Dokument: Die Auswirkungen von kaltem, atmosphärischem Plasma auf die Durchblutung
Titel: | Die Auswirkungen von kaltem, atmosphärischem Plasma auf die Durchblutung | |||||||
Weiterer Titel: | The effects of cold atmospheric plasma on blood circulation | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=64406 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20231213-074441-5 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Wurth, Michael [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. rer. nat. Suschek, Christoph Viktor [Gutachter] Priv.-Doz. Dr. rer. nat. Mahotka, Czaba [Gutachter] | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Chronische Wunden, stellen vor allem im Rahmen zunehmender, zivilisatorischer Erkrankungen, wie die pAVK oder der Diabetes mellitus, ein großes Problem für die Betroffenen dar, welche mit einer deutlichen Reduktion der Lebensqualität einhergeht. Des Weiteren sind sie auch eine enorme Belastung für die Ressourcen unseres Gesundheitssystems. Neue Behandlungsmethoden, welche einfach, kostengünstig und effektiv sind, sind daher aktuell notwendiger denn je. Eine alternativeTherapieoption, wäre die Anwendung von kaltem, atmosphärischem Plasma, welchesein ionisiertes und elektrisch leitendes Gas darstellt und bei Raumtemperatur erzeugtwerden kann und reaktive Sauerstoffspezies und Stickstoffmonoxid und dessen Derivate produzieren kann. Diese wiederum sind wichtige Mediatoren bei Wundheilungsprozessen und nehmen Einfluss auf die Durchblutung und Immunreaktionen. Diese Arbeit beschäftigt sich vorrangig damit, ob Einflüsse auf die Durchblutung durch Anwendung direkten, kalten Plasmas vorhanden sind und ob diese durch verschiedene Einflussfaktoren wie Feuchtigkeit der Haut, erzeugte UV- Strahlung, (welche bei Plasmagenerierung anfällt) Anwendungsdauer der Plasmabehandlung oder durch Druck auf die Behandlungsstelle beeinflusst werden kann. Hierbei wurde eine direkte, atmosphärische DBD (dielectric-barrier-discharge) Plasmaquelle verwendet, welche über ein Handgerät verfügt, welches das Plasma direkt auf die Behandlungsstelle bringen kann. Die Durchblutungsparameter wie die relative Sauerstoffsättigung, relative Hämoglobinmenge, relativer Blutfluss und Blutflussgeschwindigkeit wurde durch Laser-Doppel-Spektroskopie in oberflächlichen und tiefen Hautschichten an derBehandlungsstelle erfasst. Hierfür wurde ein O2C-Gerät der Firma „LEA-Medizin- Technik-Gießen“ verwendet, welche die Parameter durch Auflegen einer fiberoptischen Glassonde direkt erfassen kann. Insgesamt wurden 24 Probanden einer Plasmabehandlung unterzogen, aufgeteilt auf verschiedene Behandlungszeiten. Die Durchblutungsparameter wurden unter standardisieren Bedingungen erfasst, um Störfaktoren möglich gering zu halten. Es wurden mehrere Referenzmessungen vor der Behandlung durchgeführt und unmittelbar nach der Plasmabehandlung in regelmäßigen zeitlichen Abständen die Parameter protokolliert.
In meiner Arbeit konnte kein signifikanter Effekt auf die Durchblutung, sowohl in oberflächlichen, als auch in tieferen Hautschichten nachgewiesen werden. Auch eine Erhöhung der Behandlungszeit auf 360s änderte daran nichts. Mögliche effektsteigernde oder effektsenkende Einflüsse, wie die Feuchtigkeit der Haut, oder UV- Strahlung nahmen ebenfalls keinen signifikanten Einfluss darauf.Chronic wounds, especially in the context of increasing civilizational diseases, such as PAD or diabetes mellitus, represent a major problem for those affected, which is accompanied by a significant reduction in quality of life. Furthermore, they are also an enormous burden on the resources of our health system. New treatment methods that are simple, cost-effective and effective are therefore currently more necessary than ever. An alternative therapy option would be the application of cold, atmospheric plasma, which is an ionized and electrically conductive gas and can be generated at room temperature and can produce reactive oxygen species and nitric oxide and its derivatives. These in turn are important mediators in wound healing processes and influence blood circulation and immune reactions. This thesis is primarily concerned with whether influences on blood circulation are present through the application of direct, cold plasma and whether this can be influenced by various influencing factors such as moisture of the skin, UV radiation generated, (which occurs during plasma generation) application period of the plasma treatment, or pressure generated by the handheld device on the treatment site. A direct, atmospheric DBD (dielectric-barrier-discharge) plasma source was used, which has a handheld device that can deliver the plasma directly to the treatment site.The blood flow parameters such as relative oxygen saturation, relative hemoglobin amount, relative blood flow and blood flow velocity were recorded by laser double spectroscopy in superficial and deep skin layers at the treatment site. For this purpose, an O2C device from the company "LEA-Medizin-Technik-Gießen" was used, which can directly record the parameters by placing a fiber-optic glass probe. A total of 24 subjects underwent plasma treatment, divided into different treatment times. The blood flow parameters were recorded under standardized conditions in order to keep disturbing factors as low as possible. Several reference measurements were carried out before the treatment and the parameters were logged at regular intervals immediately after the plasma treatment. In my work, no significant effect on blood circulation could be detected, both in superficial and deeper skin layers. Even increasing the treatment time to 360s did not change this.Possible effect-enhancing or effect-reducing influences, such as the moisture of the skin, or UV radiation also had no significant influence on this. | |||||||
Quelle: | • Andrews, T., and Tait, P.G. (1860). On the volumetric relations of ozone, and the action of the electrical discharge on oxygen and other gases. Philosophical Transactions of the Royal Society of London 150, 113–131.
• Arndt et al. Cold Atmospheric Plasma (CAP) Changes Gene Expression of Key Molecules of the Wound Healing Machinery and Improves Wound Healing In Vitro and In Vivo. PloS One 8 (2013) • Augustin, M., et al., Quality of life evaluation in wounds: validation of the Freiburg Life Quality Assessment-wound module, a disease-specific instrument. Int Wound J, 2010. 7(6): p. 493- 501. • Bekeschus, S., Kolata, J., Winterbourn, C., Kramer, A., Turner, R., Weltmann, K.D., Bröker, B., and Masur, K. (2014). Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Radical Research 48, 542–549. • Benninghoff, Drenckhahn, Anatomie Band 2, Auflage 16 von 2004, Kapitel 14, Haut und Hautanhangsgebilde, S.776-796 • Bonizzoni, G., and Vassallo, E. (2002). Plasma physics and technology; industrial applications. Vacuum 64, 327–336. • Borchardt, Thomas; Ernst, Jennifer; Helmke, Andreas; Tanyeli, Murat; Schilling, Arndt F.; Felmerer, Gunther; Vioel, Wolfgang (2017): Effect of direct cold atmospheric plasma (diCAP) on microcirculation of intact skin in a controlled mechanical environment. In: Microcirculation • Boxhammer et al., Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mutation Res. 753 (2013) 23-28 • Brehmer, F., Haenssle, H.A., Daeschlein, G., Ahmed, R., Pfeiffer, S., Görlitz, A., Simon, D., Schön, M.P., Wandke, D., and Emmert, S. (2015). Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). Journal of the European Academy of Dermatology and Venereology 29, 148– 155. • Broughton, G., Janis, J.E., and Attinger, C.E. (2006). The Basic Science of Wound Healing: Plastic and Reconstructive Surgery 117, 12S–34S. • Brun, P., et al., Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization. J Appl Microbiol, 2018. 125(2): p. 398-408 • Cannon, R.O., Schechter, A.N., Panza, J.A., Ognibene, F.P., Pease-Fye, M.E., Waclawiw, M.A., Shelhamer, J.H., and Gladwin, M.T. (2001). Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxidedelivery. The Journal of Clinical Investigation 108, 279–287. • Cao, Z., Walsh, J.L., and Kong, M.G. (2009). Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment. Applied Physics Letters 94, 21501. • Chatraie, M., et al., In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment. Sci Rep, 2018. 8(1): p. 5621 • d’Agostino, R., Favia, P., Oehr, C., and Wertheimer, M.R. (2005). Low-Temperature Plasma Processing of Materials: Past, Present, and Future. Plasma Processes and Polymers 2, 7–15. • Daeschlein, G., Scholz, S., Ahmed, R., Majumdar, A., von Woedtke, T., Haase, H., Niggemeier, M., Kindel, E., Brandenburg, R., Weltmann, K.D., et al. (2012). Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. JDDG: Journal Der Deutschen Dermatologischen Gesellschaft 10, 509–515. • Daeschlein, Georg; Napp, Matthias; Podewils, Sebastian von; Scholz, Sebastian; Arnold, Andreas; Emmert, Steffen et al. (2015): Antimicrobial Efficacy of a Historical High- Frequency Plasma Apparatus in Comparison With 2 Modern, Cold Atmospheric Pressure Plasma Devices. In: Surgical innovation 22, 394–400 • Delben, J.A., Zago, C.E., Tyhovych, N., Duarte, S., and Vergani, C.E. (2016). Effect of Atmospheric-Pressure Cold Plasma on Pathogenic Oral Biofilms and In Vitro Reconstituted Oral Epithelium. PloS One 11, e0155427. • Diener, H., et al., Revaskularisation und Amputation bei kritischer Ischämie. Gefässchirurgie, 2010. 15(1): p. 20-32. • Ebert, U. (2009). Wenn der Funke überspringt. Physik Journal 8, 39. • Elsaie, M.L., and Kammer, J.N. (2008). Evaluation of plasma skin regeneration technology for cutaneous remodeling. Journal of Cosmetic Dermatology 7, 309–311. • Emmert, S., Brehmer, F., Hän\s sle, H., Helmke, A., Mertens, N., Ahmed, R., Simon, D., Wandke, D., Maus-Friedrichs, W., Däschlein, G., et al. (2013). Atmospheric pressure plasma in dermatology: Ulcus treatment and much more. Clinical Plasma Medicine 1, 24–29. • Foster, M.W., T.J. McMahon, and J.S. Stamler, S-nitrosylation in health and disease. Trends in Molecular Medicine, 2003. 9(4): p. 160-168. • Frank, S., Kämpfer, H., Wetzler, C., and Pfeilschifter, J. (2002). Nitric oxide drives skin repair: novel functions of an established mediator. Kidney International 61, 882–888. • Fridman, A. (2012). Plasma Chemistry (Cambridge: Cambridge University Press). • Furchgott, R.F., and Vanhoutte, P.M. (1989). Endothelium-derived relaxing and contracting factors. The FASEB Journal 3, 2007–2018. • Ginsberg, G.G., Barkun, A.N., Bosco, J.J., Burdick, J.S., Isenberg, G.A., Nakao, N.L., Petersen, B.T., Silverman, W.B., Slivka, A., and Kelsey, P.B. (2002). The argon plasma coagulatorFebruary 2002. Gastrointestinal Endoscopy 55, 807–810. • Gosain, A. and L.A. DiPietro, Aging and wound healing. World J Surg, 2004. 28(3): S. 321-6. 19. • Greenman, R.L., et al., Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet, 2005. 366(9498): p. 1711-7 • Guo, S. and L.A. Dipietro, Factors affecting wound healing. J Dent Res, 2010.: S. 219-29. • Guo, S. and L.A. Dipietro, Factors affecting wound healing. J Dent Res, 2010. 89(3): p. 219- 29. • Haertel, B., Wende, K., von Woedtke, T., Weltmann, K.D., and Lindequist, U. (2011). Non- thermal atmospheric-pressure plasma can influence cell adhesion molecules on HaCaT- keratinocytes. Experimental Dermatology 20, 282–284. • Haertel, B., Woedtke, T. von, Weltmann, K.-D., and Lindequist, U. (2014). Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing. Biomolecules & Therapeutics 22, 477–490. • Heinlin, J., Isbary, G., Stolz, W., Morfill, G., Landthaler, M., Shimizu, T., Steffes, B., Nosenko, T., Zimmermann, J.L., and Karrer, S. (2011). Plasma applications in medicine with a special focus on dermatology. Journal of the European Academy of Dermatology and Venereology 25, 1–11. • Heuer, Kiara; Hoffmanns, Martin A.; Demir, Erhan; Baldus, Sabrina; Volkmar, Christine M.; Röhle, Mirco et al. (2015): The topical use of non-thermal dielectric barrier discharge (DBD): nitric oxide related effects on human skin. In: Nitric oxide : biology and chemistry 44, S. 52–60. • Hinz, B., et al., Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol, 2001. 159(3): S. 1009-20 • Isbary, G., Zimmermann, J.L., Shimizu, T., Li, Y.-F., Morfill, G.E., Thomas, H.M., Steffes, B., Heinlin, J., Karrer, S., and Stolz, W. (2013). Non-thermal plasma—more than five years of clinical experience. Clinical Plasma Medicine 1, 19–23. • Jablonowski, L., et al. "Removal of naturally grown human biofilm with an atmospheric pressure plasma jet. 2016. • Janßen H., B.R., Qualität und Kosten in der chronischen Wundversorgung • Karl, T., A. Gussmann, and M. Storck, Chronic wounds--perspective for integrated care, Zentralbl Chir, 2007. 132(3): p. 232-5. • Kelm, M., and Schrader, J. (1990). Control of coronary vascular tone by nitric oxide. Circulation Research 66, 1561–1575. • Kisch, Tobias; Helmke, Andreas; Schleusser, Sophie; Song, Jungin; Liodaki, Eirini; Stang, Felix Hagen et al. (2016): Improvement of cutaneous microcirculation by cold atmospheric plasma (CAP): Results of a controlled, prospective cohort study. In: Microvascular research 104, 55–62 • Kogelschatz, U. (2003). Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing 23, 1–46. • Köster, I. and D.I. Schubert, Epidemiologie und Versorgung von Patienten mit chronischen Wunden. Eine Analyse auf der Basis der Versichertenstichprobe AOK Hessen:KV Hessen. 2015 • Kuchenbecker, M., Bibinov, N., Kaemlimg, A., Wandke, D., Awakowicz, P., and Viöl, W. (2009). Characterization of DBD plasma source for biomedical applications. Journal of Physics D: Applied Physics 42, 45212. • Langmuir, I. (1928). Oscillations in ionized gases. Proceedings of the National Academy of Sciences 14, 627–637. • Liao, J.C., Hein, T.W., Vaughn, M.W., Huang, K.-T., and Kuo, L. (1999). Intravascular flow decreases erythrocyte consumption of nitric oxide. Proceedings of the National Academy of Sciences 96, 8757–8761. • Liebmann, J., Scherer, J., Bibinov, N., Rajasekaran, P., Kovacs, R., Gesche, R., Awakowicz, P., and Kolb-Bachofen, V. (2011). Biological effects of nitric oxide generated by an atmospheric pressure gas-plasma on human skin cells. Nitric Oxide 24, 8–16. • Loots, M.A., et al., Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol, 1998. 111(5): p. 850-7. • Luo, J.D., et al., Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Circulation, 2004. • Michel Moisan, J.B., Marie-Charlotte Crevier, Jacques Pelletier, Nicolas Philip, and Bachir Saoudi, Plasma sterilization. Methods and mechanisms. Pure Appl. Chem, 2002 74(3): p. pp. 349–358. • Miller, C.C., Miller, M.K., Ghaffari, A., and Kunimoto, B. (2004). Treatment of chronic nonhealing leg ulceration with gaseous nitric oxide: a case study. Journal of Cutaneous Medicine and Surgery 8, 233–238. • Morfill, G.E., Shimizu, T., Steffes, B., and Schmidt, H.U. (2009). Nosocomial infections—a new approach towards preventive medicine using plasmas. New Journal of Physics 11, 115019. • Opländer, C., Volkmar, C.M., Paunel-Görgülü, A., van Faassen, E.E., Heiss, C., Kelm, M., Halmer, D., Mürtz, M., Pallua, N., and Suschek, C.V. (2009). Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates. Circulation Research 105, 1031–1040. • Paunel, A.N., Dejam, A., Thelen, S., Kirsch, M., Horstjann, M., Gharini, P., Mürtz, M., Kelm, M., de Groot, H., Kolb-Bachofen, V., et al. (2005). Enzyme-independent nitric oxide formation during UVA challenge of human skin: characterization, molecular sources, and mechanisms. Free Radical Biology and Medicine 38, 606–615. • Rajasekaran, Priyadarshini; Opländer, Christian; Hoffmeister, Dennis; Bibinov, Nikita; Suschek, Christoph Viktor; Wandke, Dirk; Awakowicz, Peter (2011): Characterization of Dielectric Barrier Discharge (DBD) on Mouse and Histological Evaluation of the Plasma- Treated Tissue. In: Plasma Processes Polym. 8 (3), S. 246–255 • Rassaf, T., Kleinbongard, P., Preik, M., Dejam, A., Gharini, P., Lauer, T., Erckenbrecht, J., Duschin, A., Schulz, R., Heusch, G., et al. (2002a). Plasma Nitrosothiols Contribute to the Systemic Vasodilator Effects of Intravenously Applied NO Experimental and Clinical Study on the Fate of NO in Human Blood. Circulation Research 91, 470–477. • Rassaf, T., Preik, M., Kleinbongard, P., Lauer, T., Hei\s s, C., Strauer, B.-E., Feelisch, M., and Kelm, M. (2002b). Evidence for in vivo transport of bioactive nitric oxide in human plasma. The Journal of Clinical Investigation 109, 1241–1248. • S3-Leilinienreport, Deutsche Gesellschaft für Wundheilung e.V., 2012, S.78-80 • Sen, C.K., et al., Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen, 2009. 17(6): p. 763-71. 15. • Siemens, W. (1857). Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten. Annalen Der Physik 178, 66–122. • Stamler, J.S., Jaraki, O., Osborne, J., Simon, D.I., Keaney, J., Vita, J., Singel, D., Valeri, C.R., and Loscalzo, J. (1992). Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proceedings of the National Academy of Sciences 89, 7674–7677. • Suchentrunk, R., Staudigl, G., Jonke, D., and Fuesser, H.J. (1997). Industrial applications for plasma processes—examples and trends. Surface and Coatings Technology 97, 1–9. • Trampert, K. (2008). Ladungstransportmodell dielektrisch behinderter Entladungen (Univ.- Verlag Karlsruhe). • von Woedtke, T., Reuter, S., Masur, K., and Weltmann, K.-D. (2013). Plasmas for medicine. Physics Reports 530, 291–320. • Weller, R. (2003). Nitric oxide: a key mediator in cutaneous physiology. Clinical and Experimental Dermatology 28, 511–514. • Xu, G.M., et al., Dual effects of atmospheric pressure plasma jet on skin wound healing of mice. Wound Repair Regen, 2015. • Yamasaki, K., et al., Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer. J Clin Invest, 1998. | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 13.12.2023 | |||||||
Dateien geändert am: | 13.12.2023 | |||||||
Promotionsantrag am: | 25.06.2013 | |||||||
Datum der Promotion: | 22.08.2023 |