7.
54. Stride, N., et al., Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction. Eur J Heart Fail, 2013. 15(2): p. 150-7.
55. Scheiber, D., et al., High-resolution respirometry in human endomyocardial biopsies shows reduced ventricular oxidative capacity related to heart failure. Exp Mol Med, 2019. 51(2): p. 1-10.
56. Garnier, A., et al., Control by circulating factors of mitochondrial function and transcription cascade in heart failure: a role for endothelin-1 and angiotensin II. Circ Heart Fail, 2009. 2(4): p. 342-50.
57. Lemieux, H., et al., Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol, 2011. 43(12): p. 1729-38.
58. Jarreta, D., et al., Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc Res, 2000. 45(4): p. 860-5.
59. Osorio, J.C., et al., Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation, 2002. 106(5): p. 606-12.
60. Bedi, K.C., Jr., et al., Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure. Circulation, 2016. 133(8): p. 706-16.
61. Opie, L.H. and Knuuti, J., The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol, 2009. 54(18): p. 1637-46.
62. Szendroedi, J. and Roden, M., Ectopic lipids and organ function. Curr Opin Lipidol, 2009. 20(1): p. 50-6.
63. Wende, A.R. and Abel, E.D., Lipotoxicity in the heart. Biochim Biophys Acta, 2010. 1801(3): p. 311-9.
64. Szendroedi, J., Phielix, E., and Roden, M., The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol, 2011. 8(2): p. 92-103.
65. Paolisso, G., et al., Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism, 1994. 43(2): p. 174-9.
66. Young, M.E., McNulty, P. and Taegtmeyer, H., Adaptation and maladaptation of the heart in diabetes: Part II: potential mechanisms. Circulation, 2002. 105(15): p. 1861-70.
67. Taegtmeyer, H., et al., Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. Am J Physiol Heart Circ Physiol, 2013. 305(12): p. H1693-7.
68. Taegtmeyer, H. and Ballal, K., No low-fat diet for the failing heart? Circulation, 2006. 114(20): p. 2092-3.
69. Santos, C.X., Raza, S., and Shah, A.M., Redox signaling in the cardiomyocyte: From physiology to failure. Int J Biochem Cell Biol, 2016. 74: p. 145-51.
70. Zhou, B. and Tian, R., Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest, 2018. 128(9): p. 3716-3726.
71. Kalsi, K.K., et al., Energetics and function of the failing human heart with dilated or hypertrophic cardiomyopathy. Eur J Clin Invest, 1999. 29(6): p. 469-77.
72. Stride, N., et al., Impaired mitochondrial function in chronically ischemic human heart. Am J Physiol Heart Circ Physiol, 2013. 304(11): p. H1407-14.
73. Roden, M. and Shulman, G.I., The integrative biology of type 2 diabetes. Nature, 2019. 576(7785): p. 51-60.
74. Riehle, C. and Bauersachs, J., Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res Cardiol, 2018. 114(1): p. 2.
75. Ljubkovic, M., et al., Disturbed Fatty Acid Oxidation, Endoplasmic Reticulum Stress, and Apoptosis in Left Ventricle of Patients With Type 2 Diabetes. Diabetes, 2019. 68(10): p. 1924-1933.
76. Anderson, E.J., et al., Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol, 2009. 54(20): p. 1891-8.
77. Zweck, E., et al., Exposure to Type 2 Diabetes Provokes Mitochondrial Impairment in Apparently Healthy Human Hearts. Diabetes Care, 2021. 44(5): p. e82-e84.
78. Montaigne, D., et al., Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation, 2014. 130(7): p. 554-64.
79. Croston, T.L., et al., Functional deficiencies of subsarcolemmal mitochondria in the type 2 diabetic human heart. Am J Physiol Heart Circ Physiol, 2014. 307(1): p. H54-65.
80. Jelenik, T., et al., Insulin Resistance and Vulnerability to Cardiac Ischemia. Diabetes, 2018. 67(12): p. 2695-2702.
81. Ferdinandy, P., Schulz, R. and Baxter, G.F., Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev, 2007. 59(4): p. 418-58.
82. Bertrand, L., et al., Insulin signalling in the heart. Cardiovasc Res, 2008. 79(2): p. 238-48.
83. Mazumder, P.K., et al., Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes, 2004. 53(9): p. 2366-74.
84. Wright, L.A. and Hirsch, I.B., Metrics Beyond Hemoglobin A1C in Diabetes Management: Time in Range, Hypoglycemia, and Other Parameters. Diabetes Technol Ther, 2017. 19(S2): p. S16-S26.
85. Ardehali, H., et al., Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur J Heart Fail, 2012. 14(2): p. 120-9.
86. Daubert, M.A., et al., Novel Mitochondria-Targeting Peptide in Heart Failure Treatment: A Randomized, Placebo-Controlled Trial of Elamipretide. Circ Heart Fail, 2017. 10(12).
87. Sabbah, H.N., et al., Chronic Therapy With Elamipretide (MTP-131), a Novel Mitochondria-Targeting Peptide, Improves Left Ventricular and Mitochondrial Function in Dogs With Advanced Heart Failure. Circ Heart Fail, 2016. 9(2): p. e002206.
88. Fragasso, G., et al., A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol, 2006. 48(5): p. 992-8.
89. Winter, J.L., et al., Effects of trimetazidine in nonischemic heart failure: a randomized study. J Card Fail, 2014. 20(3): p. 149-54.
90. Mortensen, S.A., et al., The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail, 2014. 2(6): p. 641-9.
91. Zafeiridis, A., et al., Regression of cellular hypertrophy after left ventricular assist device support. Circulation, 1998. 98(7): p. 656-62.
92. Scheiber, D., et al., Reduced Myocardial Mitochondrial ROS Production in Mechanically Unloaded Hearts. J Cardiovasc Transl Res, 2019. 12(2): p. 107-115.
93. Chokshi, A., et al., Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation, 2012. 125(23): p. 2844-53.
94. Heerdt, P.M., et al., Disease-specific remodeling of cardiac mitochondria after a left ventricular assist device. Ann Thorac Surg, 2002. 73(4): p. 1216-21.
95. Adamo, L., et al., Reappraising the role of inflammation in heart failure. Nat Rev Cardiol, 2020. 17(5): p. 269-285.
96. Van Linthout, S. and Tschope, C., Inflammation - Cause or Consequence of Heart Failure or Both? Curr Heart Fail Rep, 2017. 14(4): p. 251-265.
97. Mann, D.L., et al., Innate immunity in the adult mammalian heart: for whom the cell tolls. Trans Am Clin Climatol Assoc, 2010. 121: p. 34-50; discussion 50-1.
98. Ferrari, R., et al., Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation, 1995. 92(6): p. 1479-86.
99. Mann, D.L., Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res, 2002. 91(11): p. 988-98.
100. Bajpai, G., et al., The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med, 2018. 24(8): p. 1234-1245.
101. Hu, S., et al., Different Roles of Resident and Non-resident Macrophages in Cardiac Fibrosis. Front Cardiovasc Med, 2022. 9: p. 818188.
102. Blanton, R.M., Carrillo-Salinas, F.J., and Alcaide, P., T-cell recruitment to the heart: friendly guests or unwelcome visitors? Am J Physiol Heart Circ Physiol, 2019. 317(1): p. H124-H140.
103. Nevers, T., et al., Left Ventricular T-Cell Recruitment Contributes to the Pathogenesis of Heart Failure. Circ Heart Fail, 2015. 8(4): p. 776-87.
104. Abbate, A., et al., Widespread myocardial inflammation and infarct-related artery patency. Circulation, 2004. 110(1): p. 46-50.
105. Noutsias, M., et al., Phenotypic characterization of infiltrates in dilated cardiomyopathy - diagnostic significance of T-lymphocytes and macrophages in inflammatory cardiomyopathy. Med Sci Monit, 2002. 8(7): p. CR478-87.
106. Oka, T., et al., Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature, 2012. 485(7397): p. 251-5.
107. Scheiber, D., et al., Human myocardial mitochondrial oxidative capacity is impaired in mild acute heart transplant rejection. ESC Heart Fail, 2021. 8(6): p. 4674-4684.
108. Humeres, C. and Frangogiannis, N.G., Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic Transl Sci, 2019. 4(3): p. 449-467.
109. Gibb, A.A., Lazaropoulos, M.P., and Elrod, J.W., Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res, 2020. 127(3): p. 427-447.
110. Gourdie, R.G., Dimmeler, S., and Kohl, P., Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat Rev Drug Discov, 2016. 15(9): p. 620-638.
111. Santos-Gallego, C.G., et al., Empagliflozin Ameliorates Diastolic Dysfunction and Left Ventricular Fibrosis/Stiffness in Nondiabetic Heart Failure: A Multimodality Study. JACC Cardiovasc Imaging, 2021. 14(2): p. 393-407.
112. Sabe, S.A., et al., Canagliflozin Improves Myocardial Perfusion, Fibrosis, and Function in a Swine Model of Chronic Myocardial Ischemia. J Am Heart Assoc, 2023. 12(1): p. e028623.
113. Parrillo, J.E., et al., A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. N Engl J Med, 1989. 321(16): p. 1061-8.
114. Wojnicz, R., et al., Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy: two-year follow-up results. Circulation, 2001. 104(1): p. 39-45.
115. Frustaci, A., et al., Immunosuppressive therapy for active lymphocytic myocarditis: virological and immunologic profile of responders versus nonresponders. Circulation, 2003. 107(6): p. 857-63.
116. Frustaci, A., Russo, M.A., and Chimenti, C., Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J, 2009. 30(16): p. 1995-2002.
117. Escher, F., et al., Long-term outcome of patients with virus-negative chronic myocarditis or inflammatory cardiomyopathy after immunosuppressive therapy. Clin Res Cardiol, 2016. 105(12): p. 1011-1020.
118. Merken, J., et al., Immunosuppressive Therapy Improves Both Short- and Long-Term Prognosis in Patients With Virus-Negative Nonfulminant Inflammatory Cardiomyopathy. Circ Heart Fail, 2018. 11(2): p. e004228.
119. Chimenti, C., Russo, M.A., and Frustaci, A., Immunosuppressive therapy in virus-negative inflammatory cardiomyopathy: 20-year follow-up of the TIMIC trial. Eur Heart J, 2022. 43(36): p. 3463-3473.
120. Ridker, P.M., et al., Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N Engl J Med, 2019. 380(8): p. 752-762.
121. Nidorf, S.M., et al., Colchicine in Patients with Chronic Coronary Disease. N Engl J Med, 2020. 383(19): p. 1838-1847.
122. Stahli, B.E., et al., Mammalian Target of Rapamycin Inhibition in Patients With ST-Segment Elevation Myocardial Infarction. J Am Coll Cardiol, 2022. 80(19): p. 1802-1814.
123. Ridker, P.M., et al., Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med, 2017. 377(12): p. 1119-1131.
124. Everett, B.M., et al., Anti-Inflammatory Therapy With Canakinumab for the Prevention of Hospitalization for Heart Failure. Circulation, 2019. 139(10): p. 1289-1299.
125. Caforio, A.L., et al., Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J, 2013. 34(33): p. 2636-48, 2648a-2648d.
126. Veksler, V.I., et al., Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta, 1987. 892(2): p. 191-6.
127. Kuznetsov, A.V., et al., Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc, 2008. 3(6): p. 965-76.
128. Salin, K., et al., The RCR and ATP/O Indices Can Give Contradictory Messages about Mitochondrial Efficiency. Integr Comp Biol, 2018. 58(3): p. 486-494.
129. Makrecka-Kuka, M., Krumschnabel, G., and Gnaiger, E., High-Resolution Respirometry for Simultaneous Measurement of Oxygen and Hydrogen Peroxide Fluxes in Permeabilized Cells, Tissue Homogenate and Isolated Mitochondria. Biomolecules, 2015. 5(3): p. 1319-38.
130. Starkov, A.A., Measurement of mitochondrial ROS production. Methods Mol Biol, 2010. 648: p. 245-55.
131. Morgunov, I. and Srere, P.A., Interaction between citrate synthase and malate dehydrogenase. Substrate channeling of oxaloacetate. J Biol Chem, 1998. 273(45): p. 29540-4.
132. Benard, G., et al., Physiological diversity of mitochondrial oxidative phosphorylation. Am J Physiol Cell Physiol, 2006. 291(6): p. C1172-82.
133. Cohen, J., Statistical power analysis for the behavioral sciences. 2nd ed. 1988, Hillsdale, N.J.: L. Erlbaum Associates. xxi, 567 p.
134. Suttorp, N., Möckel, M., Siegmund, B. and Dietel, M., Harrisons Innere Medizin. 20th ed. 2020, Stuttgart: Thieme
135. Jankowska, E.A., et al., Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur Heart J, 2013. 34(11): p. 816-29.
136. Kurz, K., et al., Anaemia, iron status, and gender predict the outcome in patients with chronic heart failure. ESC Heart Fail, 2020. 7(4): p. 1880-1890.
137. Klip, I.T., et al., Iron deficiency in chronic heart failure: an international pooled analysis. Am Heart J, 2013. 165(4): p. 575-582 e3.
138. Melenovsky, V., et al., Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. Eur J Heart Fail, 2017. 19(4): p. 522-530.
139. Hoes, M.F., et al., Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail, 2018. 20(5): p. 910-919.
140. Lupu, M., Tudor, D.V., and Filip, G.A., Influence of mitochondrial and systemic iron levels in heart failure pathology. Heart Fail Rev, 2019. 24(5): p. 647-659.
141. Quigley, A.F., et al., Mitochondrial respiratory chain activity in idiopathic dilated cardiomyopathy. J Card Fail, 2000. 6(1): p. 47-55.
142. Djafarzadeh, S. and Jakob, S.M., High-resolution Respirometry to Assess Mitochondrial Function in Permeabilized and Intact Cells. J Vis Exp, 2017(120).
143. Krajcova, A., et al., High resolution respirometry to assess function of mitochondria in native homogenates of human heart muscle. PLoS One, 2020. 15(1): p. e0226142.
144. Larsen, S., et al., Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol, 2012. 590(14): p. 3349-60.
145. McMurray, J.J.V., et al., Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med, 2019. 381(21): p. 1995-2008.
146. Packer, M., et al., Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med, 2020. 383(15): p. 1413-1424.
147. Packer, M., Molecular, Cellular, and Clinical Evidence That Sodium-Glucose Cotransporter 2 Inhibitors Act as Neurohormonal Antagonists When Used for the Treatment of Chronic Heart Failure. J Am Heart Assoc, 2020. 9(16): p. e016270.
148. Schultheiss, H.P., et al., Dilated cardiomyopathy. Nat Rev Dis Primers, 2019. 5(1): p. 32.
149. Davies, L.C., et al., Tissue-resident macrophages. Nat Immunol, 2013. 14(10): p. 986-95.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:08.03.2024
Dateien geändert am:08.03.2024
Promotionsantrag am:26.10.2023
Datum der Promotion:29.02.2024
english
Benutzer
Status: Gast
Aktionen