Dokument: Zytoarchitektonische Parzellierung und funktionelle Charakterisierung vier neuer Areale im kaudalen parahippocampalen Kortex

Titel:Zytoarchitektonische Parzellierung und funktionelle Charakterisierung vier neuer Areale im kaudalen parahippocampalen Kortex
Weiterer Titel:Cytoarchitectonic parcellation and functional characterization of four new areas in the caudal parahippocampal cortex
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=63651
URN (NBN):urn:nbn:de:hbz:061-20230920-110648-0
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Stenger, Sophie Marie [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]4,62 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 11.09.2023 / geändert 11.09.2023
Beitragende:Prof. Dr. med. Amunts, Katrin [Gutachter]
Prof. Dr.med. Dr.rer.pol. Caspers, Svenja [Gutachter]
Stichwörter:Zytoarchitektur, Human brain mapping, Gyrus parahippocampalis, Sulcus collateralis, parahippocampal place area, Julich-Brain
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Der kaudale parahippocampale Kortex (PHC) ist im ventralen temporalen Kortex und am Übergang zum okzipitalen Kortex lokalisiert. Hirnareale dieser Region sind mit verschiedenen Funktionen assoziiert. Hierzu zählen insbesondere die Verarbeitung visuell-räumlicher Informationen und das episodische Gedächtnis. Eine entsprechend differenzierte funktionelle Parzellierung des PHC ergibt sich aus den Ergebnissen verschiedener Neuroimaging-Studien. Die mikrostrukturellen Korrelate dieser unterschiedlichen Funktionen sind bisher jedoch weniger gut verstanden und historische zytoarchitektonische Karten bilden die funktionelle Heterogenität dieser Region nicht adäquat ab. Aus diesem Grund befasst sich diese Arbeit mit der Untersuchung der zytoarchitektonischen Parzellierung des Gyrus parahippocampalis und des Sulcus collateralis als mögliche Korrelate für die vielfältigen Funktionen dieser Hirnregion. Hierzu wurden Serien histologischer Hirnschnitte von zehn postmortalen humanen Gehirnen mithilfe einer beobachterunabhängigen Kartierungsmethode untersucht. Dabei wurden vier neue zytoarchitektonische Hirnareale - Ph1, Ph2, Ph3 und CoS1 - im Gyrus parahippocampalis und im Sulcus collateralis der zehn Gehirne identifiziert und kartiert, auf zwei Standardreferenzräume registriert und überlagert. Es wurden Wahrscheinlichkeitskarten berechnet, die die interindividuelle Variabilität zwischen den Gehirnen berücksichtigen. Darüber hinaus wurden diese Wahrscheinlichkeitskarten mit Daten funktioneller Neuroimaging-Studien verglichen. Dieser Vergleich ergab ein differenziertes Aktivierungsmuster innerhalb der vier neuen Areale für eine Vielzahl von Funktionen, die insbesondere die Verarbeitung visuell-räumlicher Informationen und das assoziative Gedächtnis betrafen. Die Karten sind über den Julich-Brain Atlas frei zugänglich. Sie können genutzt werden, um Informationen anderen Modalitäten, wie Netzwerke, genetische Expressionsmuster oder funktionelle Neuroimaging-Daten, mit dieser Region in Beziehung zu setzen. In diesem Zusammenhang können sie als anatomische Referenz dienen und zu einem besseren Verständnis der Beziehungen zwischen Struktur und Funktion des kaudalen parahippocampalen Kortex beitragen.

The caudal parahippocampal cortex (PHC) is localized in the ventral temporal cortex and the transition to the occipital cortex. Brain areas of this region are associated with various functions. These include, in particular, the processing of visuo-spatial information and episodic memory. A correspondingly differentiated functional parcellation of the PHC results from findings of various neuroimaging studies. However, the microstructural correlates of these different functions have been less well understood so far and historical cytoarchitectonic maps do not adequately depict the functional heterogeneity of this region. For this reason, this work aimed to study the cytoarchitectural parcellation of the parahippocampal gyrus and the sulcus collateralis as putative correlates for the multifaceted functions of this brain region. For this purpose, series of histological brain sections from ten postmortem human brains were examined based on observer-independent mapping. Four new cytoarchitectonic brain areas – Ph1, Ph2, Ph3 and CoS1 – were identified and mapped in the parahippocampal gyrus and the collateral sulcus of ten brains, registered to two standard reference spaces, and superimposed. Probability maps were calculated, taking into account interindividual variability between brains. In addition, these probability maps were compared with data from functional neuroimaging studies. This comparison revealed a differentiated activation pattern within the four new areas for a variety of functions, which particularly concerned the processing of visuo-spatial information and associative memory. The maps are openly available in the Julich-Brain atlas. These maps are a beneficial tool to relate information from other modalities, such as networks, genetic expression patterns or functional neuroimaging, with this region. In this context, they can serve as an anatomical reference and contribute to a better understanding of the relationships between structure and function of the caudal parahippocampal cortex.
Quelle:AGUIRRE, G. K. & D'ESPOSITO, M. 1999. Topographical disorientation: a synthesis and taxonomy. Brain, 122 ( Pt 9), 1613-28.
AGUIRRE, G. K., DETRE, J. A., ALSOP, D. C. & D'ESPOSITO, M. 1996. The parahippocampus subserves topographical learning in man. Cereb Cortex, 6, 823-9.
ALBANESE, A., BHATIA, K., BRESSMAN, S. B., DELONG, M. R., FAHN, S., FUNG, V. S., HALLETT, M., JANKOVIC, J., JINNAH, H. A., KLEIN, C., LANG, A. E., MINK, J. W. & TELLER, J. K. 2013. Phenomenology and classification of dystonia: a consensus update. Mov Disord, 28, 863-73.
AMINOFF, E., GRONAU, N. & BAR, M. 2007. The parahippocampal cortex mediates spatial and nonspatial associations. Cereb Cortex, 17, 1493-503.
AMINOFF, E. M., KVERAGA, K. & BAR, M. 2013. The role of the parahippocampal cortex in cognition. Trends Cogn Sci, 17, 379-90.
AMUNTS, K., ARMSTRONG, E., MALIKOVIC, A., HÖMKE, L., MOHLBERG, H., SCHLEICHER, A. & ZILLES, K. 2007. Gender-specific left-right asymmetries in human visual cortex. J Neurosci, 27, 1356-64.
AMUNTS, K., LEPAGE, C., BORGEAT, L., MOHLBERG, H., DICKSCHEID, T., ROUSSEAU, M., BLUDAU, S., BAZIN, P. L., LEWIS, L. B., OROS-PEUSQUENS, A. M., SHAH, N. J., LIPPERT, T., ZILLES, K. & EVANS, A. C. 2013. BigBrain: an ultrahigh-resolution 3D human brain model. Science, 340, 1472-5.
AMUNTS, K., MALIKOVIC, A., MOHLBERG, H., SCHORMANN, T. & ZILLES, K. 2000. Brodmann's areas 17 and 18 brought into stereotaxic space-where and how variable? Neuroimage, 11, 66-84.
AMUNTS, K., MOHLBERG, H., BLUDAU, S. & ZILLES, K. 2020. Julich-Brain: A 3D probabilistic atlas of the human brain's cytoarchitecture. Science, 369, 988-992.
AMUNTS, K., SCHLEICHER, A., BÜRGEL, U., MOHLBERG, H., UYLINGS, H. B. & ZILLES, K. 1999. Broca's region revisited: cytoarchitecture and intersubject variability. J Comp Neurol, 412, 319-41.
ARNOTT, S. R., CANT, J. S., DUTTON, G. N. & GOODALE, M. A. 2008. Crinkling and crumpling: an auditory fMRI study of material properties. Neuroimage, 43, 368-78.
BALDASSANO, C., BECK, D. M. & FEI-FEI, L. 2013. Differential connectivity within the Parahippocampal Place Area. Neuroimage, 75, 228-237.
BAR, M. & AMINOFF, E. 2003. Cortical analysis of visual context. Neuron, 38, 347-58.
BAUMANN, O. & MATTINGLEY, J. B. 2016. Functional Organization of the Parahippocampal Cortex: Dissociable Roles for Context Representations and the Perception of Visual Scenes. J Neurosci, 36, 2536-42.
BAUMANN, O. & MATTINGLEY, J. B. 2021. Extrahippocampal contributions to spatial navigation in humans: A review of the neuroimaging evidence. Hippocampus.
BAUMHOER, D., STEINBRÜCK, I. & GÖTZ, W. 2003. Kurzlehrbuch Histologie, München, Jena, Urban & Fischer Verlag/Elsevier.
BLUDAU, S., EICKHOFF, S. B., MOHLBERG, H., CASPERS, S., LAIRD, A. R., FOX, P. T., SCHLEICHER, A., ZILLES, K. & AMUNTS, K. 2014. Cytoarchitecture, probability maps and functions of the human frontal pole. Neuroimage, 93 Pt 2, 260-75.
BOHBOT, V. D., ALLEN, J. J., DAGHER, A., DUMOULIN, S. O., EVANS, A. C., PETRIDES, M., KALINA, M., STEPANKOVA, K. & NADEL, L. 2015. Role of the parahippocampal cortex in memory for the configuration but not the identity of objects: converging evidence from patients with selective thermal lesions and fMRI. Front Hum Neurosci, 9, 431.
BRODMANN, K. 1909. Vergleichende Lokalisationslehre der Großhirnrinde, Leipzig, Barth.
CASPERS, J., ZILLES, K., EICKHOFF, S. B., SCHLEICHER, A., MOHLBERG, H. & AMUNTS, K. 2013. Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct Funct, 218, 511-26.
CASPERS, S., EICKHOFF, S. B., RICK, T., VON KAPRI, A., KUHLEN, T., HUANG, R., SHAH, N. J. & ZILLES, K. 2011. Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. Neuroimage, 58, 362-80.
CASPERS, S. & SCHREIBER, J. 2021. 1000BRAINS study, connectivity data (v1.1). EBRAINS.
CERF-DUCASTEL, B. & MURPHY, C. 2009. Age-related differences in the neural substrates of cross-modal olfactory recognition memory: an fMRI investigation. Brain Res, 1285, 88-98.
DAVACHI, L., MITCHELL, J. P. & WAGNER, A. D. 2003. Multiple routes to memory: distinct medial temporal lobe processes build item and source memories. Proc Natl Acad Sci U S A, 100, 2157-62.
DE WITT HAMER, P. C., ROBLES, S. G., ZWINDERMAN, A. H., DUFFAU, H. & BERGER, M. S. 2012. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol, 30, 2559-65.
DIANA, R. A., YONELINAS, A. P. & RANGANATH, C. 2007. Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn Sci, 11, 379-86.
DUVERNOY, H. M., BOURGOUIN, P., CABANIS, E. A. & VANNSON, J. L. 1991. The Human Brain: Surface, Three-Dimensional Sectional Anatomy and MRI, Springer Vienna.
DÜZEL, E., HABIB, R., ROTTE, M., GUDERIAN, S., TULVING, E. & HEINZE, H. J. 2003. Human hippocampal and parahippocampal activity during visual associative recognition memory for spatial and nonspatial stimulus configurations. J Neurosci, 23, 9439-44.
EICHENBAUM, H., YONELINAS, A. P. & RANGANATH, C. 2007. The medial temporal lobe and recognition memory. Annu Rev Neurosci, 30, 123-52.
EICKHOFF, S. B., AMUNTS, K., MOHLBERG, H. & ZILLES, K. 2006. The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex, 16, 268-79.
EICKHOFF, S. B., STEPHAN, K. E., MOHLBERG, H., GREFKES, C., FINK, G. R., AMUNTS, K. & ZILLES, K. 2005. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage, 25, 1325-35.
ENGELIEN, A., TÜSCHER, O., HERMANS, W., ISENBERG, N., EIDELBERG, D., FRITH, C., STERN, E. & SILBERSWEIG, D. 2006. Functional neuroanatomy of non-verbal semantic sound processing in humans. J Neural Transm (Vienna), 113, 599-608.
EPSTEIN, R., HARRIS, A., STANLEY, D. & KANWISHER, N. 1999. The parahippocampal place area: recognition, navigation, or encoding? Neuron, 23, 115-25.
EPSTEIN, R. & KANWISHER, N. 1998. A cortical representation of the local visual environment. Nature, 392, 598-601.
EVANS, A. C., JANKE, A. L., COLLINS, D. L. & BAILLET, S. 2012. Brain templates and atlases. Neuroimage, 62, 911-22.
FISCHL, B. & DALE, A. M. 2000. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A, 97, 11050-5.
GOSSELIN, N., SAMSON, S., ADOLPHS, R., NOULHIANE, M., ROY, M., HASBOUN, D., BAULAC, M. & PERETZ, I. 2006. Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex. Brain, 129, 2585-92.
GRODZINSKY, Y., PIEPERHOFF, P. & THOMPSON, C. 2021. Stable brain loci for the processing of complex syntax: A review of the current neuroimaging evidence. Cortex, 142, 252-271.
HALES, J. B., ISRAEL, S. L., SWANN, N. C. & BREWER, J. B. 2009. Dissociation of frontal and medial temporal lobe activity in maintenance and binding of sequentially presented paired associates. J Cogn Neurosci, 21, 1244-54.
HENKE, K., WEBER, B., KNEIFEL, S., WIESER, H. G. & BUCK, A. 1999. Human hippocampus associates information in memory. Proc Natl Acad Sci U S A, 96, 5884-9.
HÖMKE, L., AMUNTS, K., BONIG, L., FRETZ, C., BINKOFSKI, F., ZILLES, K. & WEDER, B. 2009. Analysis of lesions in patients with unilateral tactile agnosia using cytoarchitectonic probabilistic maps. Hum Brain Mapp, 30, 1444-56.
JANKOVIC, J. 2008. Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry, 79, 368-76.
JANKOVIC, J. & TAN, E. K. 2020. Parkinson's disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry, 91, 795-808.
JANZEN, G., WAGENSVELD, B. & VAN TURENNOUT, M. 2007. Neural representation of navigational relevance is rapidly induced and long lasting. Cereb Cortex, 17, 975-81.
JUNQUEIRA, L. C. U., CARNEIRO, J., MAYERHOFER, A., SCHILLING, K., RICHTER, W. & WURZIGER, L. J. 2004. Histologie, Berlin, Heidelberg, Springer.
KIM, D. S. & KIM, M. 2005. Combining functional and diffusion tensor MRI. Ann N Y Acad Sci, 1064, 1-15.
KIRWAN, C. B. & STARK, C. E. 2004. Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus, 14, 919-30.
KJELVIK, G., EVENSMOEN, H. R., BREZOVA, V. & HÅBERG, A. K. 2012. The human brain representation of odor identification. J Neurophysiol, 108, 645-57.
KVERAGA, K., GHUMAN, A. S., KASSAM, K. S., AMINOFF, E. A., HÄMÄLÄINEN, M. S., CHAUMON, M. & BAR, M. 2011. Early onset of neural synchronization in the contextual associations network. Proc Natl Acad Sci U S A, 108, 3389-94.
LIBBY, L. A., EKSTROM, A. D., RAGLAND, J. D. & RANGANATH, C. 2012. Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. J Neurosci, 32, 6550-60.
LORENZ, S., WEINER, K. S., CASPERS, J., MOHLBERG, H., SCHLEICHER, A., BLUDAU, S., EICKHOFF, S. B., GRILL-SPECTOR, K., ZILLES, K. & AMUNTS, K. 2017. Two New Cytoarchitectonic Areas on the Human Mid-Fusiform Gyrus. Cereb Cortex, 27, 373-385.
MAGUIRE, E. A., FRITH, C. D., BURGESS, N., DONNETT, J. G. & O'KEEFE, J. 1998. Knowing where things are parahippocampal involvement in encoding object locations in virtual large-scale space. J Cogn Neurosci, 10, 61-76.
MAHALANOBIS, P. C., MAJUMDAR, D. N., YEATTS, M. W. M. & RAO, C. R. 1949. Anthropometric Survey of the United Provinces, 1941: A Statistical Study. Sankhyā: The Indian Journal of Statistics (1933-1960), 9, 89-324.
MELLET, E., BRISCOGNE, S., TZOURIO-MAZOYER, N., GHAËM, O., PETIT, L., ZAGO, L., ETARD, O., BERTHOZ, A., MAZOYER, B. & DENIS, M. 2000. Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. Neuroimage, 12, 588-600.
MERKER, B. 1983. Silver staining of cell bodies by means of physical development. J Neurosci Methods, 9, 235-41.
MITTERSCHIFFTHALER, M. T., FU, C. H., DALTON, J. A., ANDREW, C. M. & WILLIAMS, S. C. 2007. A functional MRI study of happy and sad affective states induced by classical music. Hum Brain Mapp, 28, 1150-62.
ONO, M., KUBIK, S. & ABERNATHEY, C. D. 1990. Atlas of the Cerebral Sulci, G. Thieme Verlag.
OPERTO, G., BULOT, R., ANTON, J. L. & COULON, O. 2008. Projection of fMRI data onto the cortical surface using anatomically-informed convolution kernels. Neuroimage, 39, 127-35.
ORRINGER, D. A., GOLBY, A. & JOLESZ, F. 2012. Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev Med Devices, 9, 491-500.
PENDHARKAR, A. V., REZAII, P. G., HO, A. L., SUSSMAN, E. S., LI, G. & DESAI, A. M. 2020. Functional Mapping for Glioma Surgery: A Propensity-Matched Analysis of Outcomes and Cost. World Neurosurg, 137, e328-e335.
PINSK, M. A., ARCARO, M., WEINER, K. S., KALKUS, J. F., INATI, S. J., GROSS, C. G. & KASTNER, S. 2009. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J Neurophysiol, 101, 2581-600.
ROSENKE, M., VAN HOOF, R., VAN DEN HURK, J., GRILL-SPECTOR, K. & GOEBEL, R. 2021. A Probabilistic Functional Atlas of Human Occipito-Temporal Visual Cortex. Cereb Cortex, 31, 603-619.
RUSHWORTH, M. F., BEHRENS, T. E. & JOHANSEN-BERG, H. 2006. Connection patterns distinguish 3 regions of human parietal cortex. Cereb Cortex, 16, 1418-30.
SCHALTENBRAND, G. & WAHREN, W. 1977. Atlas for Stereotaxy of the Human Brain, Stuttgart, Thieme.
SCHIPMANN-MILETIĆ, S. & STUMMER, W. 2020. Image-Guided Brain Surgery. Recent Results Cancer Res, 216, 813-841.
SCHIRMER, M., SANTOS PIEDADE, G., SLOTTY, P. J., VESPER, J., ANTONIADIS, G., BRENTRUP, A., HANSCH, M., HEIDECKE, V., JÜNGER, S. T., MESSING-JÜNGER, M., STEHN, C., TRONNIER, V., TUROWSKI, B., WILDFEUER, S. & WINKLER, P. 2021. Neurochirurgie, München, Urban & Fischer/Elsevier.
SCHLEICHER, A., AMUNTS, K., GEYER, S., MOROSAN, P. & ZILLES, K. 1999. Observer-independent method for microstructural parcellation of cerebral cortex: A quantitative approach to cytoarchitectonics. Neuroimage, 9, 165-77.
SCHLEICHER, A., MOROSAN, P., AMUNTS, K. & ZILLES, K. 2009. Quantitative architectural analysis: a new approach to cortical mapping. J Autism Dev Disord, 39, 1568-81.
SCHULZ, C., WALDECK, S. & MAUER, U. M. 2012. Intraoperative image guidance in neurosurgery: development, current indications, and future trends. Radiol Res Pract, 2012, 197364.
SMITH, A. P., HENSON, R. N., DOLAN, R. J. & RUGG, M. D. 2004. fMRI correlates of the episodic retrieval of emotional contexts. Neuroimage, 22, 868-78.
SOMMER, T., ROSE, M., GLASCHER, J., WOLBERS, T. & BUCHEL, C. 2005. Dissociable contributions within the medial temporal lobe to encoding of object-location associations. Learn Mem, 12, 343-51.
STENGER, S., BLUDAU, S., MOHLBERG, H. & AMUNTS, K. 2022. Cytoarchitectonic parcellation and functional characterization of four new areas in the caudal parahippocampal cortex. Brain Struct Funct, 227, 1439-1455.
TENDOLKAR, I., ARNOLD, J., PETERSSON, K. M., WEIS, S., BROCKHAUS-DUMKE, A., VAN EIJNDHOVEN, P., BUITELAAR, J. & FERNÁNDEZ, G. 2008. Contributions of the medial temporal lobe to declarative memory retrieval: manipulating the amount of contextual retrieval. Learn Mem, 15, 611-7.
UYLINGS, H. B., ZILLES, K. & RAJKOWSKA, G. 1999. Optimal staining methods for delineation of cortical areas and neuron counts in human brains. Neuroimage, 9, 439-45.
VAN DEN STOCK, J., VANDENBULCKE, M., SINKE, C. B. & DE GELDER, B. 2014. Affective scenes influence fear perception of individual body expressions. Hum Brain Mapp, 35, 492-502.
VON ECONOMO, C. & KOSKINAS, G. N. 1925. Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen, Berlin, Springer.
WARD, J. H. 1963. Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236-&.
WEINER, K. S., BARNETT, M. A., LORENZ, S., CASPERS, J., STIGLIANI, A., AMUNTS, K., ZILLES, K., FISCHL, B. & GRILL-SPECTOR, K. 2017. The Cytoarchitecture of Domain-specific Regions in Human High-level Visual Cortex. Cereb Cortex, 27, 146-161.
WEINER, K. S., BARNETT, M. A., WITTHOFT, N., GOLARAI, G., STIGLIANI, A., KAY, K. N., GOMEZ, J., NATU, V. S., AMUNTS, K., ZILLES, K. & GRILL-SPECTOR, K. 2018. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. Neuroimage, 170, 373-384.
WREE, A., SCHLEICHER, A. & ZILLES, K. 1982. Estimation of volume fractions in nervous tissue with an image analyzer. J Neurosci Methods, 6, 29-43.
WU, J., NGO, G. H., GREVE, D., LI, J., HE, T., FISCHL, B., EICKHOFF, S. B. & YEO, B. T. T. 2018. Accurate nonlinear mapping between MNI volumetric and FreeSurfer surface coordinate systems. Hum Brain Mapp, 39, 3793-3808.
YANG, J., MECKINGLER, A., XU, M., ZHAO, Y. & WENG, X. 2008. Decreased parahippocampal activity in associative priming: evidence from an event-related fMRI study. Learn Mem, 15, 703-10.
ZILLES, K. & AMUNTS, K. 2010. Centenary of Brodmann's map--conception and fate. Nat Rev Neurosci, 11, 139-45.
ZILLES, K., ARMSTRONG, E., SCHLEICHER, A. & KRETSCHMANN, H. J. 1988. The human pattern of gyrification in the cerebral cortex. Anat Embryol (Berl), 179, 173-9.
ZILLES, K., PALOMERO-GALLAGHER, N. & AMUNTS, K. 2015. Cytoarchitecture and Maps of the Human Cerebral Cortex. Brain Mapping.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät » Institute » C. u. O. Vogt-Institut für Hirnforschung
Dokument erstellt am:20.09.2023
Dateien geändert am:20.09.2023
Promotionsantrag am:28.01.2023
Datum der Promotion:29.08.2023
english
Benutzer
Status: Gast
Aktionen