Dokument: Molecular mechanism of inducible crassulacean acid metabolism in Talinum fruticosum

Titel:Molecular mechanism of inducible crassulacean acid metabolism in Talinum fruticosum
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=64542
URN (NBN):urn:nbn:de:hbz:061-20250130-101441-3
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Reichel-Deland, Vanessa [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]14,12 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 01.01.2024 / geändert 01.01.2024
Beitragende:Prof. Weber, Andreas P.M. [Gutachter]
Prof. Dr. Zurbriggen, Matias [Gutachter]
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibung:With the rapidly changing climate conditions, the intricate ability of plants to adapt to their environment is crucial. Plants serve as the backbone of the natural ecosystem on earth, as they use carbon dioxide, sunlight and water to produce oxygen and carbohydrates, essential for sustaining life. Rising temperatures and droughts can challenge the resilience of plants (Manuscript I). Throughout evolution, plants have developed different strategies to overcome severe stresses. One strategy is the carbon concentrating crassulacean acid metabolism (CAM), with optimizes photosynthesis for growth in water-limited regions. CAM plants separate steps of its photosynthetic metabolism throughout a day/night rhythm, allowing CO2 fixation during the cooler night and closing of the stomata during the day, when the temperatures are high. The facultative CAM plant Talinum fruticosum has adapted to recurring periods of drought by transitioning from C3 to CAM photosynthesis under drought and reverting to C3 upon water supply. This ability enables T. fruticosum to survive prolonged episodes of severe drought.
In this thesis we aimed to establish T. fruticosum as a model plant and to understand this reversible CAM switching to potentially utilizing these findings in reverse engineering crop drought tolerance in the future. We established protocols for molecular work with T. fruticosum (Manuscript II), which has the potential to unravel previously unexplored aspects of the CAM metabolic pathways, signaling cascades and gene regulatory networks. To understand the gene expression of T. fruticosum during environmental adaptation, we employed a synergy of transcriptome analysis, transcription factor binding prediction and verification through a synthetic biological test system in an orthogonal mammalian cell system (Manuscript III).
Our studies have laid the foundation for a promising platform with novel approaches to comprehend the complex regulatory network and adaptation mechanisms of the facultative CAM plant T. fruticosum, with the potential to investigate other species of interest, such as the facultative CAM plant Coleus amboinicus (Addendum). Our findings have deepened the understanding of a drought tolerance mechanism and pave the way for future investigations, which are indispensable in advancing crop engineering to meet the challenges of a changing climate.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie » Biochemie der Pflanzen
Dokument erstellt am:30.01.2025
Dateien geändert am:30.01.2025
Promotionsantrag am:16.08.2023
Datum der Promotion:17.11.2023
english
Benutzer
Status: Gast
Aktionen