Dokument: Die Rolle epikardialer stromaler Zellen in der Heilungsphase nach Myokardinfarkt
Titel: | Die Rolle epikardialer stromaler Zellen in der Heilungsphase nach Myokardinfarkt | |||||||
Weiterer Titel: | The role of epicardial stromal cells in the healing phase after myocardial infarction | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=64992 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20240226-130123-1 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Zalfen, Ria [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. med. Schrader, Jürgen [Gutachter] Prof. Dr. rer. nat. Scheller, Jürgen [Gutachter] | |||||||
Stichwörter: | Molekulare Kardiologie, Molekulare Biologie, Pharmazie | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Nach einem Myokardinfarkt wird das Epikard aktiviert und es bildet sich eine Multizellschicht aus proliferierenden, epikardialen stromalen Zellen (EpiSCs), in denen Teile des embryonalen Genprogramms reaktiviert werden. Diese EpiSCs besitzen aufgrund ihrer multipotenten Zelleigenschaften das Potenzial, zur Herzheilung nach Infarkt beizutragen. Eine Voraussetzung zur Entwicklung therapeutischer Strategien, um EpiSCs für die Förderung der Herzheilung zu nutzen, ist es ein tieferes Verständnis der zellulären Eigenschaften der EpiSCs nach Infarkt zu erarbeiten.
In der vorliegenden Arbeit wurden EpiSCs in einem Infarkt-Mausmodell hinsichtlich ihrer zellulären Heterogenität und ihres Potenzials zur Herzheilung untersucht. Basierend auf vorangegangenen Studien unserer Arbeitsgruppe wurde die Lokalisation von identifizierten EpiSC-Zellclustern 5 Tage nach Infarkt mittels RNA-in situ-Hybridisierung definiert. Hier konnte ein möglicher Zusammenhang zwischen der Lokalisation und dem transkriptionellen Charakter der EpiSC-Zellcluster gezeigt werden. Eine detaillierte Analyse der EpiSCs an zwei Zeitpunkten nach Infarkt (5 und 21 Tage) mittels Einzelzell-RNA-Sequenzierung (scRNAseq) zeigte unter anderem einen Rückgang von proliferierenden EpiSCs 21 Tage nach Infarkt. Aufbauend auf Hinweisen, dass Sphingolipid-1-Phosphat (S1P) und Thymosin-beta 4 (Tβ4) erfolgsversprechende Moleküle bei der Herzheilung sein könnten, wurde deren Wirkung auf EpiSCs näher analysiert. Nach pharmakologischer Anreicherung von S1P in vivo konnten in histologischen Analysen Kardiomyozyten-Vorläufer identifiziert werden. Eine Lipidomics-Analyse der Sphingolipide in EpiSCs nach Infarkt zeigte eine signifikante Erhöhung von Ceramid C16:0 im Vergleich zu Fibroblasten und belegt erstmals eine mögliche Rolle von S1P in EpiSCs. Um die Bedeutung von Tβ4 in Infarkt-aktivierten EpiSCs zu untersuchen, wurde ein AAV9-Vektorsystem zur herz-spezifischen Tβ4-Überexpression entwickelt und dies führte zu einem Trend einer Erhöhung von WT-1+-Zellen. ScRNAseq-Analysen 5 und 14 Tage nach Infarkt ergaben, dass die Expression einer Vielzahl von Genen nach Tβ4-Überexpression verändert war, darunter eine gesteigerte Expression von Kollagen vor allem 14 Tage nach Infarkt. Zusammen bilden die erhobenen Daten die Grundlage, das Infarktgeschehen auf Zellebene besser zu verstehen und zukünftig neue Therapiemöglichkeiten zur Förderung der Herzheilung zu entwickeln.Myocardial infarction leads to the activation of the epicardium, forming a multi-cell layer of proliferating epicardial stromal cells (EpiSCs) by reactivating their embryonic gene program. Due to their multipotent cell characteristics, EpiSCs have the potential to improve cardiac healing after infarction. For developing new therapeutic strategies by pharmacologically targeting EpiSCs, a deeper understanding of the cellular characteristics of EpiSCs is required. The present study aimed at analyzing EpiSCs regarding their cellular heterogeneity and their potential for infarct healing in a mouse infarction model. Based on recent findings of our group, the localization of single-cell RNA sequencing (scRNAseq)-identified cell clusters 5 days post infarction was defined by using RNA-in situ-hybridization. Individual transcriptionally defined cell clusters could be attributed to a specific localization within the epicardial cell layer. ScRNAseq of EpiSCs 5 and 21 days after infarction characterized the temporal changes in gene expression within the EpiSC clusters. This includes a significant reduction of proliferating cells at 21 days post infarction. The second focus of the present work concerned the role of two molecules on EpiSCs in infarct healing: Sphingosine-1-phosphate (S1P) and thymosin-beta 4 (Tβ4). Pharmacological enrichment of S1P resulted in the formation of cardiomyocyte precursor cells in infarcted hearts as identified by histochemistry. Using MS-based lipidomic analysis, the sphingolipid composition in stromal cells after infarction was analyzed. A significant higher level of ceramide C16:0 in EpiSCs in comparison to fibroblasts was observed, suggesting a functional relevance of S1P in EpiSCs. To analyze the cardioprotective effects of Tβ4 and its impact on EpiSCs, an AAV9 vector system for heart-specific Tβ4 overexpression was generated. This Tβ4 overexpression led to the trend of an increase in WT-1+-cells within the epicardial layer. ScRNAseq analysis of EpiSCs 5 and 14 days after infarction characterized multiple temporal changes in EpiSC gene expression in response to Tβ4 overexpression. This included an increased expression of collagen, especially 14 days after infarction. In summary, the data obtained improved our understanding of the molecular and cellular processes in infarct-activated EpiSCs and thus may be helpful to develop future strategies to better target EpiSCs in the healing process. | |||||||
Quelle: | 1. Lederhuber, H. C. & Lange, V. BASICS Kardiologie. (Urban & Fischer Verlag, 2010).
2. Pape, H.-C., Kurtz, A. & Silbernagl, S. Physiologie. (Georg Thieme Verlag, 2014). 3. Detry, J.-M. R. The pathophysiology of myocardial ischaemia. Eur Heart J 17, (1996). 4. Neri, M., Riezzo, I., Pascale, N., Pomara, C. & Turillazzi, E. Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists. Mediators Inflamm. 2017, 7018393 (2017). 5. Heidemann, C. et al. Gesundheitliche Lage von Erwachsenen in Deutschland – Ergebnisse zu ausgewählten Indikatoren der Studie GEDA 2019/2020-EHIS. https://edoc.rki.de/handle/176904/8749 (2021) doi:10.25646/8456. 6. Thygesen, K. et al. Fourth Universal Definition of Myocardial Infarction (2018). Journal of the American College of Cardiology 72, 2231–2264 (2018). 7. Lüllmann, H., Mohr, K. & Hein, L. Taschenatlas Pharmakologie. (Georg Thieme Verlag, 2015). 8. Task Force Members et al. Universal definition of myocardial infarction: Kristian Thygesen, Joseph S. Alpert and Harvey D. White on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. European Heart Journal 28, 2525–2538 (2007). 9. Vogel, B. et al. ST-segment elevation myocardial infarction. Nat Rev Dis Primers 5, 39 (2019). 10. Jennings, R. B. & Ganote, C. E. Structural changes in myocardium during acute ischemia. Circulation Research 35, 156–172 (1974). 11. Virmani, R., Forman, M. B. & Kolodgie, F. D. Myocardial reperfusion injury. Histopathological effects of perfluorochemical. Circulation 81, IV57-68 (1990). 12. Frangogiannis, N. G. The Mechanistic Basis of Infarct Healing. Antioxidants & Redox Signaling 8, 1907–1939 (2006). 13. Reimer, K. A., Jennings, R. B. & Tatum, A. H. Pathobiology of acute myocardial ischemia: metabolic, functional and ultrastructural studies. Am J Cardiol 52, 72A-81A (1983). 14. Ibáñez, B., Heusch, G., Ovize, M. & Van de Werf, F. Evolving Therapies for Myocardial Ischemia/Reperfusion Injury. Journal of the American College of Cardiology 65, 1454–1471 (2015). 15. Montecucco, F., Carbone, F. & Schindler, T. H. Pathophysiology of ST-segment elevation myocardial infarction: novel mechanisms and treatments. European Heart Journal 37, 1268–1283 (2016). 16. O’Gara, P. T. et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 127, e362-425 (2013). 17. Braunwald, E. & Kloner, R. A. Myocardial reperfusion: a double-edged sword? J Clin Invest 76, 1713–1719 (1985). 18. Jennings, R. B., Murry, C. E., Steenbergen, C. & Reimer, K. A. Development of cell injury in sustained acute ischemia. Circulation 82, II2-12 (1990). 19. Prabhu, S. D. & Frangogiannis, N. G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res 119, 91–112 (2016). 20. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011). 21. Chen, W., Bian, W., Zhou, Y. & Zhang, J. Cardiac Fibroblasts and Myocardial Regeneration. Front Bioeng Biotechnol 9, 599928 (2021). Literatur 98 22. Souders, C. A., Bowers, S. L. K. & Baudino, T. A. Cardiac fibroblast: the renaissance cell. Circ Res 105, 1164–1176 (2009). 23. Sadoshima, J. & Weiss, J. N. Cardiac fibroblasts: the good, the bad, the ugly, the beautiful. J Mol Cell Cardiol 70, 1 (2014). 24. Sandanger, Ø. et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res 99, 164–174 (2013). 25. Shinde, A. V. & Frangogiannis, N. G. Fibroblasts in myocardial infarction: a role in inflammation and repair. J Mol Cell Cardiol 70, 74–82 (2014). 26. Dreyer, W. J. et al. Kinetics of C5a release in cardiac lymph of dogs experiencing coronary artery ischemia-reperfusion injury. Circ Res 71, 1518–1524 (1992). 27. Rossen, R. D. et al. Mechanism of complement activation after coronary artery occlusion: evidence that myocardial ischemia in dogs causes release of constituents of myocardial subcellular origin that complex with human C1q in vivo. Circ Res 62, 572–584 (1988). 28. Granger, D. N. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol 255, H1269-1275 (1988). 29. Giordano, F. J. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115, 500–508 (2005). 30. Griendling, K. K. & FitzGerald, G. A. Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108, 1912–1916 (2003). 31. Hensley, K., Robinson, K. A., Gabbita, S. P., Salsman, S. & Floyd, R. A. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 28, 1456–1462 (2000). 32. Sen, C. K. & Packer, L. Antioxidant and redox regulation of gene transcription. FASEB J 10, 709–720 (1996). 33. Lenardo, M. J. & Baltimore, D. NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58, 227–229 (1989). 34. Stancovski, I. & Baltimore, D. NF-kappaB activation: the I kappaB kinase revealed? Cell 91, 299–302 (1997). 35. Beg, A. A. Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol 23, 509–512 (2002). 36. Moser, B. & Loetscher, P. Lymphocyte traffic control by chemokines. Nat Immunol 2, 123–128 (2001). 37. Frangogiannis, N. G. et al. Cytokines and the microcirculation in ischemia and reperfusion. J Mol Cell Cardiol 30, 2567–2576 (1998). 38. Frangogiannis, N. G. et al. Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98, 699–710 (1998). 39. Nathan, C. Points of control in inflammation. Nature 420, 846–852 (2002). 40. Huynh, M.-L. N., Fadok, V. A. & Henson, P. M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 109, 41–50 (2002). 41. Bassols, A. & Massagué, J. Transforming growth factor beta regulates the expression and structure of extracellular matrix chondroitin/dermatan sulfate proteoglycans. J Biol Chem 263, 3039–3045 (1988). 42. Edwards, D. R. et al. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J 6, 1899–1904 (1987). 43. Laiho, M., Saksela, O., Andreasen, P. A. & Keski-Oja, J. Enhanced production and extracellular deposition of the endothelial-type plasminogen activator inhibitor in cultured human lung fibroblasts by transforming growth factor-beta. J Cell Biol 103, 2403–2410 (1986). Literatur 99 44. Virag, J. A. I. et al. Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol 171, 1431–1440 (2007). 45. Zymek, P. et al. The role of platelet-derived growth factor signaling in healing myocardial infarcts. J Am Coll Cardiol 48, 2315–2323 (2006). 46. Booz, G. W. & Baker, K. M. Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res 30, 537–543 (1995). 47. Fu, X. et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Invest. 128, 2127–2143 (2018). 48. Kaur, H. et al. Targeted Ablation of Periostin-Expressing Activated Fibroblasts Prevents Adverse Cardiac Remodeling in Mice. Circ Res 118, 1906–1917 (2016). 49. Ma, Y., Iyer, R. P., Jung, M., Czubryt, M. P. & Lindsey, M. L. Cardiac Fibroblast Activation Post-Myocardial Infarction: Current Knowledge Gaps. Trends Pharmacol Sci 38, 448–458 (2017). 50. Desmoulière, A., Redard, M., Darby, I. & Gabbiani, G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146, 56–66 (1995). 51. Willems, I. E., Havenith, M. G., De Mey, J. G. & Daemen, M. J. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145, 868–875 (1994). 52. Frangogiannis, N. G. et al. Induction and suppression of interferon-inducible protein 10 in reperfused myocardial infarcts may regulate angiogenesis. FASEB J 15, 1428–1430 (2001). 53. Zhou, Y. et al. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med 8, 738325 (2021). 54. Park, T.-H. et al. Impact of myocardial structure and function postinfarction on diastolic strain measurements: implications for assessment of myocardial viability. Am J Physiol Heart Circ Physiol 290, H724-731 (2006). 55. Lerman, R. H. et al. Myocardial healing and repair after experimental infarction in the rabbit. Circ Res 53, 378–388 (1983). 56. Smits, A. M., Dronkers, E. & Goumans, M.-J. The epicardium as a source of multipotent adult cardiac progenitor cells: Their origin, role and fate. Pharmacol. Res. 127, 129–140 (2018). 57. Quijada, P., Trembley, M. A. & Small, E. M. The Role of the Epicardium During Heart Development and Repair. Circ Res 126, 377–394 (2020). 58. van Wijk, B., Gunst, Q. D., Moorman, A. F. M. & van den Hoff, M. J. B. Cardiac regeneration from activated epicardium. PLoS ONE 7, e44692 (2012). 59. Schlueter, J. & Brand, T. Origin and fates of the proepicardium. Aswan Heart Centre Science & Practice Series 2011, 11 (2011). 60. Bressan, M., Liu, G. & Mikawa, T. Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field. Science 340, 744–748 (2013). 61. Cossette, S. & Misra, R. The identification of different endothelial cell populations within the mouse proepicardium. Dev Dyn 240, 2344–2353 (2011). 62. Duim, S. N., Goumans, M.-J. & Kruithof, B. P. T. WT1 in Cardiac Development and Disease. in Wilms Tumor (ed. van den Heuvel-Eibrink, M. M.) (Codon Publications, 2016). 63. Männer, J., Schlueter, J. & Brand, T. Experimental analyses of the function of the proepicardium using a new microsurgical procedure to induce loss-of-proepicardial-function in chick embryos. Dev Dyn 233, 1454–1463 (2005). 64. Vega-Hernández, M., Kovacs, A., De Langhe, S. & Ornitz, D. M. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development 138, 3331–3340 (2011). Literatur 100 65. Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008). 66. Cai, C.-L. et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454, 104–108 (2008). 67. Kikuchi, K. et al. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895–2902 (2011). 68. MacNeill, C., French, R., Evans, T., Wessels, A. & Burch, J. B. E. Modular Regulation of cGATA-5 Gene Expression in the Developing Heart and Gut. Developmental Biology 217, 62–76 (2000). 69. Vrancken Peeters, M. P., Mentink, M. M., Poelmann, R. E. & Gittenberger-de Groot, A. C. Cytokeratins as a marker for epicardial formation in the quail embryo. Anat Embryol (Berl) 191, 503–508 (1995). 70. von Gise, A. & Pu, W. T. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 110, 1628–1645 (2012). 71. Carmona, R., González-Iriarte, M., Pérez-Pomares, J. M. & Muñoz-Chápuli, R. Localization of the Wilm’s tumour protein WT1 in avian embryos. Cell Tissue Res 303, 173–186 (2001). 72. Katz, T. C. et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev Cell 22, 639–650 (2012). 73. Lajiness, J. D. & Conway, S. J. Origin, development, and differentiation of cardiac fibroblasts. J Mol Cell Cardiol 70, 2–8 (2014). 74. Christoffels, V. M. et al. Tbx18 and the fate of epicardial progenitors. Nature 458, E8-9; discussion E9-10 (2009). 75. Olivey, H. E. & Svensson, E. C. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ Res 106, 818–832 (2010). 76. Wessels, A. & Pérez-Pomares, J. M. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol 276, 43–57 (2004). 77. Smart, N. et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature 474, 640–644 (2011). 78. Zhou, B. et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 121, 1894–1904 (2011). 79. Smits, A. M. & Riley, P. R. Epicardium-Derived Heart Repair. J Dev Biol 2, 84–100 (2014). 80. Limana, F. et al. Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. J Mol Cell Cardiol 48, 609–618 (2010). 81. Huang, G. N. et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338, 1599–1603 (2012). 82. Foglio, E. et al. Exosomal clusterin, identified in the pericardial fluid, improves myocardial performance following MI through epicardial activation, enhanced arteriogenesis and reduced apoptosis. Int J Cardiol 197, 333–347 (2015). 83. Zhou, B. et al. Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J Mol Cell Cardiol 52, 43–47 (2012). 84. Limana, F. et al. Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res 101, 1255–1265 (2007). 85. Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 31, 898–907 (2013). 86. Smart, N. et al. Thymosin beta4 facilitates epicardial neovascularization of the injured adult heart. Ann N Y Acad Sci 1194, 97–104 (2010). 87. Volz, K. S. et al. Pericytes are progenitors for coronary artery smooth muscle. Elife 4, e10036 (2015). Literatur 101 88. Bollini, S. et al. Re-Activated Adult Epicardial Progenitor Cells Are a Heterogeneous Population Molecularly Distinct from Their Embryonic Counterparts. Stem Cells and Development 23, 1719–1730 (2014). 89. Hesse, J. et al. Single-cell transcriptomics defines heterogeneity of epicardial cells and fibroblasts within the infarcted murine heart. Elife 10, e65921 (2021). 90. Heallen, T. R., Kadow, Z. A., Kim, J. H., Wang, J. & Martin, J. F. Stimulating Cardiogenesis as a Treatment for Heart Failure. Circ Res 124, 1647–1657 (2019). 91. Vagnozzi, R. J., Molkentin, J. D. & Houser, S. R. New Myocyte Formation in the Adult Heart: Endogenous Sources and Therapeutic Implications. Circ Res 123, 159–176 (2018). 92. Forte, E., Furtado, M. B. & Rosenthal, N. The interstitium in cardiac repair: role of the immune-stromal cell interplay. Nat Rev Cardiol 15, 601–616 (2018). 93. Winter, E. M. et al. Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation 116, 917–927 (2007). 94. Foglia, M. J. & Poss, K. D. Building and re-building the heart by cardiomyocyte proliferation. Development 143, 729–740 (2016). 95. Cao, J. & Poss, K. D. The epicardium as a hub for heart regeneration. Nat Rev Cardiol 15, 631–647 (2018). 96. Karra, R. & Poss, K. D. Redirecting cardiac growth mechanisms for therapeutic regeneration. J Clin Invest 127, 427–436 (2017). 97. Wei, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479–485 (2015). 98. Weeke-Klimp, A. et al. Epicardium-derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes. J Mol Cell Cardiol 49, 606–616 (2010). 99. Eid, H. et al. Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circ Res 71, 40–50 (1992). 100. Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100, 12313–12318 (2003). 101. Beltrami, A. P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003). 102. Zhang, H. et al. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 114, 155–167 (1991). 103. Sadahira, Y., Ruan, F., Hakomori, S. & Igarashi, Y. Sphingosine 1-phosphate, a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness. Proc Natl Acad Sci U S A 89, 9686–9690 (1992). 104. Liu, X., Zhang, Q.-H. & Yi, G.-H. Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells. Mol Cell Biochem 363, 21–33 (2012). 105. Chun, J., Hla, T., Lynch, K. R., Spiegel, S. & Moolenaar, W. H. International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol Rev 62, 579–587 (2010). 106. Orr Gandy, K. A. & Obeid, L. M. Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: review of sphingosine kinase inhibitors. Biochim Biophys Acta 1831, 157–166 (2013). 107. Kunkel, G. T., Maceyka, M., Milstien, S. & Spiegel, S. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12, 688–702 (2013). 108. Li, N. & Zhang, F. Implication of sphingosin-1-phosphate in cardiovascular regulation. Front Biosci (Landmark Ed) 21, 1296–1313 (2016). Literatur 102 109. Jin, Z.-Q. et al. Cardioprotection mediated by sphingosine-1-phosphate and ganglioside GM-1 in wild-type and PKC epsilon knockout mouse hearts. Am J Physiol Heart Circ Physiol 282, H1970-1977 (2002). 110. Karliner, J. S., Honbo, N., Summers, K., Gray, M. O. & Goetzl, E. J. The lysophospholipids sphingosine-1-phosphate and lysophosphatidic acid enhance survival during hypoxia in neonatal rat cardiac myocytes. J Mol Cell Cardiol 33, 1713–1717 (2001). 111. Argraves, K. M. & Argraves, W. S. HDL serves as a S1P signaling platform mediating a multitude of cardiovascular effects. J Lipid Res 48, 2325–2333 (2007). 112. Tao, R. et al. High-density lipoprotein determines adult mouse cardiomyocyte fate after hypoxia-reoxygenation through lipoprotein-associated sphingosine 1-phosphate. Am J Physiol Heart Circ Physiol 298, H1022-1028 (2010). 113. Polzin, A. et al. Sphingosine-1-phosphate improves outcome of no-reflow acute myocardial infarction via sphingosine-1-phosphate receptor 1. ESC Heart Fail 10, 334–341 (2023). 114. Hinkel, R., Klett, K., Bähr, A. & Kupatt, C. Thymosin β4-mediated protective effects in the heart. Expert Opinion on Biological Therapy 18, 121–129 (2018). 115. Huff, T., Müller, C. S., Otto, A. M., Netzker, R. & Hannappel, E. beta-Thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol 33, 205–220 (2001). 116. Huang, W. Q. & Wang, Q. R. Bone marrow endothelial cells secrete thymosin beta4 and AcSDKP. Exp Hematol 29, 12–18 (2001). 117. Bock-Marquette, I., Saxena, A., White, M. D., Michael DiMaio, J. & Srivastava, D. Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432, 466–472 (2004). 118. Hannappel, E. beta-Thymosins. Ann N Y Acad Sci 1112, 21–37 (2007). 119. Goldstein, A. L., Hannappel, E. & Kleinman, H. K. Thymosin beta4: actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med 11, 421–429 (2005). 120. Malinda, K. M., Goldstein, A. L. & Kleinman, H. K. Thymosin beta 4 stimulates directional migration of human umbilical vein endothelial cells. FASEB J 11, 474–481 (1997). 121. Philp, D. et al. Thymosin beta4 increases hair growth by activation of hair follicle stem cells. FASEB J 18, 385–387 (2004). 122. Hinkel, R. et al. Thymosin beta4 is an essential paracrine factor of embryonic endothelial progenitor cell-mediated cardioprotection. Circulation 117, 2232–2240 (2008). 123. Hinkel, R. et al. MRTF-A controls vessel growth and maturation by increasing the expression of CCN1 and CCN2. Nat Commun 5, 3970 (2014). 124. Kim, H., Kim, M., Im, S.-K. & Fang, S. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab Anim Res 34, 147–159 (2018). 125. Owenier, C. et al. Novel technique for the simultaneous isolation of cardiac fibroblasts and epicardial stromal cells from the infarcted murine heart. Cardiovasc. Res. 116, 1047–1058 (2020). 126. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–682 (2012). 127. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36, 411–420 (2018). 128. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 8, 329-337.e4 (2019). 129. Chang, W. et al. Shiny: Web Application Framework for R. (2022). Literatur 103 130. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009). 131. Farbehi, N. et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife 8, (2019). 132. Bochmann, L. et al. Revealing new mouse epicardial cell markers through transcriptomics. PLoS One 5, e11429 (2010). 133. Wittmann, J. et al. Plasma gelsolin promotes re-epithelialization. Sci Rep 8, 13140 (2018). 134. Bradshaw, A. D. The role of secreted protein acidic and rich in cysteine (SPARC) in cardiac repair and fibrosis: Does expression of SPARC by macrophages influence outcomes? J Mol Cell Cardiol 93, 156–161 (2016). 135. Frangogiannis, N. G. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 65, 70–99 (2019). 136. van Andel, H., Kocemba, K. A., Spaargaren, M. & Pals, S. T. Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options. Leukemia 33, 1063–1075 (2019). 137. Foulquier, S. et al. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 70, 68–141 (2018). 138. Chen, A.-N., Zhong, L.-L., Ju, K. & Cao, H. Bioinformatics Analysis of a Functional ANGPT1 Variant That Interferes with miR-607 and Its Association with Susceptibility and Outcome of Ischemic Stroke in a Han Population. TCRM Volume 17, 1045–1052 (2021). 139. Liu, X.-H. et al. Therapeutic potential of angiogenin modified mesenchymal stem cells: Angiogenin improves mesenchymal stem cells survival under hypoxia and enhances vasculogenesis in myocardial infarction. Microvascular Research 76, 23–30 (2008). 140. Hirohata, S., Inagaki, J. & Ohtsuki, T. [Diverse Functions of a Disintegrin and Metalloproteinase with Thrombospondin Motif-1]. Yakugaku Zasshi 137, 811–814 (2017). 141. Shiraishi, M., Yamaguchi, A. & Suzuki, K. Nrg1/ErbB signaling-mediated regulation of fibrosis after myocardial infarction. FASEB J 36, e22150 (2022). 142. Korf-Klingebiel, M. et al. Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat Med 21, 140–149 (2015). 143. Hanna, A. & Frangogiannis, N. G. The Role of the TGF-β Superfamily in Myocardial Infarction. Front Cardiovasc Med 6, 140 (2019). 144. Mylonas, K. J. et al. 11β-HSD1 suppresses cardiac fibroblast CXCL2, CXCL5 and neutrophil recruitment to the heart post MI. Journal of Endocrinology 233, 315–327 (2017). 145. Frangogiannis, N. G. Matricellular Proteins in Cardiac Adaptation and Disease. Physiological Reviews 92, 635–688 (2012). 146. Mikolajczyk, T. P. et al. Role of inflammatory chemokines in hypertension. Pharmacology & Therapeutics 223, 107799 (2021). 147. Korbecki, J., Maruszewska, A., Bosiacki, M., Chlubek, D. & Baranowska-Bosiacka, I. The Potential Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Cardiovascular System, Respiratory System and Skin. Int J Mol Sci 24, 205 (2022). 148. Burke, R. M., Burgos Villar, K. N. & Small, E. M. Fibroblast contributions to ischemic cardiac remodeling. Cellular Signalling 77, 109824 (2021). 149. Frangogiannis, N. G. Cardiac fibrosis. Cardiovasc Res 117, 1450–1488 (2021). 150. Neff, L. S. & Bradshaw, A. D. Cross your heart? Collagen cross-links in cardiac health and disease. Cell Signal 79, 109889 (2021). 151. Shinde, A. V., Humeres, C. & Frangogiannis, N. G. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta Mol Basis Dis 1863, 298–309 (2017). Literatur 104 152. Zhao, Y. et al. Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1. J Biol Chem 282, 14165–14177 (2007). 153. Duim, S. N., Kurakula, K., Goumans, M.-J. & Kruithof, B. P. T. Cardiac endothelial cells express Wilms’ tumor-1: Wt1 expression in the developing, adult and infarcted heart. J Mol Cell Cardiol 81, 127–135 (2015). 154. Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biology 17, 29 (2016). 155. Gong, L. et al. SLIT3 deficiency attenuates pressure overload–induced cardiac fibrosis and remodeling. JCI Insight 5, e136852 (2020). 156. Wo, D. et al. IGFBP‐4 enhances VEGF‐induced angiogenesis in a mouse model of myocardial infarction. J Cell Mol Med 24, 9466–9471 (2020). 157. A. Ploplis, V. Effects of Altered Plasminogen Activator Inhibitor-1 Expression on Cardiovascular Disease. CDT 12, 1782–1789 (2011). 158. Flevaris, P. et al. Plasminogen Activator Inhibitor Type I Controls Cardiomyocyte Transforming Growth Factor-β and Cardiac Fibrosis. Circulation 136, 664–679 (2017). 159. Chen, B. & Frangogiannis, N. G. Chemokines in Myocardial Infarction. J Cardiovasc Transl Res 14, 35–52 (2021). 160. Zhu, S. et al. Protein Cytl1: its role in chondrogenesis, cartilage homeostasis, and disease. Cell Mol Life Sci 76, 3515–3523 (2019). 161. Hatipoglu, O. F. et al. ADAMTS1 is a unique hypoxic early response gene expressed by endothelial cells. J Biol Chem 284, 16325–16333 (2009). 162. Folestad, E., Kunath, A. & Wågsäter, D. PDGF-C and PDGF-D signaling in vascular diseases and animal models. Molecular Aspects of Medicine 62, 1–11 (2018). 163. Higashi, Y., Gautam, S., Delafontaine, P. & Sukhanov, S. IGF-1 and cardiovascular disease. Growth Hormone & IGF Research 45, 6–16 (2019). 164. Lee, R. T. Matrix Metalloproteinase Inhibition and the Prevention of Heart Failure. Trends in Cardiovascular Medicine 11, 202–205 (2001). 165. Barallobre-Barreiro, J. et al. Extracellular Matrix in Heart Failure: Role of ADAMTS5 in Proteoglycan Remodeling. Circulation 144, 2021–2034 (2021). 166. Roux, M. & Zaffran, S. Hox Genes in Cardiovascular Development and Diseases. J Dev Biol 4, 14 (2016). 167. Gladka, M. M. et al. Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Cytoskeleton-Associated Protein 4 as a New Modulator of Fibroblasts Activation. Circulation 138, 166–180 (2018). 168. Wang, L. et al. Single-cell dual-omics reveals the transcriptomic and epigenomic diversity of cardiac non-myocytes. Cardiovasc Res 118, 1548–1563 (2022). 169. Ivey, M. J. et al. Resident fibroblast expansion during cardiac growth and remodeling. J Mol Cell Cardiol 114, 161–174 (2018). 170. de Haan, J. J., Smeets, M. B., Pasterkamp, G. & Arslan, F. Danger Signals in the Initiation of the Inflammatory Response after Myocardial Infarction. Mediators of Inflammation 2013, 1–13 (2013). 171. Ni, B., Sun, M., Zhao, J., Wang, J. & Cao, Z. The role of β-catenin in cardiac diseases. Front Pharmacol 14, 1157043 (2023). 172. Meyer, I. S. et al. The cardiac microenvironment uses non‐canonical WNT signaling to activate monocytes after myocardial infarction. EMBO Mol Med 9, 1279–1293 (2017). 173. Wu, X., Reboll, M. R., Korf-Klingebiel, M. & Wollert, K. C. Angiogenesis after acute myocardial infarction. Cardiovasc Res 117, 1257–1273 (2021). 174. Frangogiannis, N. G., Michael, L. H. & Entman, M. L. Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc Res 48, 89–100 (2000). Literatur 105 175. Rodríguez, C. & Martínez-González, J. The Role of Lysyl Oxidase Enzymes in Cardiac Function and Remodeling. Cells 8, 1483 (2019). 176. Saad, F. A., Torres, M., Wang, H. & Graham, L. Intracellular lysyl oxidase: effect of a specific inhibitor on nuclear mass in proliferating cells. Biochem Biophys Res Commun 396, 944–949 (2010). 177. Rodríguez, C., Rodríguez-Sinovas, A. & Martínez-González, J. Lysyl oxidase as a potential therapeutic target. Drug News Perspect 21, 218–224 (2008). 178. Kagan, H. M. & Li, W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88, 660–672 (2003). 179. Rodríguez, C. et al. Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovasc Res 79, 7–13 (2008). 180. Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010). 181. Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464, 601–605 (2010). 182. Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006). 183. Furtado, M. B., Nim, H. T., Boyd, S. E. & Rosenthal, N. A. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 143, 387–397 (2016). 184. Hadas, Y., Katz, M. G., Bridges, C. R. & Zangi, L. Modified mRNA as a therapeutic tool to induce cardiac regeneration in ischemic heart disease. Wiley Interdiscip Rev Syst Biol Med 9, (2017). 185. Theilmeier, G. et al. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114, 1403–1409 (2006). 186. Brulhart-Meynet, M.-C. et al. Improving reconstituted HDL composition for efficient post-ischemic reduction of ischemia reperfusion injury. PLoS One 10, e0119664 (2015). 187. Zhang, F. et al. Sphingosine 1-phosphate signaling contributes to cardiac inflammation, dysfunction, and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 310, H250-261 (2016). 188. Bandhuvula, P. et al. S1P lyase: a novel therapeutic target for ischemia-reperfusion injury of the heart. Am J Physiol Heart Circ Physiol 300, H1753-1761 (2011). 189. Ji, R. et al. Increased de novo ceramide synthesis and accumulation in failing myocardium. JCI Insight 2, e96203, 96203 (2017). 190. Sansbury, B. E. et al. Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Fail 7, 634–642 (2014). 191. Halade, G. V., Kain, V., Tourki, B. & Jadapalli, J. K. Lipoxygenase drives lipidomic and metabolic reprogramming in ischemic heart failure. Metabolism 96, 22–32 (2019). 192. Devarakonda, T. et al. Chronic treatment with serelaxin mitigates adverse remodeling in a murine model of ischemic heart failure and modulates bioactive sphingolipid signaling. Sci Rep 12, 8897 (2022). 193. Kovilakath, A., Wohlford, G. & Cowart, L. A. Circulating sphingolipids in heart failure. Front. Cardiovasc. Med. 10, 1154447 (2023). 194. Bock-Marquette, I. et al. Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. J. Mol. Cell. Cardiol. 46, 728–738 (2009). 195. Srivastava, D., Ieda, M., Fu, J. & Qian, L. Cardiac repair with thymosin β4 and cardiac reprogramming factors. Ann N Y Acad Sci 1270, 66–72 (2012). 196. Peng, H. et al. Thymosin-β4 prevents cardiac rupture and improves cardiac function in mice with myocardial infarction. Am J Physiol Heart Circ Physiol 307, H741-751 (2014). Literatur 106 197. Kumar, A., Patel, A., Duvalsaint, L., Desai, M. & Marks, E. D. Thymosin β4 coated nanofiber scaffolds for the repair of damaged cardiac tissue. J Nanobiotechnology 12, 10 (2014). 198. Smart, N. et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177–182 (2007). | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät | |||||||
Dokument erstellt am: | 26.02.2024 | |||||||
Dateien geändert am: | 26.02.2024 | |||||||
Promotionsantrag am: | 07.11.2023 | |||||||
Datum der Promotion: | 07.02.2024 |