Dokument: Einfluss der interzellulären Kommunikation von Hepatozyten und Makrophagen auf die Reaktion von Makrophagen gegenüber Cytomegalieviren
Titel: | Einfluss der interzellulären Kommunikation von Hepatozyten und Makrophagen auf die Reaktion von Makrophagen gegenüber Cytomegalieviren | |||||||
Weiterer Titel: | Influence of intercellular communication of hepatocytes and macrophages on the response of macrophages to cytomegaloviruses | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=65086 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20240304-130254-5 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Wieland, Björn [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. med. Bode, Johannes G. [Gutachter] PD Dr. med. Reifenberger, Julia [Gutachter] | |||||||
Stichwörter: | Makrophagen, Hepatozyten, Kokultur, Zytomegalievirus | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Die vorliegende Arbeit befasst sich mit der Fragestellung, ob Hepatozyten die Reaktion von Makrophagen auf eine Stimulation beeinflussen und inwieweit hier Unterschiede zwischen viralen und bakteriellen Pathogenen bestehen. Hierfür wurde in einem in vitro System der Einfluss von Lipopolysaccharid (LPS) und abgetötetem murinem Cytomegalievirus (MCMV) auf monokultivierte Makrophagen und Makrophagen im Ko-Kultursystem mit primären Hepatozyten verglichen. Des Weiteren wurde überprüft, ob der VLDL Rezeptor der Makrophagen an der interzellulären Kommunikation zwischen beiden Zelltypen entscheidend beteiligt ist. Die Analysen erfolgten mittels eines in der Arbeitsgruppe validierten Ko-Kultur Systems, welches die Untersuchung der Interaktion mittels löslicher Faktoren zwischen primären Hepatozyten und Bone-marrow derived macrophages (BMDMs) ermöglicht, eine direkte Zell-Zellinteraktion jedoch nicht. Um eine mögliche funktionelle Veränderung der Makrophagen infolge der Ko-Kultivierung zu analysieren wurden dem System LPS, ein bakterielles Endotoxin bzw. abgetötete Cytomegalieviren zugefügt. Dafür wurden mehrere Versuche durchgeführt, die zum einen Expressionsunterschiede zu verschiedenen Zeitpunkten nach der Stimulation verglichen und zum anderen Expressionsunterschiede nach verschiedenen Kulturzeiten bei gleicher Stimulationsdauer untersuchten.
Eine Reaktionsänderung trat zwischen 2-24 Stunden Kulturdauer ein. Im Vergleich zwischen Mono- und Ko-Kultur reagierten die kokultivierten BMDMs sowohl nach LPS als auch nach CMV Stimulation mit einer reduzierten Expression von TNFα, IL-6 bei zugleich erhöhter Expression von IL-10 mRNA. Die Daten legen somit nahe, dass die Präsenz von Hepatozyten die Reaktion von BMDMs sowohl auf virale wie auch auf bakterielle Pathogene und somit Pathogen-unabhängig dahingehend beeinflusst, dass die Expression pro-inflammatorischer Zytokine eher supprimiert wird, während anti-inflammatorische Mechanismen und hierbei insbesondere die Expression von IL-10 verstärkt wird. Soweit vergleichbar, war jedoch auffällig, dass die Reaktion von BMDM auf die verschiedenen Pathogene substanziell voneinander differierte, wobei bakterielle Pathogene wie LPS führend die Expression von TNFα und IL-6 mRNA induzierten, während die Reaktion auf virale Pathogene durch Expression von insbesondere IL-10, IFNβ, iNOS, CXCL9 und CXCL10 mRNA charakterisiert war. Dabei legen die Untersuchungen an VLDL-Rezeptor defizienten BMDMs nahe, dass diesem keine entscheidende Rolle für den Einfluss von Hepatozyten auf die Reaktion bzw. den Aktivierungszustand von Makrophagen zukommt.The present study addresses the question of how hepatocytes influence macrophage differentiation and thus their response in the context of infection. For this purpose, the influence of lipopolysaccharide (LPS) and murine cytomegalovirus (MCMV) on monocultured macrophages and macrophages in a co-culture system with primary hepatocytes was compared in an in vitro system. Furthermore, it was examined whether the VLDL receptor of macrophages is decisively involved in the intercellular communication between both cell types. The analyses were performed using a co-culture system validated in the research group, which allows the investigation of the interaction by means of soluble factors between primary hepatocytes and bone marrow derived macrophages (BMDMs). In order to analyse a possible functional change of the macrophages as a result of co-cultivation, LPS, a bacterial endotoxin or killed cytomegaloviruses were added to the system. For this purpose, several experiments were carried out, comparing expression differences at different times after stimulation on the one hand, and examining expression differences after different culture times with the same stimulation duration on the other hand. A change in response occurred between 2-24 hours of culture. In the comparison between mono- and co-culture, the co-cultured BMDMs reacted with decreased TNFα, IL-6 and increased IL-10 mRNA levels after both LPS and CMV stimulation. Thus, the co-cultured BMDMs showed similar anti-inflammatory responses to the different stimulants. This results in a pathogen- and virus-permissive situation due to the influence of the macrophages on the hepatocytes. In contrast, the basic response of BMDMs to the different stimulants differed greatly. After LPS stimulation, mono- and co-cultured BMDMs reacted with particularly strongly increased TNFα and IL-6 mRNA production, whereas after MCMV stimulation BMDMs produced increased IL-10, IFNβ, iNOS, CXCL9 and CXCL10 mRNA. The experiments with VLDL receptor-depleted BMDMs showed no significant differences from the wild type in both flow cytometry and mRNA expression measurements. Based on current data, it can therefore be assumed that the VLDL receptor does not have a decisive influence on hepatocyte-macrophage communication. | |||||||
Quelle: | AVDIC, S., MCSHARRY, B. P., STEAIN, M., POOLE, E., SINCLAIR, J., ABENDROTH, A. & SLOBEDMAN, B. 2016. Human Cytomegalovirus-Encoded Human Interleukin-10 (IL-10) Homolog Amplifies Its Immunomodulatory Potential by Upregulating Human IL-10 in Monocytes. Journal of Virology, 90, 3819-3827.
BAASCH, S., RUZSICS, Z. & HENNEKE, P. 2020. Cytomegaloviruses and Macrophages-Friends and Foes From Early on? Front Immunol, 11, 793. BAITSCH, D., BOCK, H. H., ENGEL, T., TELGMANN, R., MÜLLER-TIDOW, C., VARGA, G., BOT, M., HERZ, J., ROBENEK, H. & VON ECKARDSTEIN, A. 2011. Apolipoprotein E induces antiinflammatory phenotype in macrophages. Arteriosclerosis, thrombosis, and vascular biology, 31, 1160-1168. BALMER, M. L., SLACK, E., DE GOTTARDI, A., LAWSON, M. A., HAPFELMEIER, S., MIELE, L., GRIECO, A., VAN VLIERBERGHE, H., FAHRNER, R., PATUTO, N., BERNSMEIER, C., RONCHI, F., WYSS, M., STROKA, D., DICKGREBER, N., HEIM, M. H., MCCOY, K. D. & MACPHERSON, A. J. 2014. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med, 6, 237ra66. BANCHEREAU, J. & STEINMAN, R. M. 1998. Dendritic cells and the control of immunity. Nature, 392, 245-52. BANSAL, V. & OCHOA, J. B. 2003. Arginine availability, arginase, and the immune response. Current Opinion in Clinical Nutrition & Metabolic Care, 6, 223-228. BERTOLINO, P., TRESCOL-BIEMONT, M. C. & RABOURDIN-COMBE, C. 1998. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol, 28, 221-36. BEUTLER, B. & CERAMI, A. 1987. Cachectin: more than a tumor necrosis factor. New England Journal of Medicine, 316, 379-385. BODE, J. G., ALBRECHT, U., HÄUSSINGER, D., HEINRICH, P. C. & SCHAPER, F. 2012a. Hepatic acute phase proteins–regulation by IL-6-and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. European journal of cell biology, 91, 496-505. BODE, J. G., EHLTING, C. & HAUSSINGER, D. 2012b. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cell Signal. BOEHME, K. W., SINGH, J., PERRY, S. T. & COMPTON, T. 2004. Human cytomegalovirus elicits a coordinated cellular antiviral response via envelope glycoprotein B. Journal of virology, 78, 1202-1211. BONHAM, K. S., ORZALLI, M. H., HAYASHI, K., WOLF, A. I., GLANEMANN, C., WENINGER, W., IWASAKI, A., KNIPE, D. M. & KAGAN, J. C. 2014. A promiscuous lipid-binding protein diversifies the subcellular sites of toll-like receptor signal transduction. Cell, 156, 705-716. BOSMA, B. M., METSELAAR, H. J., MANCHAM, S., BOOR, P. P., KUSTERS, J. G., KAZEMIER, G., TILANUS, H. W., KUIPERS, E. J. & KWEKKEBOOM, J. 2006. Characterization of human liver dendritic cells in liver grafts and perfusates. Liver Transpl, 12, 384-93. BOTTO, S., ABRAHAM, J., MIZUNO, N., PRYKE, K., GALL, B., LANDAIS, I., STREBLOW, D. N., FRUH, K. J. & DEFILIPPIS, V. R. 2019. Human cytomegalovirus immediate early 86-kDa protein blocks transcription and induces degradation of the immature interleukin-1β protein during virion-mediated activation of the AIM2 inflammasome. MBio, 10. BOUWENS, L., DE BLESER, P., VANDERKERKEN, K., GEERTS, B. & WISSE, E. 1992. Liver cell heterogeneity: functions of non-parenchymal cells. Enzyme, 46, 155-68. BROOKS, D. G., TRIFILO, M. J., EDELMANN, K. H., TEYTON, L., MCGAVERN, D. B. & OLDSTONE, M. B. 2006. Interleukin-10 determines viral clearance or persistence in vivo. Nature medicine, 12, 1301-1309. CAI, X., WANG, J., WANG, J., ZHOU, Q., YANG, B., HE, Q. & WENG, Q. 2020. Intercellular crosstalk of hepatic stellate cells in liver fibrosis: new insights into therapy. Pharmacological Research, 104720. CALDWELL, R. W., RODRIGUEZ, P. C., TOQUE, H. A., NARAYANAN, S. P. & CALDWELL, R. B. 2018. Arginase: a multifaceted enzyme important in health and disease. Physiological reviews, 98, 641-665. CALNE, R., SELLS, R., PENA, J., DAVIS, D., MILLARD, P., HERBERTSON, B., BINNS, R. & DAVIES, D. 1969. Induction of immunological tolerance by porcine liver allografts. Nature, 223, 472-476. CANNON, M. J., SCHMID, D. S. & HYDE, T. B. 2010. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol, 20, 202-13. COMPTON, T., KURT-JONES, E. A., BOEHME, K. W., BELKO, J., LATZ, E., GOLENBOCK, D. T. & FINBERG, R. W. 2003. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. Journal of virology, 77, 4588-4596. CROUGH, T. & KHANNA, R. 2009. Immunobiology of human cytomegalovirus: from bench to bedside. Clin Microbiol Rev, 22, 76-98, Table of Contents. DALEY-BAUER, L. P., WYNN, G. M. & MOCARSKI, E. S. 2012. Cytomegalovirus impairs antiviral CD8+ T cell immunity by recruiting inflammatory monocytes. Immunity, 37, 122-133. DEL VAL, M., HENGEL, H., HACKER, H., HARTLAUB, U., RUPPERT, T., LUCIN, P. & KOSZINOWSKI, U. H. 1992. Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med, 176, 729-38. DITTRICH, W. & GÖHDE, W. 1969. Impulsfluorometrie bei einzelzellen in suspensionen. Zeitschrift für Naturforschung B, 24, 360-361. DORING, M., LESSIN, I., FRENZ, T., SPANIER, J., KESSLER, A., TEGTMEYER, P., DAG, F., THIEL, N., TRILLING, M., LIENENKLAUS, S., WEISS, S., SCHEU, S., MESSERLE, M., CICIN-SAIN, L., HENGEL, H. & KALINKE, U. 2014. M27 expressed by cytomegalovirus counteracts effective type I interferon induction of myeloid cells but not of plasmacytoid dendritic cells. J Virol, 88, 13638-50. DUNN, J. C., YARMUSH, M. L., KOEBE, H. G. & TOMPKINS, R. G. 1989. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. Faseb j, 3, 174-7. EHLTING, C., RONKINA, N., BOHMER, O., ALBRECHT, U., BODE, K. A., LANG, K. S., KOTLYAROV, A., RADZIOCH, D., GAESTEL, M., HAUSSINGER, D. & BODE, J. G. 2011. Distinct functions of the mitogen-activated protein kinase-activated protein (MAPKAP) kinases MK2 and MK3: MK2 mediates lipopolysaccharide-induced signal transducers and activators of transcription 3 (STAT3) activation by preventing negative regulatory effects of MK3. J Biol Chem, 286, 24113-24. EHLTING, C., TRILLING, M., TIEDJE, C., LE-TRILLING, V. T., ALBRECHT, U., KLUGE, S., ZIMMERMANN, A., GRAF, D., GAESTEL, M., HENGEL, H., HAUSSINGER, D. & BODE, J. G. 2016. MAPKAP kinase 2 regulates IL-10 expression and prevents formation of intrahepatic myeloid cell aggregates during cytomegalovirus infections. J Hepatol, 64, 380-9. EHLTING, C., WOLF, S. D. & BODE, J. G. 2021. Acute-phase protein synthesis: a key feature of innate immune functions of the liver. Biol Chem, 402, 1129-1145. EPELMAN, S., LAVINE, K. J. & RANDOLPH, G. J. 2014. Origin and functions of tissue macrophages. Immunity, 41, 21-35. FITZGERALD, K. A., ROWE, D. C., BARNES, B. J., CAFFREY, D. R., VISINTIN, A., LATZ, E., MONKS, B., PITHA, P. M. & GOLENBOCK, D. T. 2003. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the toll adapters TRAM and TRIF. The Journal of experimental medicine, 198, 1043-1055. GABAY, C. & KUSHNER, I. 1999. Acute-phase proteins and other systemic responses to inflammation. New England journal of medicine, 340, 448-454. GAULDIE, J., RICHARDS, C., HARNISH, D., LANSDORP, P. & BAUMANN, H. 1987. Interferon β2/BSF-2 shares identity with monocyte-derived hepatocyte stimulating factor (HSF) and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci USA, 84, 7251-7255. GESUNDHEIT, M. D. A. B. D. B. F. 2018. Humanes Cytomegalievirus (HCMV). Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz, 1, 116. GIOANNINI, T. L., TEGHANEMT, A., ZHANG, D., COUSSENS, N. P., DOCKSTADER, W., RAMASWAMY, S. & WEISS, J. P. 2004. Isolation of an endotoxin–MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proceedings of the National Academy of Sciences, 101, 4186-4191. GOEHDE, W. D. 1972. Durchflusskammer an einem automatischen Mess-und Zählgerät für die Teilchen einer Dispersion. Google Patents. GRESSER, I. 1990. Biologic effects of interferons. Journal of Investigative Dermatology, 95, 66-71. GROOM, J. R. & LUSTER, A. D. 2011. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunology & Cell Biology, 89, 207-215. HASAN, M., KRMPOTIC, A., RUZSICS, Z., BUBIC, I., LENAC, T., HALENIUS, A., LOEWENDORF, A., MESSERLE, M., HENGEL, H., JONJIC, S. & KOSZINOWSKI, U. H. 2005. Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. J Virol, 79, 2920-30. HÄUSSINGER, D. & KORDES, C. 2020. Space of Disse: a stem cell niche in the liver. Biological Chemistry, 401, 81-95. HEID, C. A., STEVENS, J., LIVAK, K. J. & WILLIAMS, P. M. 1996. Real time quantitative PCR. Genome Res, 6, 986-94. HENGEL, H., ESSLINGER, C., POOL, J., GOULMY, E. & KOSZINOWSKI, U. H. 1995. Cytokines restore MHC class I complex formation and control antigen presentation in human cytomegalovirus-infected cells. J Gen Virol, 76 ( Pt 12), 2987-97. HENGEL, H., FLOHR, T., HAMMERLING, G. J., KOSZINOWSKI, U. H. & MOMBURG, F. 1996. Human cytomegalovirus inhibits peptide translocation into the endoplasmic reticulum for MHC class I assembly. J Gen Virol, 77 ( Pt 9), 2287-96. HERKEL, J., JAGEMANN, B., WIEGARD, C., LAZARO, J. F. G., LUETH, S., KANZLER, S., BLESSING, M., SCHMITT, E. & LOHSE, A. W. 2003. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocyutes. Hepatology, 37, 1079-1085. HOEBE, K. H., WITKAMP, R. F., FINK-GREMMELS, J., VAN MIERT, A. S. & MONSHOUWER, M. 2001. Direct cell-to-cell contact between Kupffer cells and hepatocytes augments endotoxin-induced hepatic injury. American Journal of Physiology-Gastrointestinal and Liver Physiology, 280, G720-G728. HOKENESS, K. L., DEWEERD, E. S., MUNKS, M. W., LEWIS, C. A., GLADUE, R. P. & SALAZAR-MATHER, T. P. 2007. CXCR3-dependent recruitment of antigen-specific T lymphocytes to the liver during murine cytomegalovirus infection. Journal of virology, 81, 1241-1250. ISHIBASHI, H., NAKAMURA, M., KOMORI, A., MIGITA, K. & SHIMODA, S. Liver architecture, cell function, and disease. Seminars in immunopathology, 2009. Springer, 399. JACKSON, J. W. & SPARER, T. 2018. There is always another way! cytomegalovirus’ multifaceted dissemination schemes. Viruses, 10, 383. JIMÉNEZ-DALMARONI, M. J., GERSWHIN, M. E. & ADAMOPOULOS, I. E. 2016. The critical role of toll-like receptors—from microbial recognition to autoimmunity: a comprehensive review. Autoimmunity reviews, 15, 1-8. JONES, M., LADELL, K., WYNN, K. K., STACEY, M. A., QUIGLEY, M. F., GOSTICK, E., PRICE, D. A. & HUMPHREYS, I. R. 2010. IL-10 restricts memory T cell inflation during cytomegalovirus infection. J Immunol, 185, 3583-92. KELLER, G. A., WEST, M. A., CERRA, F. B. & SIMMONS, R. L. 1986. Macrophage-mediated modulation of hepatocyte protein synthesis: effect of dexamethasone. Archives of Surgery, 121, 1199-1205. KELLER, G. A., WEST, M. A., WILKES, L. A., CERRA, F. B. & SIMMONS, R. L. 1985. Modulation of hepatocyte protein synthesis by endotoxin-activated Kupffer cells. II. Mediation by soluble transferrable factors. Annals of surgery, 201, 429. KNOLLE, P., SCHLAAK, J., UHRIG, A., KEMPF, P., MEYER ZUM BUSCHENFELDE, K. H. & GERKEN, G. 1995. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol, 22, 226-9. KORDES, C., SAWITZA, I., GÖTZE, S. & HÄUSSINGER, D. 2013. Hepatic Stellate Cells Support Hematopoiesis and are Liver-Resident Mesenchymal Stem Cells. Cellular Physiology and Biochemistry, 31, 290-304. KRMPOTIC, A., HASAN, M., LOEWENDORF, A., SAULIG, T., HALENIUS, A., LENAC, T., POLIC, B., BUBIC, I., KRIEGESKORTE, A., PERNJAK-PUGEL, E., MESSERLE, M., HENGEL, H., BUSCH, D. H., KOSZINOWSKI, U. H. & JONJIC, S. 2005. NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med, 201, 211-20. LANG, R. & HEEG, K. 1998. Semiquantitative determination of human cytokine mRNA expression using TaqMan RT-PCR. Inflammopharmacology, 6, 297-309. LE, V. T., TRILLING, M., WILBORN, M., HENGEL, H. & ZIMMERMANN, A. 2008a. Human cytomegalovirus interferes with signal transducer and activator of transcription (STAT) 2 protein stability and tyrosine phosphorylation. J Gen Virol, 89, 2416-26. LE, V. T., TRILLING, M., ZIMMERMANN, A. & HENGEL, H. 2008b. Mouse cytomegalovirus inhibits beta interferon (IFN-beta) gene expression and controls activation pathways of the IFN-beta enhanceosome. J Gen Virol, 89, 1131-41. LEMAITRE, B., NICOLAS, E., MICHAUT, L., REICHHART, J.-M. & HOFFMANN, J. A. 1996. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86, 973-983. LIMMER, A., OHL, J., KURTS, C., LJUNGGREN, H.-G., REISS, Y., GROETTRUP, M., MOMBURG, F., ARNOLD, B. & KNOLLE, P. A. 2000. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nature Medicine, 6, 1348-1354. LIN, S.-C., LO, Y.-C. & WU, H. 2010. Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature, 465, 885-890. LIU, M., GUO, S. & STILES, J. K. 2011. The emerging role of CXCL10 in cancer (Review). Oncol Lett, 2, 583-589. LUCIN, P., JONJIC, S., MESSERLE, M., POLIC, B., HENGEL, H. & KOSZINOWSKI, U. H. 1994. Late phase inhibition of murine cytomegalovirus replication by synergistic action of interferon-gamma and tumour necrosis factor. J Gen Virol, 75 ( Pt 1), 101-10. LÜTH, S., HUBER, S., SCHRAMM, C., BUCH, T., ZANDER, S., STADELMANN, C., BRÜCK, W., WRAITH, D. C., HERKEL, J. & LOHSE, A. W. 2008. Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. The Journal of clinical investigation, 118, 3403-3410. MANANDHAR, T., HÒ, G.-G. T., PUMP, W. C., BLASCZYK, R. & BADE-DOEDING, C. 2019. Battle between host immune cellular responses and HCMV immune evasion. International journal of molecular sciences, 20, 3626. MANTOVANI, A., SOZZANI, S., LOCATI, M., ALLAVENA, P. & SICA, A. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 23, 549-55. MANZANERO, S. 2012. Generation of mouse bone marrow-derived macrophages. Methods Mol Biol, 844, 177-81. MAO, K., CHEN, S., CHEN, M., MA, Y., WANG, Y., HUANG, B., HE, Z., ZENG, Y., HU, Y., SUN, S., LI, J., WU, X., WANG, X., STROBER, W., CHEN, C., MENG, G. & SUN, B. 2013. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Research, 23, 201-212. MAY, P., BOCK, H. H. & NOFER, J. R. 2013. Low density receptor-related protein 1 (LRP1) promotes anti-inflammatory phenotype in murine macrophages. Cell Tissue Res, 354, 887-9. MILLER, D. M., CEBULLA, C. M. & SEDMAK, D. D. 2002. Human cytomegalovirus inhibition of major histocompatibility complex transcription and interferon signal transduction. Curr Top Microbiol Immunol, 269, 153-70. MILLS, C. D., KINCAID, K., ALT, J. M., HEILMAN, M. J. & HILL, A. M. 2000. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol, 164, 6166-73. MOSSER, D. M. & EDWARDS, J. P. 2008. Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 8, 958-69. MOTSHWENE, P. G., MONCRIEFFE, M. C., GROSSMANN, J. G., KAO, C., AYALURU, M., SANDERCOCK, A. M., ROBINSON, C. V., LATZ, E. & GAY, N. J. 2009. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. Journal of Biological Chemistry, 284, 25404-25411. MULLÍS, K., FAL-OONA, F., SCHARF, S., SAIKI, I., HORN, G. & ERLICH, H. 1986. Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction. MUNDER, M. 2009. Arginase: an emerging key player in the mammalian immune system. British journal of pharmacology, 158, 638-651. MURRAY, P. J., ALLEN, J. E., BISWAS, S. K., FISHER, E. A., GILROY, D. W., GOERDT, S., GORDON, S., HAMILTON, J. A., IVASHKIV, L. B., LAWRENCE, T., LOCATI, M., MANTOVANI, A., MARTINEZ, F. O., MEGE, J. L., MOSSER, D. M., NATOLI, G., SAEIJ, J. P., SCHULTZE, J. L., SHIREY, K. A., SICA, A., SUTTLES, J., UDALOVA, I., VAN GINDERACHTER, J. A., VOGEL, S. N. & WYNN, T. A. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 41, 14-20. OAKLEY, O. R., GARVY, B. A., HUMPHREYS, S., QURESHI, M. H. & POMEROY, C. 2007. Increased weight loss with reduced viral replication in interleukin-10 knock-out mice infected with murine cytomegalovirus. Clinical and Experimental Immunology, 151, 155-164. PAVIĆ, I., POLIĆ, B., CRNKOVIĆ, I., LUČIN, P., JONJIĆ, S. & KOSZINOWSKI, U. H. 1993. Participation of endogenous tumour necrosis factor α in host resistance to cytomegalovirus infection. Journal of General Virology, 74, 2215-2223. PETRASEK, J., DOLGANIUC, A., CSAK, T., NATH, B., HRITZ, I., KODYS, K., CATALANO, D., KURT-JONES, E., MANDREKAR, P. & SZABO, G. 2011. Interferon regulatory factor 3 and type I interferons are protective in alcoholic liver injury in mice by way of crosstalk of parenchymal and myeloid cells. Hepatology, 53, 649-60. POISSON, J., LEMOINNE, S., BOULANGER, C., DURAND, F., MOREAU, R., VALLA, D. & RAUTOU, P.-E. 2017. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. Journal of hepatology, 66, 212-227. POLTORAK, A., HE, X., SMIRNOVA, I., LIU, M.-Y., VAN HUFFEL, C., DU, X., BIRDWELL, D., ALEJOS, E., SILVA, M. & GALANOS, C. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085-2088. POLTORAK, A., RICCIARDI-CASTAGNOLI, P., CITTERIO, S. & BEUTLER, B. 2000. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proceedings of the National Academy of Sciences, 97, 2163-2167. R. KLINKE, H.-C. P., ST. SILBERNAGEL 2005. Physiologie. Thieme Verlag Stuttgart. RAWLINSON, W. D., FARRELL, H. E. & BARRELL, B. G. 1996. Analysis of the complete DNA sequence of murine cytomegalovirus. Journal of virology, 70, 8833-8849. REDPATH, S., ANGULO, A., GASCOIGNE, N. R. & GHAZAL, P. 1999. Murine cytomegalovirus infection down-regulates MHC class II expression on macrophages by induction of IL-10. The Journal of Immunology, 162, 6701-6707. REMMERIE, A. & SCOTT, C. L. 2018. Macrophages and lipid metabolism. Cellular immunology, 330, 27-42. REYBURN, H. T., MANDELBOIM, O., VALÉS-GÓMEZ, M., DAVIS, D. M., PAZMANY, L. & STROMINGER, J. L. 1997. The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature, 386, 514-517. SAEDERUP, N., LIN, Y. C., DAIRAGHI, D. J., SCHALL, T. J. & MOCARSKI, E. S. 1999. Cytomegalovirus-encoded β chemokine promotes monocyte-associated viremia in the host. Proceedings of the National Academy of Sciences, 96, 10881-10886. SALOMON, F.-V., GEYER, H., AND GILLE, U. 2008. Anatomie für die Tiermedizin, Vol.2. Enke Verlag Stuttgart. SCHUMANN, R. R. 2011. Old and new findings on lipopolysaccharide-binding protein: a soluble pattern-recognition molecule. Biochemical Society Transactions, 39, 989-993. SCOTT, C. L., ZHENG, F., DE BAETSELIER, P., MARTENS, L., SAEYS, Y., DE PRIJCK, S., LIPPENS, S., ABELS, C., SCHOONOOGHE, S., RAES, G., DEVOOGDT, N., LAMBRECHT, B. N., BESCHIN, A. & GUILLIAMS, M. 2016. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun, 7, 10321. SICA, A., ERRENI, M., ALLAVENA, P. & PORTA, C. 2015. Macrophage polarization in pathology. Cell Mol Life Sci, 72, 4111-26. SLOBEDMAN, B., BARRY, P. A., SPENCER, J. V., AVDIC, S. & ABENDROTH, A. 2009. Virus-encoded homologs of cellular interleukin-10 and their control of host immune function. J Virol, 83, 9618-29. SPENCER, J. V., LOCKRIDGE, K. M., BARRY, P. A., LIN, G., TSANG, M., PENFOLD, M. E. & SCHALL, T. J. 2002. Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. Journal of virology, 76, 1285-1292. STANLEY, E. R. 1985. [42] The macrophage colony-stimulating factor, CSF-1. Methods in enzymology. Elsevier. STEIN, M., KESHAV, S., HARRIS, N. & GORDON, S. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med, 176, 287-92. TANAKA, K. & NODA, S. 2001. Role of nitric oxide in murine cytomegalovirus (MCMV) infection. Histology and histopathology, 16, 937-944. TANG-FELDMAN, Y. J., LOCHHEAD, G. R., LOCHHEAD, S. R., YU, C. & POMEROY, C. 2011. Interleukin-10 repletion suppresses pro-inflammatory cytokines and decreases liver pathology without altering viral replication in murine cytomegalovirus (MCMV)-infected IL-10 knockout mice. Inflamm Res, 60, 233-43. THOMSON, A. W. & KNOLLE, P. A. 2010. Antigen-presenting cell function in the tolerogenic liver environment. Nature Reviews Immunology, 10, 753-766. TILLETT, W. S. & FRANCIS, T. 1930. SEROLOGICAL REACTIONS IN PNEUMONIA WITH A NON-PROTEIN SOMATIC FRACTION OF PNEUMOCOCCUS. J Exp Med, 52, 561-71. UPTON, J. W., KAISER, W. J. & MOCARSKI, E. S. 2010. Virus inhibition of RIP3-dependent necrosis. Cell host & microbe, 7, 302-313. VAN BOSSUYT, H. & WISSE, E. 1988. Endotoxin injection affects the Kupffer cell morphology in the rat liver. Prog Clin Biol Res, 272, 161-71. VANDEVENNE, P., SADZOT-DELVAUX, C. & PIETTE, J. 2010. Innate immune response and viral interference strategies developed by human herpesviruses. Biochem Pharmacol, 80, 1955-72. WAHL, C., BOCHTLER, P., CHEN, L., SCHIRMBECK, R. & REIMANN, J. 2008. B7-H1 on hepatocytes facilitates priming of specific CD8 T cells but limits the specific recall of primed responses. Gastroenterology, 135, 980-988. WAHL, C., BOCHTLER, P., SCHIRMBECK, R. & REIMANN, J. 2007. Type I IFN-producing CD4 Valpha14i NKT cells facilitate priming of IL-10-producing CD8 T cells by hepatocytes. J Immunol, 178, 2083-93. WARREN, A., LE COUTEUR, D. G., FRASER, R., BOWEN, D. G., MCCAUGHAN, G. W. & BERTOLINO, P. 2006. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology, 44, 1182-90. WEISCHENFELDT, J. & PORSE, B. 2008. Bone Marrow-Derived Macrophages (BMM): Isolation and Applications. CSH Protoc, 2008, pdb.prot5080. WEST, M., KELLER, G., HYLAND, B., CERRA, F. & SIMMONS, R. 1986. Further characterization of Kupffer cell/macrophage-mediated alterations in hepatocyte protein synthesis. Surgery, 100, 416-423. WEST, M. A., KELLER, G. A., CERRA, F. B. & SIMMONS, R. L. 1985. Killed Escherichia coli stimulates macrophage-mediated alterations in hepatocellular function during in vitro coculture: a mechanism of altered liver function in sepsis. Infect Immun, 49, 563-70. WOLF, D. S. B., G. J.; ET AL 2015. Identifikation differenziell regulierter Mediatoren im Rahmen der Leberregeneration und reziproke Beeinflussung der Zellfunktion von Makrophagen und Hepatozyten durch interzelluläre Kommunikationsprozesse. WOLVEKAMP, M. C. & MARQUET, R. L. 1990. Interleukin-6: historical background, genetics and biological significance. Immunology letters, 24, 1-9. WONG, G. H. W. & GOEDDEL, D. V. 1986. Tumour necrosis factors α and β inhibit virus replication and synergize with interferons. Nature, 323, 819-822. WU, R., CUI, X., DONG, W., ZHOU, M., SIMMS, H. H. & WANG, P. 2006. Suppression of hepatocyte CYP1A2 expression by Kupffer cells via AhR pathway: the central role of proinflammatory cytokines. International journal of molecular medicine, 18, 339-346. YAMAMOTO, M., SATO, S., HEMMI, H., HOSHINO, K., KAISHO, T., SANJO, H., TAKEUCHI, O., SUGIYAMA, M., OKABE, M. & TAKEDA, K. 2003. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 301, 640-643. YOU, Q., CHENG, L., KEDL, R. M. & JU, C. 2008. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology, 48, 978-990. ZANONI, I., OSTUNI, R. & GRANUCCI, F. 2009. Generation of mouse bone marrow-derived macrophages (BM-MFs). Protoc Exch, 10. ZELOVÁ, H. & HOŠEK, J. 2013. TNF-α signalling and inflammation: interactions between old acquaintances. Inflammation Research, 62, 641-651. ZHANG, X., GONCALVES, R. & MOSSER, D. M. 2008. The isolation and characterization of murine macrophages. Current protocols in immunology, 83, 14.1. 1-14.1. 14. | |||||||
Rechtliche Vermerke: | Keine | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Bezug: | 05.02.2017-27.02.2024 | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 04.03.2024 | |||||||
Dateien geändert am: | 04.03.2024 | |||||||
Promotionsantrag am: | 23.05.2023 | |||||||
Datum der Promotion: | 22.02.2024 |