Dokument: Biochemische Charakterisierung von modularen dirigierenden Proteinen
Titel: | Biochemische Charakterisierung von modularen dirigierenden Proteinen | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=65097 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20240312-112646-7 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Huwa, Nikolai [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Jörg Pietruszka [Gutachter] Apl. Prof. Dr. Ulrich Schaffrath [Gutachter] | |||||||
Dokumententyp (erweitert): | Dissertation | |||||||
Dewey Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik » 540 Chemie | |||||||
Beschreibungen: | Dirigent- (DIR-) Proteine werden in unterschiedlichen Proteinuntergruppen (DIR-a bis DIR-i) eingeordnet. Sie werden vorwiegend im Pflanzenreich gefunden, dabei werden sie mit
unterschiedlichen adaptiven Reaktionen auf (a)biotische Stressfaktoren in Verbindung gebracht. Die ersten charakterisierten Mitglieder zeigten keine enzymatische Aktivität, konnten jedoch eine radikalische Dimerisierung (nach einer oxidativen Aktivierung) mit einer hohen Regio- und Enantioselektivität steuern. Trotz der Fähigkeit von DIR-Proteinen, pharmazeutisch relevante chirale Ausgangsstoffe zu produzieren, sind bisher kaum Anwendungsbeispiele etabliert. In der vorliegenden Arbeit wurden zwei Unterfamilien von DIR-Proteinen näher charakterisiert. Im ersten Teil wurden unterschiedliche Strategien angewendet, um die beiden DIR-a-Proteine (AtDIR6 und FiDIR1) heterolog und löslich in Escherichia coli (E. coli) zu produzieren. Demzufolge ergab die Kombination aus der Co-Expression von Chaperonen, niedrigen Temperaturen (15 °C) während der Überexpression und der Zugabe von 2 % Ethanol in das Kulturmedium die höchste Löslichkeit für die rekombinanten DIR-Proteine. Dadurch konnten zum ersten Mal lösliche rekombinante AtDIR6- und FiDIR1-Proteine hergestellt werden. Jedoch wiesen die Proteinfraktionen nach der Isolation eine hohe Verunreinigung mit Chaperonen und eine geringe Stabilität auf. Diese beiden Hindernisse müssten in weiteren Studien bearbeitet werden, um rekombinanten DIR-Proteine in der selektiven Kopplung von Lignanen nutzen zu können. Der Fokus dieser Arbeit lag in der biochemischen Charakterisierung eines chimären Jacalins OsJAC1 aus der monokotylen (einkeimblättrigen) Pflanze Reis (Oryza sativa). Dieses Protein ist modular aufgebaut aus einer Dirigent- (DIR-) und einer Jacalin-ähnlichen Lektin-(JRL-) Domäne. Das entsprechende Gen wird in Reaktion auf verschiedene abiotische und biotische Stimuli exprimiert. Durch die erfolgreiche heterologe Expression in E. coli mit hohen Ausbeuten für das Volllängenprotein OsJAC1 sowie seine einzelnen Domänenproteine (DIR und JRL) konnten die Proteine systematisch untersucht werden hinsichtlich der Struktur, der biochemischen Eigenschaften und der putativen Interaktionspartner. Dieser Ansatz ermöglichte es, verschiedene Analysemethoden anzuwenden, um neue spezifische Kohlenhydrat-Interaktionspartner für die beiden Domänen zu ermitteln. Es konnte gezeigt werden, dass die JRL-Domäne eine hohe Selektivität für Mannose und Glukose aufweist. Für die DIR-Domäne konnte zum ersten Mal eine Selektivität für Galaktose nachgewiesen werden. Zusätzlich konnte durch die Kristallisation des DIR-Domänenproteins im Komplex mit Galactobiose das neue Kohlenhydratbindemotiv ergründet werden. Durch unterschiedliche in silico (Protein-Protein-Docking) Untersuchungen, kombiniert mit weiteren biochemischen Untersuchungen (Schmelzpunkt, apparente Molekularmasse etc.) konnte ein erstes Modell für das Volllängenprotein erstellt werden. Die Ergebnisse in dieser Arbeit bieten Einblicke in die Strukturen und Bindungseigenschaften von OsJAC1 und seiner möglichen Funktion bei der Pathogenresistenz. Das Verständnis solcher Resistenzmechanismen gegen biotische Stressfaktoren und ihre Übertragung in moderne Züchtungsprogramme könnte den Weg zu einer umweltfreundlicheren Landwirtschaft unterstützen.Dirigent- (DIR-) proteins are divided into different protein subgroups (DIR-a to DIR-i) that are mainly found in the plant kingdom. They are associated with different adaptive responses to (a)biotic stresses. The first members of DIR proteins characterised showed no enzymatic activity but were able to control radical dimerization (after oxidative activation) with high regio- and stereoactivity. Despite the ability of DIR proteins to produce pharmaceutically relevant chiral precursors, only few examples of their application have been described. In the present work, two subfamilies of DIR proteins were examined in detail. In the first part, different strategies were used to produce two DIR-a proteins (AtDIR6 and FiDIR1) heterologous and soluble in Escherichia coli (E. coli). In this regard, the combination of chaperone co-expression, low temperatures (15 °C) during overexpression and the addition of 2% ethanol to the culture medium resulted in the highest solubility for the recombinant DIR proteins. This allowed the production of soluble recombinant AtDIR6 and FiDIR1 proteins for the first time. However, after isolation, the protein fractions showed high contamination with chaperones and low stability. These two obstacles would need to be addressed in further studies in order to use recombinant DIR proteins in the selective coupling of lignans. The focus of this work was the biochemical characterisation of the monocot chimeric jacalin (MCJ) OsJAC1 from Oryza sativa. This protein has a modular structure consisting of a dirigent (DIR) and a jacalin-like lectin (JRL) domain. The corresponding gene is expressed in response to various abiotic and biotic stimuli. Successful heterologous expression in E. coli with high yields for the full-length protein OsJAC1 and its individual domain proteins (DIR and JRL), allowed the proteins to be systematically studied in terms of structure, biochemical properties, and putative interaction partners. This approach made it possible to apply different analytical methods to identify new specific carbohydrate interaction partners for the two domains. The JRL domain was shown to be selective for mannose and glucose and, for the first time, galactose selectivity was demonstrated for the DIR domain. In addition, crystallisation of the DIR domain protein in complex with galactobiose allowed the new carbohydrate-binding motif to be explored. Through different in silico (protein-protein docking) investigations combined with further biochemical investigations (melting point, apparent molecular mass, etc.), a first model for the full-length protein could be established. The results in this work provide insights into the structures and binding properties of OsJAC1 and its possible function in the pathogen resistance mechanism. Understanding such resistance mechanisms against biotic stress factors and transferring them into modern breeding programmes could support the development of a more environmentally benign agriculture sector. | |||||||
Quelle: | [1] D. Simpson, S. Amos, in Pharmacognosy, Elsevier, 2017, pp. 267-280.
[2] J. Ralph, C. Lapierre, W. Boerjan, Curr. Opin. Biotechnol. 2019, 56, 240-249; 'Lignin structure and its engineering'. [3] J. K. Weng, C. Chapple, New Phytol. 2010, 187, 273-285; 'The origin and evolution of lignin biosynthesis'. [4] N. H. Bhuiyan, G. Selvaraj, Y. Wei, J. King, J. Exp. Bot. 2008, 60, 509-521; 'Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion'. [5] T. Vogt, Mol. Plant 2010, 3, 2-20; 'Phenylpropanoid biosynthesis'. [6] I. Spiridon, Environ. Chem. Lett. 2020, 18, 771-785; 'Extraction of lignin and therapeutic applications of lignin-derived compounds. A review'. [7] A. Ullah, S. Munir, S. L. Badshah, N. Khan, L. Ghani, B. G. Poulson, A.-H. Emwas, M. Jaremko, Molecules 2020, 25, 5243; 'Important flavonoids and their role as a therapeutic agent'. [8] M. Saleem, H. J. Kim, M. S. Ali, Y. S. Lee, Nat. Prod. Rep. 2005, 22, 696-716; 'An update on bioactive plant lignans'. [9] C. Canel, R. M. Moraes, F. E. Dayan, D. Ferreira, Phytochemistry 2000, 54, 115-120; 'Podophyllotoxin'. [10] C.-C. Wu, T.-K. Li, L. Farh, L.-Y. Lin, T.-S. Lin, Y.-J. Yu, T.-J. Yen, C.-W. Chiang, N.-L. Chan, Science 2011, 333, 459-462; 'Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide'. [11] S. Apers, A. Vlietinck, L. Pieters, Phytochem. Rev. 2003, 2, 201-217; 'Lignans and neolignans as lead compounds'. [12] S. S. Kim, E. S. Sattely, J. Am. Chem. Soc. 2021, 143, 5011-5021; 'Dirigent Proteins Guide Asymmetric Heterocoupling for the Synthesis of Complex Natural Product Analogues'. [13] C. Kazenwadel, J. Klebensberger, S. Richter, J. Pfannstiel, U. Gerken, B. Pickel, A. Schaller, B. Hauer, Appl. Microbiol. Biotechnol. 2013, 97, 7215-7227; 'Optimized expression of the dirigent protein AtDIR6 in Pichia pastoris and impact of glycosylation on protein structure and function'. [14] K.-W. Kim, S. G. Moinuddin, K. M. Atwell, M. A. Costa, L. B. Davin, N. G. Lewis, J. Biol. Chem. 2012, 287, 33957-33972; 'Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species'. [15] L. B. Davin, H.-B. Wang, A. L. Crowell, D. L. Bedgar, D. M. Martin, S. Sarkanen, N. G. Lewis, Science 1997, 275, 362-367; 'Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center'. [16] C. Corbin, S. Drouet, L. Markulin, D. Auguin, É. Lainé, L. B. Davin, J. R. Cort, N. G. Lewis, C. Hano, Plant Mol. Biol. 2018, 97, 73-101; 'A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: From gene identification and evolution to differential regulation'. [17] A. Khan, R.-J. Li, J.-T. Sun, F. Ma, H.-X. Zhang, J.-H. Jin, M. Ali, S. ul Haq, J.-E. Wang, Z.- H. Gong, Sci. Rep. 2018, 8, 1-21; 'Genome-wide analysis of dirigent gene family in pepper (Capsicum annuum L.) and characterization of CaDIR7 in biotic and abiotic stresses'. [18] S. A. Dabravolski, Curr. Microbiol. 2020, 77, 517-521; 'The resurgence of dirigent story: time for a bacterial chapter'. [19] S. G. Ralph, S. Jancsik, J. Bohlmann, Phytochemistry 2007, 68, 1975-1991; 'Dirigent proteins in conifer defense II: Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.)'. [20] S. Ralph, J.-Y. Park, J. Bohlmann, S. D. Mansfield, Plant Mol. Biol. 2006, 60, 21; 'Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound-and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.)'. [21] P. M. Nobile, A. Bottcher, J. L. Mayer, M. S. Brito, I. A. dos Anjos, M. G. de Andrade Landell, R. Vicentini, S. Creste, D. M. Riaño-Pachón, P. Mazzafera, Mol. Genet. Genomics 2017, 292, 1323-1340; 'Identification, classification and transcriptional profiles of dirigent domain-containing proteins in sugarcane'. [22] Q. Meng, S. G. Moinuddin, S.-J. Kim, D. L. Bedgar, M. A. Costa, D. G. Thomas, R. P. Young, C. A. Smith, J. R. Cort, L. B. Davin, J. Biol. Chem. 2020, 295, 11584-11601; 'Pterocarpan synthase (PTS) structures suggest a common quinone methide– stabilizing function in dirigent proteins and proteins with dirigent-like domains'. [23] V. Yadav, Z. Wang, X. Yang, C. Wei, X. Changqing, X. Zhang, Genes 2021, 12, 326; 'Comparative Analysis, Characterization and Evolutionary Study of Dirigent Gene Family in Cucurbitaceae and Expression of Novel Dirigent Peptide against Powdery Mildew Stress'. [24] Y. Liao, S. Liu, Y. Jiang, C. Hu, X. Zhang, X. Cao, Z. Xu, X. Gao, L. Li, J. Zhu, Genes & Genomics 2017, 39, 47-62; 'Genome-wide analysis and environmental response profiling of dirigent family genes in rice (Oryza sativa)'. [25] X. Ma, W. Xu, T. Liu, R. Chen, H. Zhu, H. Zhang, C. Cai, S. Li, Genomics 2021, 113, 979- 990; 'Functional characterization of soybean (Glycine max) DIRIGENT genes reveals an important role of GmDIR27 in the regulation of pod dehiscence'. [26] Z. Liu, X. Wang, Z. Sun, Y. Zhang, C. Meng, B. Chen, G. Wang, H. Ke, J. Wu, Y. Yan, BMC Plant Biol. 2021, 21, 1-16; 'Evolution, expression and functional analysis of cultivated allotetraploid cotton DIR genes'. [27] Q. Li, J. Chen, Y. Xiao, P. Di, L. Zhang, W. Chen, BMC genomics 2014, 15, 1-13; 'The dirigent multigene family in Isatis indigotica: gene discovery and differential transcript abundance'. [28] M. Song, X. Peng, Biochem. Genet. 2019, 57, 487-506; 'Genome-wide identification and characterization of DIR genes in Medicago truncatula'. [29] L. Li, W. Sun, P. Zhou, H. Wei, P. Wang, H. Li, S. Rehman, D. Li, Q. Zhuge, Forests 2021, 12, 507; 'Genome-Wide Characterization of Dirigent Proteins in Populus: Gene Expression Variation and Expression Pattern in Response to Marssonina brunnea and Phytohormones'. [30] X. Cheng, X. Su, A. Muhammad, M. Li, J. Zhang, Y. Sun, G. Li, Q. Jin, Y. Cai, Y. Lin, Front. Genet. 2018, 9; 'Molecular Characterization, Evolution, and Expression Profiling of the Dirigent (DIR) Family Genes in Chinese White Pear (Pyrus bretschneideri)'. [31] W. Xu, T. Liu, H. Zhang, H. Zhu, Front. Genet. 2021, 12; 'Mungbean DIRIGENT gene subfamilies and their expression profiles under salt and drought stresses'. [32] T. Nakatsubo, M. Mizutani, S. Suzuki, T. Hattori, T. Umezawa, J. Biol. Chem. 2008, 283, 15550-15557; 'Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis'. [33] C. Bottcher, E. von Roepenack-Lahaye, J. Schmidt, C. Schmotz, S. Neumann, D. Scheel, S. Clemens, Plant Physiol. 2008, 147, 2107-2120; 'Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis'. [34] A. Okazawa, K. Hori, R. Okumura, Y. Izumi, N. Hata, T. Bamba, E. Fukusaki, E. Ono, H. Satake, A. Kobayashi, Plant Biotechnol. 2011, 28, 287-293; 'Simultaneous quantification of lignans in Arabidopsis thaliana by highly sensitive capillary liquid chromatography-electrospray ionization-ion trap mass spectrometry'. [35] V. Burlat, M. Kwon, L. B. Davin, N. G. Lewis, Phytochemistry 2001, 57, 883-897; 'Dirigent proteins and dirigent sites in lignifying tissues'. [36] K. Yonekura-Sakakibara, M. Yamamura, F. Matsuda, E. Ono, R. Nakabayashi, S. Sugawara, T. Mori, Y. Tobimatsu, T. Umezawa, K. Saito, The Plant Cell 2021, 33, 129- 152; 'Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis'. [37] D. S. Dalisay, K. W. Kim, C. Lee, H. Yang, O. Rübel, B. P. Bowen, L. B. Davin, N. G. Lewis, J. Nat. Prod. 2015, 78, 1231-1242; 'Dirigent protein-mediated lignan and cyanogenic glucoside formation in flax seed: integrated omics and MALDI mass spectrometry imaging'. [38] M. K. Kim, J.-H. Jeon, M. Fujita, L. B. Davin, N. G. Lewis, Plant Mol. Biol. 2002, 49, 199- 214; 'The western red cedar (Thuja plicata) 8-8′ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity'. [39] B. Pickel, M. A. Constantin, J. Pfannstiel, J. Conrad, U. Beifuss, A. Schaller, Angew. Chem., Int. Ed. 2010, 49, 202-204; 'An enantiocomplementary dirigent protein for the enantioselective laccase‐catalyzed oxidative coupling of phenols'. [40] B. Pickel, J. Pfannstiel, A. Steudle, A. Lehmann, U. Gerken, J. Pleiss, A. Schaller, FEBS J. 2012, 279, 1980-1993; 'A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins'. [41] R. Gasper, I. Effenberger, P. Kolesinski, B. Terlecka, E. Hofmann, A. Schaller, Plant Physiol. 2016, 172, 2165-2175; 'Dirigent protein mode of action revealed by the crystal structure of AtDIR6'. [42] S. C. Halls, L. B. Davin, D. M. Kramer, N. G. Lewis, Biochemistry 2004, 43, 2587-2595; 'Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein'. [43] H. Funatsuki, M. Suzuki, A. Hirose, H. Inaba, T. Yamada, M. Hajika, K. Komatsu, T. Katayama, T. Sayama, M. Ishimoto, Proc. Natl. Acad. Sci. 2014, 111, 17797-17802; 'Molecular basis of a shattering resistance boosting global dissemination of soybean'. [44] K.-W. Kim, C. A. Smith, M. D. Daily, J. R. Cort, L. B. Davin, N. G. Lewis, J. Biol. Chem. 2015, 290, 1308-1318; 'Trimeric structure of (+)-pinoresinol-forming dirigent protein at 1.95 Å resolution with three isolated active sites'. [45] H. K. Seneviratne, D. S. Dalisay, K.-W. Kim, S. G. Moinuddin, H. Yang, C. M. Hartshorn, L. B. Davin, N. G. Lewis, Phytochemistry 2015, 113, 140-148; 'Non-host disease resistance response in pea (Pisum sativum) pods: biochemical function of DRR206 and phytoalexin pathway localization'. [46] Y. Wang, B. Fristensky, Mol. Breed. 2001, 8, 263-271; 'Transgenic canola lines expressing pea defense gene DRR206 have resistance to aggressive blackleg isolates and to Rhizoctonia solani'. [47] Q.-H. Ma, Y.-C. Liu, Plant Mol. Biol. Rep. 2015, 33, 143-152; 'TaDIR13, a dirigent protein from wheat, promotes lignan biosynthesis and enhances pathogen resistance'. [48] G. Wallace, S. C. Fry, Phytochemistry 1999, 52, 769-773; 'Action of diverse peroxidases and laccases on six cell wall-related phenolic compounds'. [49] D. R. Gang, M. A. Costa, M. Fujita, A. T. Dinkova-Kostova, H.-B. Wang, V. Burlat, W. Martin, S. Sarkanen, L. B. Davin, N. G. Lewis, Chemistry & biology 1999, 6, 143-151; 'Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis'. [50] H. Shi, Z. Liu, L. Zhu, C. Zhang, Y. Chen, Y. Zhou, F. Li, X. Li, Acta Biochim. Biophys. Sin. 2012, 44, 555-564; 'Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae'. [51] R. Wu, L. Wang, Z. Wang, H. Shang, X. Liu, Y. Zhu, D. Qi, X. Deng, Prog. Nat. Sci. 2009, 19, 347-352; 'Cloning and expression analysis of a dirigent protein gene from the resurrection plant Boea hygrometrica'. [52] C. Liu, Z. Qin, X. Zhou, M. Xin, C. Wang, D. Liu, S. Li, BMC Plant Biol. 2018, 18, 1-12; 'Expression and functional analysis of the Propamocarb-related gene CsDIR16 in cucumbers'. [53] N. Li, M. Zhao, T. Liu, L. Dong, Q. Cheng, J. Wu, L. Wang, X. Chen, C. Zhang, W. Lu, Front. Plant Sci. 2017, 8, 1185; 'A novel soybean dirigent gene GmDIR22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae'. [54] K. Uchida, T. Akashi, T. Aoki, Plant Cell Physiol. 2017, 58, 398-408; 'The missing link in leguminous pterocarpan biosynthesis is a dirigent domain-containing protein with isoflavanol dehydratase activity'. [55] I. Effenberger, B. Zhang, L. Li, Q. Wang, Y. Liu, I. Klaiber, J. Pfannstiel, Q. Wang, A. Schaller, Angew. Chem., Int. Ed. 2015, 54, 14660-14663; 'Dirigent proteins from cotton (Gossypium sp.) for the atropselective synthesis of gossypol'. [56] L. Zhu, X. Zhang, L. Tu, F. Zeng, Y. Nie, X. Guo, J. Plant Pathol. 2007, 41-45; 'Isolation and characterization of two novel dirigent-like genes highly induced in cotton (Gossypium barbadense and G. hirsutum) after infection by Verticillium dahliae'. [57] I. Effenberger, M. Harport, J. Pfannstiel, I. Klaiber, A. Schaller, Appl. Microbiol. Biotechnol. 2017, 101, 2021-2032; 'Expression in Pichia pastoris and characterization of two novel dirigent proteins for atropselective formation of gossypol'. [58] G. Jin-Long, X. Li-Ping, F. Jing-Ping, S. Ya-Chun, F. Hua-Ying, Q. You-Xiong, X. Jing-Sheng, Plant Cell Rep. 2012, 31, 1801-1812; 'A novel dirigent protein gene with highly stemspecific expression from sugarcane, response to drought, salt and oxidative stresses'. [59] J. Liu, R. D. Stipanovic, A. A. Bell, L. S. Puckhaber, C. W. Magill, Phytochemistry 2008, 69, 3038-3042; 'Stereoselective coupling of hemigossypol to form (+)-gossypol in moco cotton is mediated by a dirigent protein'. [60] R. D. Stipanovic, J. D. Lopez, M. K. Dowd, L. S. Puckhaber, S. E. Duke, J. Chem. Ecol. 2006, 32, 959-968; 'Effect of racemic and (+)-and (−)-gossypol on the survival and development of Helicoverpa zea larvae'. [61] M. Eisenring, M. Meissle, S. Hagenbucher, S. E. Naranjo, F. Wettstein, J. Romeis, Front. Plant Sci. 2017, 8; 'Cotton Defense Induction Patterns Under Spatially, Temporally and Quantitatively Varying Herbivory Levels'. [62] Q.-H. Ma, Crit. Rev. Biotechnol. 2014, 34, 300-306; 'Monocot chimeric jacalins: a novel subfamily of plant lectins'. [63] P. S. Hosmani, T. Kamiya, J. Danku, S. Naseer, N. Geldner, M. L. Guerinot, D. E. Salt, Proc. Natl. Acad. Sci. 2013, 110, 14498-14503; 'Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root'. [64] I. C. R. Barbosa, N. Rojas-Murcia, N. Geldner, Curr. Opin. Biotechnol. 2019, 56, 121-129; 'The Casparian strip—one ring to bring cell biology to lignification?'. [65] M. Petersen, J. Hans, U. Matern, Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism 2010, 182-257; 'Biosynthesis of phenylpropanoids and related compounds'. [66] J.-Y. Pan, S.-L. Chen, M.-H. Yang, J. Wu, J. Sinkkonen, K. Zou, Nat. Prod. Rep. 2009, 26, 1251-1292; 'An update on lignans: natural products and synthesis'. [67] D. Schomburg, Angew. Chem. 2005, 117, 2339-2351; 'Nomenklatur der Lignane und Neolignane'. [68] C. L. Céspedes, J. G. Avila, A. M. Garcıa, J. Becerra, C. Flores, P. Aqueveque, M. Bittner, M. Hoeneisen, M. Martinez, M. Silva, Zeitschrift für Naturforschung C 2006, 61, 35-43; 'Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans'. [69] A.-K. Borg-Karlson, G. Nordlander, A. Mudalige, H. Nordenhem, C. R. Unelius, J. Chem. Ecol. 2006, 32, 943-957; 'Antifeedants in the feces of the pine weevil Hylobius abietis: identification and biological activity'. [70] C. Paniagua, A. Bilkova, P. Jackson, S. Dabravolski, W. Riber, V. Didi, J. Houser, N. Gigli- Bisceglia, M. Wimmerova, E. Budínská, J. Exp. Bot. 2017, 68, 3287-3301; 'Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure'. [71] C. Modolo, L. Ren, E. Besson, V. Robert, S. Gastaldi, P. Rousselot‐Pailley, T. Tron, ChemBioChem 2021, 22, 992-995; 'Coniferyl Alcohol Radical Detection by the Dirigent Protein At DIR6 Monitored by EPR'. [72] A. X. Cheng, Y. G. Lou, Y. B. Mao, S. Lu, L. J. Wang, X. Y. Chen, J. Integr. Plant Biol. 2007, 49, 179-186; 'Plant terpenoids: biosynthesis and ecological functions'. [73] T. A. Wagner, J. Liu, R. D. Stipanovic, L. S. Puckhaber, A. A. Bell, J. Agric. Food Chem. 2012, 60, 2594-2598; 'Hemigossypol, a constituent in developing glanded cottonseed (Gossypium hirsutum)'. [74] R. D. Stipanovic, L. S. Puckhaber, J. Liu, A. A. Bell, J. Agric. Food Chem. 2009, 57, 566- 571; 'Total and percent atropisomers of Gossypol and Gossypol-6-methyl ether in seeds from Pima cottons and accessions of Gossypium barbadense L'. [75] S. Hagenbucher, D. M. Olson, J. R. Ruberson, F. L. Wäckers, J. Romeis, Crit. Rev. Plant Sci. 2013, 32, 458-482; 'Resistance mechanisms against arthropod herbivores in cotton and their interactions with natural enemies'. [76] H. Keshmiri-Neghab, B. Goliaei, Pharm. Biol. 2014, 52, 124-128; 'Therapeutic potential of gossypol: an overview'. [77] L. Lan, C. Appelman, A. R. Smith, J. Yu, S. Larsen, R. T. Marquez, H. Liu, X. Wu, P. Gao, A. Roy, Mol. Oncol. 2015, 9, 1406-1420; 'Natural product (−)-gossypol inhibits colon cancer cell growth by targeting RNA-binding protein Musashi-1'. [78] M. Zhou, C. Zhang, Y. Wu, Y. Tang, Appl. Microbiol. Biotechnol. 2013, 97, 6159-6165; 'Metabolic engineering of gossypol in cotton'. [79] J. Buckingham, V. R. N. Munasinghe, Dictionary of Flavonoids with CD-ROM, CRC Press, 2019. [80] L. Fini, E. Hotchkiss, V. Fogliano, G. Graziani, M. Romano, E. B. De Vol, H. Qin, M. Selgrad, C. R. Boland, L. Ricciardiello, Carcinogenesis 2008, 29, 139-146; 'Chemopreventive properties of pinoresinol-rich olive oil involve a selective activation of the ATM–p53 cascade in colon cancer cell lines'. [81] A. López-Biedma, C. Sánchez-Quesada, G. Beltrán, M. Delgado-Rodríguez, J. J. Gaforio, BMC Complementary Altern. Med. 2016, 16, 1-14; 'Phytoestrogen (+)-pinoresinol exerts antitumor activity in breast cancer cells with different oestrogen receptor statuses'. [82] Y. Ning, Y. L. Fu, Q. H. Zhang, C. Zhang, Y. Chen, J. BUON 2019, 24, 709-714; 'Inhibition of in vitro and in vivo ovarian cancer cell growth by pinoresinol occurs by way of inducing autophagy, inhibition of cell invasion, loss of mitochondrial membrane potential and inhibition Ras/MEK/ERK signalling pathway'. [83] M. Martínez-Alonso, N. González-Montalbán, E. García-Fruitós, A. Villaverde, Microb. Cell Fact. 2009, 8, 1-5; 'Learning about protein solubility from bacterial inclusion bodies'. [84] M. M. Carrió, A. Villaverde, J. Bacteriol. 2005, 187, 3599-3601; 'Localization of chaperones DnaK and GroEL in bacterial inclusion bodies'. [85] A. Mitraki, J. King, Bio/technology 1989, 7, 690-697; 'Protein folding intermediates and inclusion body formation'. [86] B. Fischer, I. Sumner, P. Goodenough, Biotechnol. Bioeng. 1993, 41, 3-13; 'Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies'. [87] D. M. Francis, R. Page, Curr. Protoc. Protein Sci. 2010, 61, 5.24. 21-25.24. 29; 'Strategies to optimize protein expression in E. coli'. [88] S. M. Singh, A. K. Panda, J. Biosci. Bioeng. 2005, 99, 303-310; 'Solubilization and refolding of bacterial inclusion body proteins'. [89] A. Singh, V. Upadhyay, A. K. Upadhyay, S. M. Singh, A. K. Panda, Microb. Cell Fact. 2015, 14, 1-10; 'Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process'. [90] M.-R. Ki, S. P. Pack, Appl. Microbiol. Biotechnol. 2020, 104, 2411-2425; 'Fusion tags to enhance heterologous protein expression'. [91] S. Raran-Kurussi, D. S. Waugh, PloS one 2012, 7, e49589; 'The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated'. [92] A. Malhotra, Methods Enzymol. 2009, 463, 239-258; 'Tagging for protein expression'. [93] O. Kolaj, S. Spada, S. Robin, J. G. Wall, Microb. Cell Fact. 2009, 8, 1-17; 'Use of folding modulators to improve heterologous protein production in Escherichia coli'. [94] M. Ferrer, T. N. Chernikova, M. M. Yakimov, P. N. Golyshin, K. N. Timmis, Nat. Biotechnol. 2003, 21, 1266-1267; 'Chaperonins govern growth of Escherichia coli at low temperatures'. [95] E. García-Fruitós, Microb. Cell Fact. 2010, 9, 1-3; 'Inclusion bodies: a new concept'. [96] I. Palmer, P. T. Wingfield, Curr. Protoc. Protein Sci. 2012, 70, 6.3. 1-6.3. 20; 'Preparation and extraction of insoluble (inclusion‐body) proteins from Escherichia coli'. [97] J. Arakawa, M. Uegaki, T. Ishimizu, Protein Expression Purif. 2011, 80, 91-96; 'Effects of l-arginine on solubilization and purification of plant membrane proteins'. [98] J. Kaur, A. Kumar, J. Kaur, Int. J. Biol. Macromol. 2018, 106, 803-822; 'Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements'. [99] G. Chhetri, P. Kalita, T. Tripathi, MethodsX 2015, 2, 385-391; 'An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli'. [100] S. Chaudhuri, B. Jana, T. Basu, Cell Biol. Toxicol. 2006, 22, 29-37; 'Why does ethanol induce cellular heat-shock response?'. [101] J. J. Almagro Armenteros, C. K. Sønderby, S. K. Sønderby, H. Nielsen, O. Winther, Bioinformatics 2017, 33, 3387-3395; 'DeepLoc: prediction of protein subcellular localization using deep learning'. [102] T. G. Schmidt, A. Skerra, Nat. Protoc. 2007, 2, 1528-1535; 'The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins'. [103] L. Belval, A. Marquette, P. Mestre, M.-C. Piron, G. Demangeat, D. Merdinoglu, J.-F. Chich, Protein Expression Purif. 2015, 109, 29-34; 'A fast and simple method to eliminate Cpn60 from functional recombinant proteins produced by E. coli Arctic Express'. [104] J. M. Song, Y. J. An, M. H. Kang, Y.-H. Lee, S.-S. Cha, Protein Expression Purif. 2012, 82, 297-301; 'Cultivation at 6–10 C is an effective strategy to overcome the insolubility of recombinant proteins in Escherichia coli'. [105] E. Gasteiger, C. Hoogland, A. Gattiker, M. R. Wilkins, R. D. Appel, A. Bairoch, The proteomics protocols handbook 2005, 571-607; 'Protein identification and analysis tools on the ExPASy server'. [106] M. Lebendiker, T. Danieli, FEBS Lett. 2014, 588, 236-246; 'Production of prone-toaggregate proteins'. [107] M. Zhou, J. A. Laureanti, C. J. Bell, M. Kwon, Q. Meng, I. V. Novikova, D. G. Thomas, C. D. Nicora, R. L. Sontag, D. L. Bedgar, Analyst 2021, 146, 7670-7681; 'De novo sequencing and native mass spectrometry revealed hetero-association of dirigent protein homologs and potential interacting proteins in Forsythia× intermedia'. [108] J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G. A. Salazar, E. L. Sonnhammer, S. C. Tosatto, L. Paladin, S. Raj, L. J. Richardson, Nucleic Acids Res. 2021, 49, D412-D419; 'Pfam: The protein families database in 2021'. [109] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, Mol. Syst. Biol. 2011, 7, 539; 'Fast, scalable generation of highquality protein multiple sequence alignments using Clustal Omega'. [110] I. Letunic, P. Bork, Nucleic Acids Res. 2021, 49, W293-W296; 'Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation'. [111] U. Consortium, Nucleic Acids Res. 2019, 47, D506-D515; 'UniProt: a worldwide hub of protein knowledge'. [112] F. Liu, W. Xu, Q. Wei, Z. Zhang, Z. Xing, L. Tan, C. Di, D. Yao, C. Wang, Y. Tan, PLoS One 2010, 5, e8632; 'Gene expression profiles deciphering rice phenotypic variation between Nipponbare (Japonica) and 93-11 (Indica) during oxidative stress'. [113] T. Sasaki, B. Burr, Curr. Opin. Plant Biol. 2000, 3, 138-142; 'International Rice Genome Sequencing Project: the effort to completely sequence the rice genome'. [114] N. Alexandratos, J. Bruinsma, 2012; 'World agriculture towards 2030/2050: the 2012 revision'. [115] E.-C. Oerke, J. Agric. Sci. 2006, 144, 31-43; 'Crop losses to pests'. [116] R. Mendelsohn, J. Natural Resources Policy Research 2009, 1, 5-19; 'The impact of climate change on agriculture in developing countries'. [117] N. K. Arora, Vol. 2, Springer, 2019, pp. 95-96. [118] S. Shrestha, Acta Sci. Agric 2019, 3, 74-80; 'Effects of climate change in agricultural insect pest'. [119] G. S. Malhi, M. Kaur, P. Kaushik, Sustainability 2021, 13, 1318; 'Impact of climate change on agriculture and its mitigation strategies: A review'. [120] I. Secretariat, M. Gullino, R. Albajes, I. Al-Jboory, F. Angelotti, S. Chakraborty, K. Garrett, B. Hurley, P. Juroszek, K. Makkouk, Scientific review of the impact of climate change on plant pests-A global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems 2021; 'Scientific review of the impact of climate change on plant pests'. [121] S. Bregaglio, M. Donatelli, R. Confalonieri, Agron. Sustainable Dev. 2013, 33, 767-776; 'Fungal infections of rice, wheat, and grape in Europe in 2030–2050'. [122] D. J. Bowles, Annu. Rev. Biochem. 1990, 59, 873-907; 'Defense-related proteins in higher plants'. [123] R. N. Bennett, R. M. Wallsgrove, New Phytol. 1994, 127, 617-633; 'Secondary metabolites in plant defence mechanisms'. [124] H. Stillmark, MD Thesis thesis, University of Dorpat 1888. [125] E. J. Van Damme, W. J. Peumans, A. Pusztai, S. Bardocz, Handbook of plant lectins: properties and biomedical applications, John Wiley & Sons, 1998. [126] K. Landsteiner, H. Raubitschek, Zbl Bakt I Abt Orig 1907, 45, 600-607; 'Beobachtungen über hämolyse und hämagglutination'. [127] M. Elfstrand, Görberdorfer Veröffentlichungen a. Band I 1898, 1-159; 'Über blutkörperchenagglutinierende Eiweisse'. [128] W. C. Boyd, E. Shapleigh, Science 1954, 119, 419; 'Specific precipitating activity of plant agglutinins (lectins)'. [129] W. M. Watkins, W. Morgan, Nature 1952, 169, 825-826; 'Neutralization of the anti-H agglutinin in eel serum by simple sugars'. [130] E. J. Van Damme, Lectins 2014, 3-13; 'History of plant lectin research'. [131] M. Tsaneva, E. J. Van Damme, Glycoconjugate J. 2020, 1-19; '130 years of plant lectin research'. [132] I. J. Goldstein, Nature 1980, 285, 66; 'What should be called a lectin?'. [133] S. H. Barondes, Trends Biochem. Sci. 1988, 13, 480-482; 'Bifunctional properties of lectins: lectins redefined'. [134] W. J. Peumans, E. Van Damme, Plant Physiol. 1995, 109, 347; 'Lectins as plant defense proteins'. [135] R. Warkentin, D. H. Kwan, Molecules 2021, 26, 380; 'Resources and Methods for Engineering “Designer” Glycan-Binding Proteins'. [136] N. Lannoo, E. J. Van Damme, Front. Plant Sci. 2014, 5, 397; 'Lectin domains at the frontiers of plant defense'. [137] A. Barre, Y. Bourne, E. J. Van Damme, P. Rougé, Int. J. Mol. Sci. 2019, 20, 254; 'Overview of the structure–function relationships of mannose-specific lectins from plants, algae and fungi'. [138] E. J. Van Damme, W. J. Peumans, A. Barre, P. Rougé, Crit. Rev. Plant Sci. 1998, 17, 575- 692; 'Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles'. [139] E. J. Van Damme, D. F. Smith, R. Cummings, W. J. Peumans, in The Molecular Immunology of Complex Carbohydrates-3, Springer, 2011, pp. 757-767. [140] N. Sharon, 2008; 'Lectins: past, present and future'. [141] T. De Coninck, K. Gistelinck, H. C. Janse van Rensburg, W. Van den Ende, E. J. Van Damme, Biomolecules 2021, 11, 756; 'Sweet Modifications Modulate Plant Development'. [142] H. Kaku, I. J. Goldstein, E. J. Van Damme, W. J. Peumans, Carbohydr. Res. 1992, 229, 347-353; 'New mannose-specific lectins from garlic (Allium sativum) and ramsons (Allium ursinum) bulbs'. [143] P. Rougé, W. J. Peumans, A. Barre, E. J. Van Damme, Biochem. Biophys. Res. Commun. 2003, 304, 91-97; 'A structural basis for the difference in specificity between the two jacalin-related lectins from mulberry (Morus nigra) bark'. [144] N. Varejão, M. da Silva Almeida, N. N. De Cicco, G. C. Atella, L. C. Coelho, M. T. S. Correia, D. Foguel, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2010, 1804, 1917-1924; 'Heterologous expression and purification of a biologically active legume lectin from Cratylia mollis seeds (CRAMOLL 1)'. [145] E. Van Damme, W. Peumans, Planta 1990, 182, 605-609; 'Developmental changes and tissue distribution of lectin in Galanthus nivalis L. and Narcissus cv. Carlton'. [146] E. Van Damme, W. J. Peumans, Planta 1989, 10-18; 'Developmental changes and tissue distribution of lectin in Tulipa'. [147] D. G. Robinson, P. Oliviusson, G. Hinz, Traffic 2005, 6, 615-625; 'Protein sorting to the storage vacuoles of plants: a critical appraisal'. [148] J. Greenwood, H. Stinissen, W. Peumans, M. Chrispeels, Planta 1986, 167, 275-278; 'Sambucus nigra agglutinin is located in protein bodies in the phloem parenchyma of the bark'. [149] W. Zhang, W. J. Peumans, A. Barre, C. H. Astoul, P. Rovira, P. Rougé, P. Proost, P. Truffa- Bachi, A. A. Jalali, E. J. Van Damme, Planta 2000, 210, 970-978; 'Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants'. [150] Y. Chen, W. J. Peumans, B. Hause, J. Bras, M. Kumar, P. Proost, A. Barre, P. Rougé, E. J. Van Damme, The FASEB J. 2002, 16, 905-907; 'Jasmonate methyl ester induces the synthesis of a cytoplasmic/nuclear chitooligosaccharide‐binding lectin in tobacco leaves'. [151] T. De Coninck, E. J. Van Damme, Plant Sci. 2021, 111096; 'The multiple roles of plant lectins'. [152] N. Lannoo, E. J. Van Damme, Biochimica et Biophysica Acta (BBA)-General Subjects 2010, 1800, 190-201; 'Nucleocytoplasmic plant lectins'. [153] E. J. Van Damme, N. Lannoo, W. J. Peumans, Adv. Bot. Res. 2008, 48, 107-209; 'Plant lectins'. [154] W. J. Peumans, J. Van Damme, A. Barre, P. Rougé, The Molecular Immunology of Complex Carbohydrates—2 2001, 27-54; 'Classification of plant lectins in families of structurally and evolutionary related proteins'. [155] Y.-j. Han, Z.-h. Zhong, L.-l. Song, O. Stefan, Z.-h. Wang, G.-d. Lu, J. Integr. Agric. 2018, 17, 1252-1266; 'Evolutionary analysis of plant jacalin-related lectins (JRLs) family and expression of rice JRLs in response to Magnaporthe oryzae'. [156] R. de Azevedo Moreira, I. L. Ainouz, Biol. Plant. 1981, 23, 186; 'Lectins from seeds of jack fruit (Artocarpus integrifolia L.): isolation and purification of two isolectins from the albumin fraction'. [157] W. J. Peumans, B. Hause, E. J. Van Damme, FEBS Lett. 2000, 477, 186-192; 'The galactose‐binding and mannose‐binding jacalin‐related lectins are located in different sub‐cellular compartments'. [158] R. Sankaranarayanan, K. Sekar, R. Banerjee, V. Sharma, A. Surolia, M. Vijayan, Nat. Struct. Biol. 1996, 3, 596-603; 'A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold'. [159] Y. Li, J. Zhang, F. Hu, A. Adolf, M. Ackah, A. A. Justice, Q. Lin, L. Li, W.-G. Zhao, J. Hortic. Sci. Biotechnol. 2021, 96, 24-33; 'Cloning and abiotic stress expression analysis of galactose-binding lectin (GBL) gene from mulberry and its prokaryotic expression in E. coli'. [160] X.-Y. Liu, H. Li, W. Zhang, Biotechnol. Biotechnol. Equip. 2014, 28, 408-416; 'The lectin from Musa paradisiaca binds with the capsid protein of tobacco mosaic virus and prevents viral infection'. [161] J. Xiao, C. Li, S. Xu, L. Xing, Y. Xu, K. Chong, Plant Physiol. 2015, 169, 2102-2117; 'JACALIN-LECTIN LIKE1 regulates the nuclear accumulation of GLYCINE-RICH RNABINDING PROTEIN7, influencing the RNA processing of FLOWERING LOCUS C antisense transcripts and flowering time in Arabidopsis'. [162] M. Kanagawa, Y. Liu, S. Hanashima, A. Ikeda, W. Chai, Y. Nakano, K. Kojima-Aikawa, T. Feizi, Y. Yamaguchi, J. Biol. Chem. 2014, 289, 16954-16965; 'Structural basis for multiple sugar recognition of Jacalin-related human ZG16p lectin'. [163] M. Gabrielsen, P. S. Abdul-Rahman, S. Othman, O. H. Hashim, R. J. Cogdell, Acta Crystallogr., Sect. F: Struct. Biol. Commun. 2014, 70, 709-716; 'Structures and binding specificity of galactose-and mannose-binding lectins from champedak: differences from jackfruit lectins'. [164] H. Yang, T. H. Czapla, J. Biol. Chem. 1993, 268, 5905-5910; 'Isolation and characterization of cDNA clones encoding jacalin isolectins'. [165] X. Lee, A. Thompson, Z. Zhang, H. Ton-that, J. Biesterfeldt, C. Ogata, L. Xu, R. A. Johnston, N. M. Young, J. Biol. Chem. 1998, 273, 6312-6318; 'Structure of the Complex of Maclura pomiferaAgglutinin and the T-antigen Disaccharide, Galβ1, 3GalNAc'. [166] E. J. Van Damme, Glycoconjugate J. 2021, 1-15; '35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine'. [167] G. Poiroux, A. Barre, M. Simplicien, S. Pelofy, B. Ségui, E. J. Van Damme, P. Rougé, H. Benoist, Int. J. Mol. Sci. 2019, 20, 230; 'Morniga-G, a T/Tn-specific lectin, induces leukemic cell death via caspase and DR5 receptor-dependent pathways'. [168] B. Claes, R. Dekeyser, R. Villarroel, M. Van den Bulcke, G. Bauw, M. Van Montagu, A. Caplan, The Plant Cell 1990, 2, 19-27; 'Characterization of a rice gene showing organspecific expression in response to salt stress and drought'. [169] X. He, L. Li, H. Xu, J. Xi, X. Cao, H. Xu, S. Rong, Y. Dong, C. Wang, R. Chen, Plant Biol. 2017, 19, 257-267; 'A rice jacalin‐related mannose‐binding lectin gene, OsJRL, enhances Escherichia coli viability under high salinity stress and improves salinity tolerance of rice'. [170] M. Regente, G. B. Taveira, M. Pinedo, M. M. Elizalde, A. J. Ticchi, M. S. Diz, A. O. Carvalho, L. de la Canal, V. M. Gomes, Curr. Microbiol. 2014, 69, 88-95; 'A sunflower lectin with antifungal properties and putative medical mycology applications'. [171] M. Song, W. Xu, Y. Xiang, H. Jia, L. Zhang, Z. Ma, Plant Mol. Biol. 2014, 84, 95-110; 'Association of jacalin-related lectins with wheat responses to stresses revealed by transcriptional profiling'. [172] S. Van Holle, E. J. Van Damme, Molecules 2015, 20, 2868-2891; 'Distribution and evolution of the lectin family in soybean (Glycine max)'. [173] L. Eggermont, B. Verstraeten, E. Van Damme, Plant Genome 2017, 10; 'Genome-wide screening for lectin motifs in Arabidopsis thaliana'. [174] S. Van Holle, K. De Schutter, L. Eggermont, M. Tsaneva, L. Dang, E. J. Van Damme, Int. J. Mol. Sci. 2017, 18, 1136; 'Comparative study of lectin domains in model species: new insights into evolutionary dynamics'. [175] L. Esch, U. Schaffrath, Int. J. Mol. Sci. 2017, 18, 1592; 'An update on jacalin-like lectins and their role in plant defense'. [176] Q.-H. Ma, J.-Q. Han, Planta 2021, 253, 1-10; 'Identification of monocot chimeric jacalin family reveals functional diversity in wheat'. [177] R. Ma, B. Huang, J. Chen, Z. Huang, P. Yu, S. Ruan, Z. Zhang, PLOS ONE 2021, 16, e0248318; 'Genome-wide identification and expression analysis of dirigent-jacalin genes from plant chimeric lectins in Moso bamboo (Phyllostachys edulis)'. [178] M. Tsaneva, K. De Schutter, B. Verstraeten, E. J. Van Damme, Int. J. Mol. Sci. 2019, 20, 437; 'Lectin sequence distribution in QTLs from rice (Oryza sativa) suggest a role in morphological traits and stress responses'. [179] H. M. Li, D. Rotter, S. A. Bonos, W. A. Meyer, F. C. Belanger, Plant Physiol. 2005, 138, 2386-2395; 'Identification of a gene in the process of being lost from the genus Agrostis'. [180] F. S. Kittur, H. Y. Yu, D. R. Bevan, A. Esen, Glycobiology 2009, 19, 277-287; 'Homolog of the maize β-glucosidase aggregating factor from sorghum is a jacalin-related GalNAcspecific lectin but lacks protein aggregating activity'. [181] F. S. Kittur, H. Y. Yu, D. R. Bevan, A. Esen, Plant Physiol. Biochem. 2010, 48, 731-734; 'Deletion of the N-terminal dirigent domain in maize β-glucosidase aggregating factor and its homolog sorghum lectin dramatically alters the sugar-specificities of their lectin domains'. [182] L. M. Andrade, R. F. Peixoto-Junior, R. V. Ribeiro, P. M. Nóbile, M. S. Brito, P. E. R. Marchiori, S. D. Carlin, A. P. B. Martins, M. H. S. Goldman, J. P. P. Llerena, Front. Plant Sci. 2019, 10, 65; 'Biomass accumulation and cell wall structure of rice plants overexpressing a dirigent-jacalin of sugarcane (ShDJ) under varying conditions of water availability'. [183] S. Subramanyam, D. F. Smith, J. C. Clemens, M. A. Webb, N. Sardesai, C. E. Williams, Plant Physiol. 2008, 147, 1412-1426; 'Functional characterization of HFR1, a highmannose N-glycan-specific wheat lectin induced by Hessian fly larvae'. [184] C. E. Williams, C. C. Collier, J. A. Nemacheck, C. Liang, S. E. Cambron, J. Chem. Ecol. 2002, 28, 1411-1428; 'A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvae'. [185] X.-M. Wang, Q.-H. Ma, Plant Physiol. Biochem. 2005, 43, 185-192; 'Characterization of a jasmonate-regulated wheat protein related to a beta-glucosidase-aggregating factor'. [186] Q.-H. Ma, B. Tian, Y.-L. Li, Biochimie 2010, 92, 187-193; 'Overexpression of a wheat jasmonate-regulated lectin increases pathogen resistance'. [187] Q.-H. Ma, W.-B. Zhen, Y.-C. Liu, Biochimie 2013, 95, 359-365; 'Jacalin domain in wheat jasmonate-regulated protein Ta-JA1 confers agglutinating activity and pathogen resistance'. [188] W.-d. Yong, Y.-y. Xu, W.-z. Xu, X. Wang, N. Li, J.-s. Wu, T.-b. Liang, K. Chong, Z.-h. Xu, K.-h. Tan, Planta 2003, 217, 261-270; 'Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2'. [189] L. Xing, J. Li, Y. Xu, Z. Xu, K. Chong, PLoS one 2009, 4, e4854; 'Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility'. [190] J. Xiao, S. Xu, C. Li, Y. Xu, L. Xing, Y. Niu, Q. Huan, Y. Tang, C. Zhao, D. Wagner, Nat. Commun. 2014, 5, 1-13; 'O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat'. [191] J. F. Jiang, Y. Y. Xu, K. Chong, J. Integr. Plant Biol. 2007, 49, 230-237; 'Overexpression of OsJAC1, a lectin gene, suppresses the coleoptile and stem elongation in rice'. [192] D. Weidenbach, L. Esch, C. Möller, G. Hensel, J. Kumlehn, C. Höfle, R. Hückelhoven, U. Schaffrath, Mol. Plant 2016, 9, 514-527; 'Polarized defense against fungal pathogens is mediated by the Jacalin-related lectin domain of modular Poaceae-specific proteins'. [193] I. J. Jung, J.-W. Ahn, S. Jung, J. E. Hwang, M. J. Hong, H.-I. Choi, J.-B. Kim, BMC Plant Biol. 2019, 19, 561; 'Overexpression of rice jacalin-related mannose-binding lectin (OsJAC1) enhances resistance to ionizing radiation in Arabidopsis'. [194] J.-F. Jiang, Y. Han, L.-J. Xing, Y.-Y. Xu, Z.-H. Xu, K. Chong, Toxicon 2006, 47, 133-139; 'Cloning and expression of a novel cDNA encoding a mannose-specific jacalin-related lectin from Oryza sativa'. [195] F. S. Kittur, M. Lalgondar, H. Y. Yu, D. R. Bevan, A. Esen, J. Biol. Chem. 2007, 282, 7299- 7311; 'Maize β-glucosidase-aggregating factor is a polyspecific jacalin-related chimeric lectin, and its lectin domain is responsible for β-glucosidase aggregation'. [196] A. Esen, D. J. Blanchard, Plant Physiol. 2000, 122, 563-572; 'A specific β-glucosidaseaggregating factor is responsible for the β-glucosidase null phenotype in maize'. [197] D. J. Blanchard, M. Cicek, J. Chen, A. Esen, J. Biol. Chem. 2001, 276, 11895-11901; 'Identification of β-glucosidase aggregating factor (BGAF) and mapping of BGAF binding regions on maize β-glucosidase'. [198] H. Y. Yu, F. S. Kittur, D. R. Bevan, A. Esen, Phytochemistry 2009, 70, 1355-1365; 'Determination of β-glucosidase aggregating factor (BGAF) binding and polymerization regions on the maize β-glucosidase isozyme Glu1'. [199] R. D. Finn, J. Mistry, B. Schuster-Böckler, S. Griffiths-Jones, V. Hollich, T. Lassmann, S. Moxon, M. Marshall, A. Khanna, R. Durbin, Nucleic Acids Res. 2006, 34, D247-D251; 'Pfam: clans, web tools and services'. [200] A. E. Vieira Neto, F. D. de Sousa, H. D. M. Pereira, F. B. M. B. Moreno, M. R. Lourenzoni, T. B. Grangeiro, A. C. d. O. Monteiro Moreira, R. d. A. Moreira, Biochem. J. 2019, 476, 101-113; 'New structural insights into anomeric carbohydrate recognition by frutalin: an α-d-galactose-binding lectin from breadfruit seeds'. [201] A. A. Jeyaprakash, P. G. Rani, G. B. Reddy, S. Banumathi, C. Betzel, K. Sekar, A. Surolia, M. Vijayan, J. Mol. Biol. 2002, 321, 637-645; 'Crystal structure of the jacalin–T-antigen complex and a comparative study of lectin–T-antigen complexes'. [202] M. Azarkan, G. Feller, J. Vandenameele, R. Herman, R. El Mahyaoui, E. Sauvage, A. V. Broeck, A. Matagne, P. Charlier, F. Kerff, Sci. Rep. 2018, 8, 1-14; 'Biochemical and structural characterization of a mannose binding jacalin-related lectin with two-sugar binding sites from pineapple (Ananas comosus) stem'. [203] F. D. de Sousa, B. B. da Silva, G. P. Furtado, I. d. S. Carneiro, M. D. P. Lobo, Y. Guan, J. Guo, A. R. Coker, M. R. Lourenzoni, M. I. F. Guedes, Biosci. Rep. 2017, 37, BSR20170969; 'Frutapin, a lectin from Artocarpus incisa (breadfruit): cloning, expression and molecular insights'. [204] J. L. Meagher, H. C. Winter, P. Ezell, I. J. Goldstein, J. A. Stuckey, Glycobiology 2005, 15, 1033-1042; 'Crystal structure of banana lectin reveals a novel second sugar binding site'. [205] E. Garénaux, M. Kanagawa, T. Tsuchiyama, K. Hori, T. Kanazawa, A. Goshima, M. Chiba, H. Yasue, A. Ikeda, Y. Yamaguchi, J. Biol. Chem. 2015, 290, 5484-5501; 'Discovery, primary, and crystal structures and capacitation-related properties of a prostatederived heparin-binding protein WGA16 from boar sperm'. [206] A. Sharma, M. Vijayan, Glycobiology 2011, 21, 23-33; 'Influence of glycosidic linkage on the nature of carbohydrate binding in β-prism I fold lectins: An X-ray and molecular dynamics investigation on banana lectin–carbohydrate complexes'. [207] Y. Bourne, V. Roig-Zamboni, A. Barre, W. J. Peumans, C. H. Astoul, E. J. Van Damme, P. Rougé, J. Biol. Chem. 2004, 279, 527-533; 'The crystal structure of the Calystegia sepium agglutinin reveals a novel quaternary arrangement of lectin subunits with a β- prism fold'. [208] A. A. Jeyaprakash, S. Katiyar, C. Swaminathan, K. Sekar, A. Surolia, M. Vijayan, J. Mol. Biol. 2003, 332, 217-228; 'Structural basis of the carbohydrate specificities of jacalin: an X-ray and modeling study'. [209] F. G. del Sol, C. Nagano, B. S. Cavada, J. J. Calvete, J. Mol. Biol. 2005, 353, 574-583; 'The first crystal structure of a Mimosoideae lectin reveals a novel quaternary arrangement of a widespread domain'. [210] Y. Bourne, V. Zamboni, A. Barre, W. J. Peumans, E. J. Van Damme, P. Rougé, Structure 1999, 7, 1473-1482; 'Helianthus tuberosus lectin reveals a widespread scaffold for mannose-binding lectins'. [211] J. Huang, Z. Xu, D. Wang, C. M. Ogata, K. Palczewski, X. Lee, N. M. Young, Glycobiology 2010, 20, 1643-1653; 'Characterization of the secondary binding sites of Maclura pomifera agglutinin by glycan array and crystallographic analyses'. [212] J. Pratap, A. A. Jeyaprakash, P. G. Rani, K. Sekar, A. Surolia, M. Vijayan, J. Mol. Biol. 2002, 317, 237-247; 'Crystal structures of artocarpin, a Moraceae lectin with mannose specificity, and its complex with methyl-α-D-mannose: implications to the generation of carbohydrate specificity'. [213] W.-C. Chang, K.-L. Liu, F.-C. Hsu, S.-T. Jeng, Y.-S. Cheng, PLoS One 2012, 7, e40618; 'Ipomoelin, a jacalin-related lectin with a compact tetrameric association and versatile carbohydrate binding properties regulated by its N terminus'. [214] A. Rabijns, A. Barre, E. J. Van Damme, W. J. Peumans, C. J. De Ranter, P. Rougé, FEBS J. 2005, 272, 3725-3732; 'Structural analysis of the jacalin‐related lectin MornigaM from the black mulberry (Morus nigra) in complex with mannose'. [215] M. Nagae, S. K. Mishra, S. Hanashima, H. Tateno, Y. Yamaguchi, Glycobiology 2017, 27, 1120-1133; 'Distinct roles for each N-glycan branch interacting with mannose-binding type Jacalin-related lectins Orysata and Calsepa'. [216] M. Nagae, M. Kanagawa, K. Morita-Matsumoto, S. Hanashima, Y. Kizuka, N. Taniguchi, Y. Yamaguchi, Sci. Rep. 2016, 6, 1-11; 'Atomic visualization of a flipped-back conformation of bisected glycans bound to specific lectins'. [217] S. Nakamura‐Tsuruta, N. Uchiyama, W. J. Peumans, E. J. Van Damme, K. Totani, Y. Ito, J. Hirabayashi, FEBS J. 2008, 275, 1227-1239; 'Analysis of the sugar‐binding specificity of mannose‐binding‐type Jacalin‐related lectins by frontal affinity chromatography–an approach to functional classification'. [218] H.-J. Gabius, S. André, J. Jiménez-Barbero, A. Romero, D. Solís, Trends Biochem. Sci. 2011, 36, 298-313; 'From lectin structure to functional glycomics: principles of the sugar code'. [219] A. V. Fejzagic, Heinrich-Heine-Universität Düsseldorf 2016. [220] M. Nöth, Heinrich-Heine-Universität Düsseldorf 2017. [221] T. El Harrar, Heinrich-Heine-Universität Düsseldorf 2018. [222] G. Qing, L.-C. Ma, A. Khorchid, G. Swapna, T. K. Mal, M. M. Takayama, B. Xia, S. Phadtare, H. Ke, T. Acton, Nat. Biotechnol. 2004, 22, 877-882; 'Cold-shock induced high-yield protein production in Escherichia coli'. [223] L. Kong, S. Ranganathan, Briefings Bioinf. 2004, 5, 179-192; 'Delineation of modular proteins: domain boundary prediction from sequence information'. [224] M. Källberg, H. Wang, S. Wang, J. Peng, Z. Wang, H. Lu, J. Xu, Nat. Protoc. 2012, 7, 1511- 1522; 'Template-based protein structure modeling using the RaptorX web server'. [225] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 2000, 28, 235-242; 'The protein data bank'. [226] J. J. A. Armenteros, K. D. Tsirigos, C. K. Sønderby, T. N. Petersen, O. Winther, S. Brunak, G. von Heijne, H. Nielsen, Nat. Biotechnol. 2019, 37, 420-423; 'SignalP 5.0 improves signal peptide predictions using deep neural networks'. [227] F. W. Studier, J. Mol. Biol. 1991, 219, 37-44; 'Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system'. [228] T. S. Kumar, K. Gopalakrishna, V. Prasad, M. Pandit, Anal. Biochem. 1993, 213, 226- 228; 'Multiple bands on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels of proteins due to intermolecular disulfide cross-linking'. [229] D. V. Rial, E. A. Ceccarelli, Protein Expression Purif. 2002, 25, 503-507; 'Removal of DnaK contamination during fusion protein purifications'. [230] E. S. Morales, I. L. Parcerisa, E. A. Ceccarelli, Protein Sci. 2019, 28, 800-807; 'A novel method for removing contaminant Hsp70 molecular chaperones from recombinant proteins'. [231] S. A. Seidel, C. J. Wienken, S. Geissler, M. Jerabek‐Willemsen, S. Duhr, A. Reiter, D. Trauner, D. Braun, P. Baaske, Angew. Chem., Int. Ed. 2012, 51, 10656-10659; 'Labelfree microscale thermophoresis discriminates sites and affinity of protein–ligand binding'. [232] M. Maschberger, H. M. Resch, S. Duhr, D. Breitsprecher, Germany: NanoTemper Technologies GmbH. Available from: www. nanotemper-technologies. com 2015; 'Exploring protein stability by nanoDSF'. [233] C. A. Royer, C. J. Mann, C. R. Matthews, Protein Sci. 1993, 2, 1844-1852; 'Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants'. [234] A. J. Meyer, T. Brach, L. Marty, S. Kreye, N. Rouhier, J. P. Jacquot, R. Hell, Plant J. 2007, 52, 973-986; 'Redox‐sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer'. [235] A. Savitzky, M. J. Golay, Anal. Chem. 1964, 36, 1627-1639; 'Smoothing and differentiation of data by simplified least squares procedures'. [236] A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y.-H. Lee, Y. Goto, M. Réfrégiers, J. Kardos, Nucleic Acids Res. 2018, 46, W315-W322; 'BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra'. [237] D. Datta, G. Pohlentz, M. Schulte, M. Kaiser, F. M. Goycoolea, J. Müthing, M. Mormann, M. J. Swamy, Arch. Biochem. Biophys. 2016, 609, 59-68; 'Physico-chemical characteristics and primary structure of an affinity-purified α-D-galactose-specific, jacalin-related lectin from the latex of mulberry (Morus indica)'. [238] M. D. Swanson, D. M. Boudreaux, L. Salmon, J. Chugh, H. C. Winter, J. L. Meagher, S. André, P. V. Murphy, S. Oscarson, R. Roy, Cell 2015, 163, 746-758; 'Engineering a therapeutic lectin by uncoupling mitogenicity from antiviral activity'. [239] R. A. Laskowski, M. B. Swindells, ACS Publications, 2011. [240] S. El-Gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani, S. C. Potter, M. Qureshi, L. J. Richardson, G. A. Salazar, A. Smart, Nucleic Acids Res. 2019, 47, D427-D432; 'The Pfam protein families database in 2019'. [241] S. Nakae, M. Shionyu, T. Ogawa, T. Shirai, Proteins: Struct., Funct., Bioinf. 2018, 86, 644- 653; 'Structures of jacalin‐related lectin PPL3 regulating pearl shell biomineralization'. [242] G. M. Boratyn, A. A. Schäffer, R. Agarwala, S. F. Altschul, D. J. Lipman, T. L. Madden, Biol. Direct 2012, 7, 1-14; 'Domain enhanced lookup time accelerated BLAST'. [243] E. M. Covés-Datson, S. R. King, M. Legendre, M. D. Swanson, A. Gupta, S. Claes, J. L. Meagher, A. Boonen, L. Zhang, B. Kalveram, Sci. Rep. 2021, 11, 1-15; 'Targeted disruption of pi–pi stacking in Malaysian banana lectin reduces mitogenicity while preserving antiviral activity'. [244] G. Van Zundert, J. Rodrigues, M. Trellet, C. Schmitz, P. Kastritis, E. Karaca, A. Melquiond, M. van Dijk, S. De Vries, A. Bonvin, J. Mol. Biol. 2016, 428, 720-725; 'The HADDOCK2. 2 web server: user-friendly integrative modeling of biomolecular complexes'. [245] S. J. de Vries, A. M. Bonvin, PloS one 2011, 6, e17695; 'CPORT: a consensus interface predictor and its performance in prediction-driven docking with HADDOCK'. [246] D. Solís, M. J. Maté, M. Lohr, J. P. Ribeiro, L. López-Merino, S. André, E. Buzamet, F. J. Cañada, H. Kaltner, M. Lensch, Int. J. Biochem. Cell Biol. 2010, 42, 1019-1029; 'Ndomain of human adhesion/growth-regulatory galectin-9: preference for distinct conformers and non-sialylated N-glycans and detection of ligand-induced structural changes in crystal and solution'. [247] R. Chang, A. R. Yeager, N. S. Finney, Org. Biomol. Chem. 2003, 1, 39-41; 'Probing the mechanism of a fungal glycosyltransferase essential for cell wall biosynthesis. UDPchitobiose is not a substrate for chitin synthase'. [248] J. Lundstrøm, E. Korhonen, F. Lisacek, D. Bojar, Adv. Sci. 2021, 2103807; 'LectinOracle: A Generalizable Deep Learning Model for Lectin–Glycan Binding Prediction'. [249] E. H. Strickland, S. Beychok, Crit. Rev. Biochem. 1974, 2, 113-175; 'Aromatic contributions to circular dichroism spectra of protein'. [250] K. Sano, H. Ogawa, in Lectins, Springer, 2014, pp. 47-52. [251] L. Zimmermann, A. Stephens, S.-Z. Nam, D. Rau, J. Kübler, M. Lozajic, F. Gabler, J. Söding, A. N. Lupas, V. Alva, J. Mol. Biol. 2018, 430, 2237-2243; 'A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core'. [252] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman, Nucleic Acids Res. 1997, 25, 3389-3402; 'Gapped BLAST and PSI-BLAST: a new generation of protein database search programs'. [253] M. Koeck, A. R. Hardham, P. N. Dodds, Cell. Microbiol. 2011, 13, 1849-1857; 'The role of effectors of biotrophic and hemibiotrophic fungi in infection'. [254] T. R. Costa, C. Felisberto-Rodrigues, A. Meir, M. S. Prevost, A. Redzej, M. Trokter, G. Waksman, Nat. Rev. Microbiol. 2015, 13, 343-359; 'Secretion systems in Gramnegative bacteria: structural and mechanistic insights'. [255] J. F. Peberdy, Trends Biotechnol. 1994, 12, 50-57; 'Protein secretion in filamentous fungi—trying to understand a highly productive black box'. [256] L. Pazzagli, G. Cappugi, G. Manao, G. Camici, A. Santini, A. Scala, J. Biol. Chem. 1999, 274, 24959-24964; 'Purification, characterization, and amino acid sequence of ceratoplatanin, a new phytotoxic protein from Ceratocystis fimbriata f. sp. platani'. [257] A. D. Moore, Å. K. Björklund, D. Ekman, E. Bornberg-Bauer, A. Elofsson, Trends Biochem. 2008, 33, 444-451; 'Arrangements in the modular evolution of proteins'. [258] P. Linder, E. Jankowsky, Nat. Rev. Mol. Cell Biol. 2011, 12, 505-516; 'From unwinding to clamping—the DEAD box RNA helicase family'. [259] N. R. Cozzarelli, Science 1980, 207, 953-960; 'DNA gyrase and the supercoiling of DNA'. [260] A. Tanitame, Y. Oyamada, K. Ofuji, M. Fujimoto, N. Iwai, Y. Hiyama, K. Suzuki, H. Ito, H. Terauchi, M. Kawasaki, J. Med. Chem. 2004, 47, 3693-3696; 'Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives'. [261] N. Blom, S. Gammeltoft, S. Brunak, J. Mol. Biol. 1999, 294, 1351-1362; 'Sequence and structure-based prediction of eukaryotic protein phosphorylation sites'. [262] S. D. Breazeale, A. A. Ribeiro, A. L. McClerren, C. R. Raetz, J. Biol. Chem. 2005, 280, 14154-14167; 'A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-l-arabinose: identification and function of UDP-4-deoxy-4-formamido-l-arabinose'. [263] D. Bowles, E.-K. Lim, B. Poppenberger, F. E. Vaistij, Annu. Rev. Plant Biol. 2006, 57, 567- 597; 'Glycosyltransferases of lipophilic small molecules'. [264] N. Jiang, R. E. Wiemels, A. Soya, R. Whitley, M. Held, A. Faik, Plant Physiol. 2016, 170, 1999-2023; 'Composition, assembly, and trafficking of a wheat xylan synthase complex'. [265] T. N. Nguyen, J. A. Goodrich, Nat. Methods 2006, 3, 135-139; 'Protein-protein interaction assays: eliminating false positive interactions'. [266] A. D. Hanlon, M. I. Larkin, R. M. Reddick, Biophys. J. 2010, 98, 297-304; 'Free-solution, label-free protein-protein interactions characterized by dynamic light scattering'. [267] A. K. Kenworthy, Methods 2001, 24, 289-296; 'Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy'. [268] K. D. Pfleger, K. A. Eidne, Nat. Methods 2006, 3, 165-174; 'Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET)'. [269] I. Remy, S. W. Michnick, Biotechniques 2007, 42, 137-145; 'Application of proteinfragment complementation assays in cell biology'. [270] Y. Fujikawa, N. Kato, The Plant J. 2007, 52, 185-195; 'TECHNICAL ADVANCE: Split luciferase complementation assay to study protein–protein interactions in Arabidopsis protoplasts'. [271] C.-D. Hu, T. K. Kerppola, Nat. Biotechnol. 2003, 21, 539-545; 'Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis'. [272] I. Remy, S. W. Michnick, Nat. Methods 2006, 3, 977-979; 'A highly sensitive proteinprotein interaction assay based on Gaussia luciferase'. [273] R. Waadt, L. K. Schmidt, M. Lohse, K. Hashimoto, R. Bock, J. Kudla, The Plant J. 2008, 56, 505-516; 'Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta'. [274] I. Manual; 'ArcticExpress Competent Cells and ArcticExpress (DE3) Competent Cells'. [275] F. W. Studier, B. A. Moffatt, J. Mol. Biol. 1986, 189, 113-130; 'Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes'. [276] B. P. Anton, E. A. Raleigh, Genome Announcements 2016, 4, e01245-01216; 'Complete genome sequence of NEB 5-alpha, a derivative of Escherichia coli K-12 DH5α'. [277] K. Nishihara, M. Kanemori, M. Kitagawa, H. Yanagi, T. Yura, Appl. Environ. Microbiol. 1998, 64, 1694-1699; 'Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli'. [278] S. D. Moore, P. E. Prevelige Jr, J. Virol. 2002, 76, 10245-10255; 'A P22 scaffold protein mutation increases the robustness of head assembly in the presence of excess portal protein'. [279] A. Skerra, T. G. Schmidt, Methods Enzymol. 2000, 326, 271-304; '[18] Use of the Streptag and streptavidin for detection and purification of recombinant proteins'. [280] P. O. Sanwald, Dissertation thesis, Heinrich-Heine-Universität Düsseldorf 2020. [281] K. L. Howe, B. Contreras-Moreira, N. De Silva, G. Maslen, W. Akanni, J. Allen, J. Alvarez- Jarreta, M. Barba, D. M. Bolser, L. Cambell, Nucleic Acids Res. 2020, 48, D689-D695; 'Ensembl Genomes 2020—enabling non-vertebrate genomic research'. [282] W. Kabsch, Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 125-132; 'Xds'. [283] A. Vagin, A. Lebedev, in Acta Crystallographica a-Foundation and Advances, Vol. 71, IUCrJ, 2 Abbey SQ, Chester, CH1 2HU, England, 2015, p. S19. [284] P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L.-W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, Acta Crystallographica Section D: Biological Crystallography 2010, 66, 213-221; 'PHENIX: a comprehensive Python-based system for macromolecular structure solution'. [285] P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Acta Crystallographica Section D: Biological Crystallography 2010, 66, 486-501; 'Features and development of Coot'. [286] O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455-461; 'AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading'. [287] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, J. Cheminf. 2011, 3, 1-14; 'Open Babel: An open chemical toolbox'. | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät » WE Chemie » Bioorganische Chemie | |||||||
Dokument erstellt am: | 12.03.2024 | |||||||
Dateien geändert am: | 12.03.2024 | |||||||
Promotionsantrag am: | 24.11.2022 | |||||||
Datum der Promotion: | 12.05.2023 |