Dokument: Funktionelle Relevanz der Extrazellulären Matrixmoleküle Periostin und Tenascin C in Leberschädigung und -regeneration
Titel: | Funktionelle Relevanz der Extrazellulären Matrixmoleküle Periostin und Tenascin C in Leberschädigung und -regeneration | |||||||
Weiterer Titel: | The functional relevance of the extracellular matrix molecules Periostin and Tenascin C in liver damage and regeneration | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=63557 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20230905-180554-9 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Nguyen, Tra My [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Univ.-Prof. Dr. Esposito, Irene [Gutachter] Prof. Dr. med. Keitel-Anselmino, Verena [Gutachter] | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Die besondere Regenerationsfähigkeit der Leber gewinnt wegen steigender Inzidenzen der chronischen Lebererkrankungen an Bedeutung. Die Rolle der extrazellulären Matrixproteine Periostin (POSTN) und Tenascin C (TNC) bei der Leberregeneration auftretenden duktulären Reaktion ist noch unzureichend untersucht. Das Ziel dieser Arbeit war die Prüfung möglicher Zusammenhänge der Expression von POSTN und TNC mit pathophysiologischen Parametern, sowie die Untersuchung eines Einflusses auf die Aktivierung und Expansion von hepatischen Progenitorzellen.
Dazu wurden 151 humane Gewebeproben mit chronischer Leberschädigung untersucht und entsprechend ihres Fibrosegrades und ihrer histologischen Diagnose klassifiziert. Immunhistochemische Färbungen waren die Basis für die Untersuchung der Expression von POSTN, TNC und der hepatischen Progenitorzellen (EpCAM, SOX9, AFP, NCAM, CK7/CK19) und Stellatumzellen (NCAM, αSMA, Synaptophysin, Desmin). Die Studienergebnisse zeigen, dass TNC und POSTN in der gesunden Leber nur äußerst schwach bis gar nicht, jedoch bei den Prozessen der Leberschädigung und -regeneration vermehrt exprimiert werden. Abhängig von der Ätiologie der Leberschädigung werden TNC und POSTN unterschiedlich stark exprimiert. Bei Fortschreiten des Krankheitsstadiums (Desmet 3 und 4) nimmt die (peri-) portale und (peri-) septale Expression von TNC und POSTN signifikant zu (p < 0,001 bzw. p < 0,05). Die (peri-) portale und (peri-) septale Expression von TNC und POSTN korreliert zudem signifikant mit der Proliferation hepatischer Progenitorzellen bei der Leberregeneration (duktuläre Reaktion) (jeweils p < 0,001) sowie mit der Aktivierung von hepatischen Stellatumzellen (p < 0,001 für TNC, p = 0,002 für POSTN). Die heterogene Expression von TNC und POSTN im geschädigten Lebergewebe, sowie die Korrelation der Markerexpression mit der Aktivierung von hepatischen Stellatumzellen und der Proliferation von hepatischen Progenitorzellen, weist auf eine aktive Rolle der beiden extrazellulären Matrixproteine in der Leberschädigung und -regeneration hin.The special regenerative capacity of the liver is becoming increasingly important due to the rising incidences of chronic liver diseases. The role of the extracellular matrix proteins periostin (POSTN) and tenascin C (TNC) in the ductal response occurring during liver regeneration is still poorly understood. The aim of this work was therefore to test possible correlations of POSTN and TNC expression with pathophysiological parameters, as well as to examine an influence of the two proteins on the activation and expansion of hepatic progenitor cells. For this purpose, 151 human tissue samples with chronic liver injury were examined and classified according to their degree of fibrosis and histological diagnosis. Immunohistochemical staining provided the basis for studying the expression of POSTN, TNC, and hepatic progenitor cells (EpCAM, SOX9, AFP, NCAM, CK7/CK19) and stellate cells (NCAM, αSMA, Synaptophysin, Desmin). The study results show that TNC and POSTN are expressed very weakly to not at all in the healthy liver but are expressed more abundantly in the processes surrounding liver injury and regeneration. POSTN and TNC are expressed differently depending on the aetiology of liver injury. As disease stage progresses (Desmet 3 and 4), (peri-) portal and (peri-) septal expression of TNC and POSTN increases significantly (p < 0.001 and p < 0.05, respectively). The (peri-) portal and (peri-) septal expression of TNC and POSTN also correlated significantly with the proliferation of hepatic progenitor cells in liver regeneration (ductal response) (p < 0.001 each) and with the activation of hepatic stellate cells (p < 0.001 for TNC, p = 0.002 for POSTN). From these results, we conclude that the heterogeneous expression of TNC and POSTN in damaged liver tissue and the correlation of marker expression with hepatic stellate cell activation and hepatic progenitor cell proliferation indicate an active role of the two extracellular matrix proteins in liver injury and regeneration. | |||||||
Quelle: | Adnindya, Rulan; Indriyani; Azmi, Ahmad; Liem, Isabella (2017): Specific Markers for Hepatic Progenitor Cells. In: OnLine Journal of Biological Sciences 17, S. 187–192. DOI: 10.3844/ojbsci.2017.187.192.
Apte, Udayan M.; Mcree, Rachel; Ramaiah, Shashi K. (2004): Hepatocyte proliferation is the possible mechanism for the transient decrease in liver injury during steatosis stage of alcoholic liver disease. In: Toxicol Pathol 32 (5), S. 567–576. DOI: 10.1080/01926230490508812. Benbow, Jennifer H.; Elam, April D.; Bossi, Krista L.; Massengill, Danae L.; Brandon-Warner, Elizabeth; Anderson, William E. et al. (2018): Analysis of Plasma Tenascin-C in Post-HCV Cirrhosis: A Prospective Study. In: Dig Dis Sci 63 (3), S. 653–664. DOI: 10.1007/s10620-017-4860-z. Benbow, Jennifer H.; Thompson, Kyle J.; Cope, Heidi L.; Brandon-Warner, Elizabeth; Culberson, Catherine R.; Bossi, Krista L. et al. (2016): Diet-Induced Obesity Enhances Progression of Hepatocellular Carcinoma through Tenascin-C/Toll-Like Receptor 4 Signaling. In: The American Journal of Pathology 186 (1), S. 145–158. DOI: 10.1016/j.ajpath.2015.09.015. Blaner, William S.; O'Byrne, Sheila M.; Wongsiriroj, Nuttaporn; Kluwe, Johannes; D'Ambrosio, Diana M.; Jiang, Hongfeng et al. (2009): Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. In: Biochimica et biophysica acta 1791 (6), S. 467–473. DOI: 10.1016/j.bbalip.2008.11.001. Castilho-Fernandes, Andrielle; Almeida, Danilo Candido de; Fontes, Aparecida Maria; Melo, Fernanda Ursoli Ferreira; Picanço-Castro, Virgínia; Freitas, Marcela Cristina et al. (2011): Human hepatic stellate cell line (LX-2) exhibits characteristics of bone marrow-derived mesenchymal stem cells. In: Experimental and molecular pathology 91 (3), S. 664–672. DOI: 10.1016/j.yexmp.2011.09.002. Chen, Lin; Zhang, Wei; Zhou, Qiao-dan; Yang, Hong-qiang; Liang, Hui-fang; Zhang, Bi-xiang et al. (2012a): HSCs play a distinct role in different phases of oval cell-mediated liver regeneration. In: Cell biochemistry and function 30 (7), S. 588–596. DOI: 10.1002/cbf.2838. Chen, Yixin; Wong, Philip P.; Sjeklocha, Lucas; Steer, Clifford J.; Sahin, M. Behnan (2012b): Mature hepatocytes exhibit unexpected plasticity by direct dedifferentiation into liver progenitor cells in culture. In: Hepatology 55 (2), S. 563–574. DOI: 10.1002/hep.24712. Clouston, A. D.; Powell, E. E.; Walsh, M. J.; Richardson, M. M.; Demetris, A. J.; Jonsson, J. R. (2005): Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. In: Hepatology 41 (4), S. 809–818. Colemonts-Vroninks, Haaike; Neuckermans, Jessie; Marcelis, Lionel; Claes, Paul; Branson, Steven; Casimir, Georges et al. (2020): Oxidative Stress, Glutathione Metabolism, and Liver Regeneration Pathways Are Activated in Hereditary Tyrosinemia Type 1 Mice upon Short-Term Nitisinone Discontinuation. In: Genes 12 (1). DOI: 10.3390/genes12010003. Craig, Clare Elizabeth Honor; Quaglia, Alberto; Selden, Clare; Lowdell, Mark; Hodgson, Humprey; Dhillon, Amar Paul (2004): The histopathology of regeneration in massive hepatic necrosis. In: Seminars in liver disease 24 (1), S. 49–64. DOI: 10.1055/s-2004-823101. Crosby, Heather A.; Hubscher, S.; Fabris, L.; Joplin, R.; Sell, S.; Kelly, D.; Strain, A. J. (1998): Immunolocalization of putative human liver progenitor cells in livers from patients with end-stage primary biliary cirrhosis and sclerosing cholangitis using the monoclonal antibody OV-6. In: American Journal of Pathology 152 (3), S. 771–779. Desmet, Valeer J.; Gerber, Michael; Hoofnagle, Jay H.; Manns, Michael; Scheuer, Peter J. (1994): Classification of chronic hepatitis: Diagnosis, grading and staging. In: Hepatology 19 (6), S. 1513–1520. DOI: 10.1002/hep.1840190629. Dubuquoy, Laurent; Louvet, Alexandre; Lassailly, Guillaume; Truant, Stéphanie; Boleslawski, Emmanuel; Artru, Florent et al. (2015): Progenitor cell expansion and impaired hepatocyte regeneration in explanted livers from alcoholic hepatitis. In: Gut 64 (12), S. 1949–1960. DOI: 10.1136/gutjnl-2014-308410. Duncan, Andrew W.; Dorrell, Craig; Grompe, Markus (2009): Stem cells and liver regeneration. In: Gastroenterology 137 (2), S. 466–481. DOI: 10.1053/j.gastro.2009.05.044. El-Karef, A.; Yoshida, T.; Gabazza, E. C.; Nishioka, T.; Inada, H.; Sakakura, T.; Imanaka-Yoshida, K. (2007a): Deficiency of tenascin-C attenuates liver fibrosis in immune-mediated chronic hepatitis in mice. In: The Journal of pathology 211 (1), S. 86–94. DOI: 10.1002/path.2099. El-Karef, Amro; Kaito, Masahiko; Tanaka, Hideaki; Ikeda, Kazuo; Nishioka, Tomohiro; Fujita, Naoki et al. (2007b): Expression of large tenascin-C splice variants by hepatic stellate cells/myofibroblasts in chronic hepatitis C. In: Journal of hepatology 46 (4), S. 664–673. DOI: 10.1016/j.jhep.2006.10.011. Farber, E. F. (1956): Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3'-methyl-4-dimethylaminoazobenzene. In: Cancer research 16 (2), S. 142–148. Friedman, Scott L. (2008): Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. In: Physiological reviews 88 (1), S. 125–172. DOI: 10.1152/physrev.00013.2007. Fuchs, Elaine; Tumbar, Tudorita; Guasch, Geraldine (2004): Socializing with the Neighbors. In: Cell 116 (6), S. 769–778. DOI: 10.1016/S0092-8674(04)00255-7. Gadd, V. L.; Skoien, R.; Powell, E. E.; Fagan, K. J.; Winterford, C.; Horsfall, L. et al. (2014): The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. In: Hepatology 59 (4), S. 1393–1405. Ghiassi-Nejad, Zahra; Friedman, Scott L. (2008): Advances in antifibrotic therapy. In: Expert review of gastroenterology & hepatology 2 (6), S. 803–816. DOI: 10.1586/17474124.2.6.803. Giblin, Sean P.; Midwood, Kim S. (2015): Tenascin-C: Form versus function. In: Cell adhesion & migration 9 (1-2), S. 48–82. DOI: 10.4161/19336918.2014.987587. Gocheva, Vasilena; Naba, Alexandra; Bhutkar, Arjun; Guardia, Talia; Miller, Kathryn M.; Li, Carman Man-Chung et al. (2017): Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. In: Proceedings of the National Academy of Sciences of the United States of America 114 (28), E5625-E5634. DOI: 10.1073/pnas.1707054114. Govaere, Olivier; Cockell, Simon; van Haele, Matthias; Wouters, Jasper; van Delm, Wouter; van den Eynde, Kathleen et al. (2019): High-throughput sequencing identifies aetiology-dependent differences in ductular reaction in human chronic liver disease. In: The Journal of pathology 248 (1), S. 66–76. DOI: 10.1002/path.5228. Harris, Patrick S.; Hansen, Ross M.; Gray, Meagan E.; Massoud, Omar I.; McGuire, Brendan M.; Shoreibah, Mohamed G. (2019): Hepatocellular carcinoma surveillance: An evidence-based approach. In: World journal of gastroenterology 25 (13), S. 1550–1559. DOI: 10.3748/wjg.v25.i13.1550. Hermann, W.; Huster, D.; Ransmayr, G.; Boltshauser, E. (2012): S1 Leitlinie Morbus Wilson. AWMF-Registernummer 030/91 (Stand 30.09.2012, in Überarbeitung), gültig bis 29.09.2017. Hong, Li; Shejiao, Dai; Fenrong, Chen; Gang, Zhao; Lei, Dong (2015): Periostin down-regulation attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1. In: J. Cell. Mol. Med. 19 (10), S. 2462–2468. DOI: 10.1111/jcmm.12636. Hoshida, Yujin; Fuchs, Bryan C.; Bardeesy, Nabeel; Baumert, Thomas F.; Chung, Raymond T. (2014): Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. In: Journal of hepatology 61 (1 Suppl), S79-90. DOI: 10.1016/j.jhep.2014.07.010. Huang, Yangmei; Liu, Weiping; Xiao, Hongjun; Maitikabili, Alaiyi; Lin, Qinghua; Wu, Tiantian et al. (2015): Matricellular protein periostin contributes to hepatic inflammation and fibrosis. In: The American Journal of Pathology 185 (3), S. 786–797. Jang, Se Young; Park, Soo Young; Lee, Hye Won; Choi, Yeon-Kyung; Park, Keun-Gyu; Yoon, Ghil Suk et al. (2016): The Combination of Periostin Overexpression and Microvascular Invasion Is Related to a Poor Prognosis for Hepatocellular Carcinoma. In: Gut and Liver 10 (6), S. 948–954. DOI: 10.5009/gnl15481. Jia, Yan; Zhong, Fenmiao; Jiang, Shuoyi; Guo, Qin; Jin, Huanhuan; Wang, Feixia et al. (2019): Periostin in chronic liver diseases: Current research and future perspectives. In: Life Sciences 226, S. 91–97. DOI: 10.1016/j.lfs.2019.04.021. Jiang, Feng; Parsons, Christopher J.; Stefanovic, Branko (2006): Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. In: Journal of hepatology 45 (3), S. 401–409. DOI: 10.1016/j.jhep.2006.03.016. Kasten, Philipp (2016): Alkoholinduzierte Leberschäden. In: Michael P. Manns und Sabine Schneidewind (Hg.): Praxis der Pepatologie. Berlin: Springer, S. 111–118. Köppen, Hartmut (Hg.) (2010): Gastroenterologie für die Praxis. 1. Aufl. Stuttgart: Thieme. Kordes, Claus; Häussinger, Dieter (2013): Hepatic stem cell niches. In: The Journal of clinical investigation 123 (5), S. 1874–1880. DOI: 10.1172/JCI66027. Kordes, Claus; Sawitza, Iris; Götze, Silke; Häussinger, Dieter (2012): Stellate cells from rat pancreas are stem cells and can contribute to liver regeneration. In: PloS one 7 (12), e51878. DOI: 10.1371/journal.pone.0051878. Kordes, Claus; Sawitza, Iris; Götze, Silke; Häussinger, Dieter (2013): Hepatic stellate cells support hematopoiesis and are liver-resident mesenchymal stem cells. In: Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 31 (2-3), S. 290–304. DOI: 10.1159/000343368. Kordes, Claus; Sawitza, Iris; Götze, Silke; Herebian, Diran; Häussinger, Dieter (2014): Hepatic stellate cells contribute to progenitor cells and liver regeneration. In: The Journal of clinical investigation 124 (12), S. 5503–5515. DOI: 10.1172/JCI74119. Kordes, Claus; Sawitza, Iris; Müller-Marbach, Alexis; Ale-Agha, Niloofar; Keitel, Verena; Klonowski-Stumpe, Hanne; Häussinger, Dieter (2007): CD133+ hepatic stellate cells are progenitor cells. In: Biochemical and biophysical research communications 352 (2), S. 410–417. DOI: 10.1016/j.bbrc.2006.11.029. Kudo, Akira (2017): Introductory review: periostin-gene and protein structure. In: Cellular and molecular life sciences : CMLS 74 (23), S. 4259–4268. Kühn, Bernhard; del Monte, Federica; Hajjar, Roger J.; Chang, Yuh-Shin; Lebeche, Djamel; Arab, Shima; Keating, Mark T. (2007): Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. In: Nature medicine 13 (8), S. 962–969. Kuwahara, Reiichiro; Kofman, Alexander V.; Landis, Charles S.; Swenson, E. Scott; Barendswaard, Els; Theise, Neil D. (2008): The hepatic stem cell niche: identification by label-retaining cell assay. In: Hepatology 47 (6), S. 1994–2002. DOI: 10.1002/hep.22218. Lanthier, Nicolas; Rubbia-Brandt, Laura; Lin-Marq, Nathalie; Clément, Sophie; Frossard, Jean-Louis; Goossens, Nicolas et al. (2015): Hepatic cell proliferation plays a pivotal role in the prognosis of alcoholic hepatitis. In: Journal of hepatology 63 (3), S. 609–621. DOI: 10.1016/j.jhep.2015.04.003. Lebensztejn, Dariusz-Marek; Sobaniec-Lotowska, Maria-Elzbieta; Kaczmarski, Maciej; Voelker, Michael; Schuppan, Detlef (2006): Matrix-derived serum markers in monitoring liver fibrosis in children with chronic hepatitis B treated with interferon alpha. In: World journal of gastroenterology 12 (21), S. 3338–3343. DOI: 10.3748/wjg.v12.i21.3338. Lee, Youngmin A.; Wallace, Michael C.; Friedman, Scott L. (2015): Pathobiology of liver fibrosis: a translational success story. In: Gut 64 (5), S. 830–841. DOI: 10.1136/gutjnl-2014-306842. Lee, Yu Jin; Kim, Il Shin; Park, Soo-Ah; Kim, Youndong; Lee, Jeung Eun; Noh, Dong-Young et al. (2013): Periostin-binding DNA aptamer inhibits breast cancer growth and metastasis. In: Molecular therapy : the journal of the American Society of Gene Therapy 21 (5), S. 1004–1013. DOI: 10.1038/mt.2013.30. Li, Yuan; Wu, Shasha; Xiong, Shanshan; Ouyang, Gaoliang (2015): Deficiency of periostin protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis. In: Journal of hepatology 62 (2), S. 495–497. Lieber, Charles S.; Weiss, David G.; Paronetto, Fiorenzo (2008): Value of fibrosis markers for staging liver fibrosis in patients with precirrhotic alcoholic liver disease. In: Alcoholism, clinical and experimental research 32 (6), S. 1031–1039. DOI: 10.1111/j.1530-0277.2008.00664.x. Liu, Guo-Xiao; Xi, Hong-Qing; Sun, Xiao-Yan; Wei, Bo (2015): Role of periostin and its antagonist PNDA-3 in gastric cancer metastasis. In: World journal of gastroenterology 21 (9), S. 2605–2613. DOI: 10.3748/wjg.v21.i9.2605. Liu, Yingfu; Huang, Zhengjie; Cui, Dan; Ouyang, Gaoliang (2019): The Multiaspect Functions of Periostin in Tumor Progression. In: Advances in experimental medicine and biology 1132, S. 125–136. DOI: 10.1007/978-981-13-6657-4_13. Lowes, Kym N.; Brennan, Barbara A.; Yeoh, George C.; Olynyk, John K. (1999): Oval Cell Numbers in Human Chronic Liver Diseases Are Directly Related to Disease Severity. In: The American Journal of Pathology 154 (2), S. 537–541. DOI: 10.1016/S0002-9440(10)65299-6. Lu, Yan; Liu, Xing; Jiao, Yang; Xiong, Xuelian; Wang, E.; Wang, Xiaolin et al. (2014): Periostin promotes liver steatosis and hypertriglyceridemia through downregulation of PPARα. In: The Journal of clinical investigation 124 (8), S. 3501–3513. DOI: 10.1172/JCI74438. Lutz, Holger; Trautwein, Christian; Tischendorf, Jens W. (2013): Primary sclerosing cholangitis: diagnosis and treatment. In: Deutsches Arzteblatt international 110 (51-52), S. 867–874. DOI: 10.3238/arztebl.2013.0867. Lv, Y.; Wang, W.; Jia, W. D.; Sun, Q. K.; Huang, M.; Zhou, H. C. et al. (2013): High preoparative levels of serum periostin are associated with poor prognosis in patients with hepatocellular carcinoma after hepatectomy. In: European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 39 (10), S. 1129–1135. DOI: 10.1016/j.ejso.2013.06.023. Ma, Jian-Cang; Huang, Xin; Shen, Ya-Wei; Zheng, Chen; Su, Qing-Hua; Xu, Jin-Kai; Zhao, Jun (2016): Tenascin-C promotes migration of hepatic stellate cells and production of type I collagen. In: Bioscience, biotechnology, and biochemistry 80 (8), S. 1470–1477. Manns, Michael P.; Cieplik, Natascha (2016): Pathophysiologie der Entzündung und Fibrose. In: Michael P. Manns und Sabine Schneidewind (Hg.): Praxis der Pepatologie. Berlin: Springer, S. 15–21. Mantovani, A.; Sani, E.; Fassio, A.; Colecchia, A.; Viapiana, O.; Gatti, D. et al. (2019): Association between non-alcoholic fatty liver disease and bone turnover biomarkers in post-menopausal women with type 2 diabetes. In: Diabetes & Metabolism 45 (4), S. 347–355. DOI: 10.1016/j.diabet.2018.10.001. Marcellin, Patrick; Gane, Edward; Buti, Maria; Afdhal, Nezam; Sievert, William; Jacobson, Ira M. et al. (2013): Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. In: The Lancet 381 (9865), S. 468–475. DOI: 10.1016/S0140-6736(12)61425-1. Midwood, Kim S.; Chiquet, Matthias; Tucker, Richard P.; Orend, Gertraud (2016): Tenascin-C at a glance. In: Journal of cell science 129 (23), S. 4321–4327. Mishra, P. K. (2016): Textbook of surgical gastroenterology. New Delhi: Jaypee. Morra, Laura; Moch, Holger (2011): Periostin expression and epithelial-mesenchymal transition in cancer: a review and an update. In: Virchows Archiv : an international journal of pathology 459 (5), S. 465–475. Oskarsson, Thordur; Acharyya, Swarnali; Zhang, Xiang H-F; Vanharanta, Sakari; Tavazoie, Sohail F.; Morris, Patrick G. et al. (2011): Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. In: Nature medicine 17 (7), S. 867–874. DOI: 10.1038/nm.2379. Paron, Igor; Berchtold, Sonja; Vörös, Julia; Shamarla, Madhavi; Erkan, Mert; Höfler, Heinz; Esposito, Irene (2011): Tenascin-C enhances pancreatic cancer cell growth and motility and affects cell adhesion through activation of the integrin pathway. In: PloS one 6 (6), e21684. DOI: 10.1371/journal.pone.0021684. Pas, Jakub; Wyszko, Eliza; Rolle, Katarzyna; Rychlewski, Leszek; Nowak, Stanisław; Zukiel, Ryszard; Barciszewski, Jan (2006): Analysis of structure and function of tenascin-C. In: The international journal of biochemistry & cell biology 38 (9), S. 1594–1602. DOI: 10.1016/j.biocel.2006.03.017. Pintilie, Dana G.; Shupe, Thomas D.; Oh, Seh-hoon; Salganik, Susan V.; Darwiche, Houda; Petersen, Bryon E. (2010): Hepatic stellate cells' involvement in progenitor-mediated liver regeneration. In: Laboratory investigation; a journal of technical methods and pathology 90 (8), S. 1199–1208. DOI: 10.1038/labinvest.2010.88. Prakoso, Emilia; Tirnitz-Parker, Janina E. E.; Clouston, Andrew D.; Kayali, Zeid; Lee, Aimei; Gan, Eng K. et al. (2014): Analysis of the intrahepatic ductular reaction and progenitor cell responses in hepatitis C virus recurrence after liver transplantation. In: Liver transplantation: official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society 20 (12), S. 1508–1519. DOI: 10.1002/lt.24007. Ramadori, G.; Schwögler, S.; Veit, T.; Rieder, H.; Chiquet-Ehrismann, R.; Mackie, E. J.; zum Meyer Büschenfelde, K. H. (1991): Tenascin gene expression in rat liver and in rat liver cells. In vivo and in vitro studies. In: Virchows Archiv. B, Cell pathology including molecular pathology 60 (3), S. 145–153. DOI: 10.1007/BF02899540. Reinehr, Roland; Sommerfeld, Annika; Häussinger, Dieter (2008): CD95 ligand is a proliferative and antiapoptotic signal in quiescent hepatic stellate cells. In: Gastroenterology 134 (5), S. 1494–1506. DOI: 10.1053/j.gastro.2008.02.021. Reynaert, H.; Thompson, M. G.; Thomas, T.; Geerts, A. (2002): Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. In: Gut 50 (4), S. 571–581. DOI: 10.1136/gut.50.4.571. Richardson, Michelle M.; Jonsson, Julie R.; Powell, Elizabeth E.; Brunt, Elizabeth M.; Neuschwander-Tetri, Brent A.; Bhathal, Prithi S. et al. (2007): Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. In: Gastroenterology 133 (1), S. 80–90. DOI: 10.1053/j.gastro.2007.05.012. Roskams, Tania; Yang, Shi Qi; Koteish, Aymen; Durnez, Anne; DeVos, Rita; Huang, Xiawen et al. (2003): Oxidative Stress and Oval Cell Accumulation in Mice and Humans with Alcoholic and Nonalcoholic Fatty Liver Disease. In: The American Journal of Pathology 163 (4), S. 1301–1311. DOI: 10.1016/S0002-9440(10)63489-X. Roskams, Tania A.; Theise, Neil D.; Balabaud, Charles; Bhagat, Govind; Bhathal, Prithi S.; Bioulac-Sage, Paulette et al. (2004): Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. In: Hepatology 39 (6), S. 1739–1745. DOI: 10.1002/hep.20130. Sadri, Ali-Reza; Jeschke, Marc G.; Amini-Nik, Saeid (2016): Advances in Liver Regeneration: Revisiting Hepatic Stem/Progenitor Cells and Their Origin. In: Stem cells international 2016, S. 7920897. DOI: 10.1155/2016/7920897. Sancho-Bru, Pau; Altamirano, José; Rodrigo-Torres, Daniel; Coll, Mar; Millán, Cristina; José Lozano, Juan et al. (2012): Liver progenitor cell markers correlate with liver damage and predict short-term mortality in patients with alcoholic hepatitis. In: Hepatology 55 (6), S. 1931–1941. DOI: 10.1002/hep.25614. Sato, Keisaku; Marzioni, Marco; Meng, Fanyin; Francis, Heather; Glaser, Shannon; Alpini, Gianfranco (2019): Ductular Reaction in Liver Diseases: Pathological Mechanisms and Translational Significances. In: Hepatology 69 (1), S. 420–430. DOI: 10.1002/hep.30150. Sawitza, Iris; Kordes, Claus; Reister, Sven; Häussinger, Dieter (2009): The niche of stellate cells within rat liver. In: Hepatology 50 (5), S. 1617–1624. DOI: 10.1002/hep.23184. Sekiya, Sayaka; Suzuki, Atsushi (2014): Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the chronically injured mouse liver. In: The American Journal of Pathology 184 (5), S. 1468–1478. DOI: 10.1016/j.ajpath.2014.01.005. Sharma, Sanjeev Kumar; Saini, Nitin; Chwla, Yogesh (2005): Hepatitis B virus: inactive carriers. In: Virology journal 2, S. 82. DOI: 10.1186/1743-422X-2-82. Shen, Kuntang; Chang, Wenju; Gao, Xiaodong; Wang, Hongshan; Niu, Weixin; Song, Lujun; Qin, Xinyu (2011): Depletion of activated hepatic stellate cell correlates with severe liver damage and abnormal liver regeneration in acetaminophen-induced liver injury. In: Acta biochimica et biophysica Sinica 43 (4), S. 307–315. DOI: 10.1093/abbs/gmr005. Sommerfeld, Annika; Reinehr, Roland; Häussinger, Dieter (2009): Bile acid-induced epidermal growth factor receptor activation in quiescent rat hepatic stellate cells can trigger both proliferation and apoptosis. In: The Journal of biological chemistry 284 (33), S. 22173–22183. DOI: 10.1074/jbc.M109.005355. Sun, C.; Jin, X-L; Xiao, J-C (2006): Oval cells in hepatitis B virus-positive and hepatitis C virus-positive liver cirrhosis: histological and ultrastructural study. In: Histopathology 48 (5), S. 546–555. DOI: 10.1111/j.1365-2559.2006.02372.x. Tanaka, Hideaki; El-Karef, Amro; Kaito, Masahiko; Kinoshita, Noriaki; Fujita, Naoki; Horiike, Shinichiro et al. (2006): Circulating level of large splice variants of tenascin-C is a marker of piecemeal necrosis activity in patients with chronic hepatitis C. In: Liver international: official journal of the International Association for the Study of the Liver 26 (3), S. 311–318. DOI: 10.1111/j.1478-3231.2005.01229.x. Tanimizu, Naoki; Nishikawa, Yuji; Ichinohe, Norihisa; Akiyama, Haruhiko; Mitaka, Toshihiro (2014): Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM-) biphenotypic cells derived from hepatocytes are involved in mouse liver regeneration. In: The Journal of biological chemistry 289 (11), S. 7589–7598. DOI: 10.1074/jbc.M113.517243. Tarlow, Branden D.; Pelz, Carl; Naugler, Willscott E.; Wakefield, Leslie; Wilson, Elizabeth M.; Finegold, Milton J.; Grompe, Markus (2014): Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. In: Cell stem cell 15 (5), S. 605–618. DOI: 10.1016/j.stem.2014.09.008. Thein, Hla-Hla; Yi, Qilong; Dore, Gregory J.; Krahn, Murray D. (2008): Estimation of stage-specific fibrosis progression rates in chronic hepatitis C virus infection: a meta-analysis and meta-regression. In: Hepatology 48 (2), S. 418–431. DOI: 10.1002/hep.22375. Theise, N. D.; Nimmakayalu, M.; Gardner, R.; Illei, P. B.; Morgan, G.; Teperman, L. et al. (2000): Liver from bone marrow in humans. In: Hepatology 32 (1), S. 11–16. DOI: 10.1053/jhep.2000.9124. Thompson, Alexandra I.; Conroy, Kylie P.; Henderson, Neil C. (2015): Hepatic stellate cells: central modulators of hepatic carcinogenesis. In: BMC Gastroenterol 15 (1), S. 63. DOI: 10.1186/s12876-015-0291-5. Trépo, Christian; Chan, Henry L. Y.; Lok, Anna (2014): Hepatitis B virus infection. In: The Lancet 384 (9959), S. 2053–2063. DOI: 10.1016/S0140-6736(14)60220-8. van Haele, Matthias; Snoeck, Janne; Roskams, Tania (2019): Human Liver Regeneration: An Etiology Dependent Process. In: IJMS 20 (9), S. 2332. DOI: 10.3390/ijms20092332. Warpakowski, Andrea (2018): Hepatologie: Erkrankungsinzidenz nimmt zu. In: Dtsch Ärztebl 115 (22), A-1058/B-888/C-884. Webster, Daniel P.; Klenerman, Paul; Dusheiko, Geoffrey M. (2015): Hepatitis C. In: The Lancet 385 (9973), S. 1124–1135. DOI: 10.1016/S0140-6736(14)62401-6. Weiß, Johannes; Rau, Monika; Geier, Andreas (2014): Non-alcoholic fatty liver disease: epidemiology, clinical course, investigation, and treatment. In: Deutsches Arzteblatt international 111 (26), S. 447–452. DOI: 10.3238/arztebl.2014.0447. Wiegand, Johannes; Berg, Thomas (2013): The etiology, diagnosis and prevention of liver cirrhosis: part 1 of a series on liver cirrhosis. In: Deutsches Arzteblatt international 110 (6), S. 85–91. DOI: 10.3238/arztebl.2013.0085. World Health Organization (2017): Global Hepatitis Report, 2017. Geneva, Switzerland: World Health Organization. Wu, Tiantian; Huang, Jingwen; Wu, Shasha; Huang, Zhengjie; Chen, Xiaoyan; Liu, Yingfu et al. (2018): Deficiency of periostin impairs liver regeneration in mice after partial hepatectomy. In: Matrix biology : journal of the International Society for Matrix Biology 66, S. 81–92. DOI: 10.1016/j.matbio.2017.09.004. Yamada, S.; Ichida, T.; Matsuda, Y.; Miyazaki, Y.; Hatano, T.; Hata, K. et al. (1992): Tenascin expression in human chronic liver disease and in hepatocellular carcinoma. In: Liver 12 (1), S. 10–16. DOI: 10.1111/j.1600-0676.1992.tb00548.x. Yamauchi, M.; Mizuhara, Y.; Maezawa, Y.; Toda, G. (1994): Serum tenascin levels in chronic liver disease. In: Liver 14 (3), S. 148–153. DOI: 10.1111/j.1600-0676. 1994.tb00064.x. Yang, Liu; Jung, Youngmi; Omenetti, Alessia; Witek, Rafal P.; Choi, Steve; Vandongen, Hendrika M. et al. (2008): Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers. In: Stem cells (Dayton, Ohio) 26 (8), S. 2104–2113. DOI: 10.1634/stemcells.2008-0115. Yang, Zhaoting; Zhang, Chengye; Qi, Wenbo; Cui, Chunai; Cui, Yan; Xuan, Yanhua (2018): Tenascin-C as a prognostic determinant of colorectal cancer through induction of epithelial-to-mesenchymal transition and proliferation. In: Experimental and molecular pathology 105 (2), S. 216–222. DOI: 10.1016/j.yexmp.2018.08.009 Yang, Zhen; Zhang, Hongmei; Niu, Yixin; Zhang, Weiwei; Zhu, Lingfei; Li, Xiaoyong et al. (2016): Circulating periostin in relation to insulin resistance and nonalcoholic fatty liver disease among overweight and obese subjects. In: Scientific reports 6, S. 37886. Yanger, Kilangsungla; Zong, Yiwei; Maggs, Lara R.; Shapira, Suzanne N.; Maddipati, Ravi; Aiello, Nicole M. et al. (2013): Robust cellular reprogramming occurs spontaneously during liver regeneration. In: Genes & development 27 (7), S. 719–724. DOI: 10.1101/gad.207803.112. Zeuzem, Stefan (2019): Virushepatitis. Medizinische Übersicht. In: Frank Lammert und Petra Lynen Jansen (Hg.): Weissbuch Gastroenterologie 2020/2021. Erkrankungen des Magen-Darm-Traktes, der Leber und der Bauspeicheldrüse – Gegenwart und Zukunft. 1. Auflage. Berlin: De Gruyter, S. 87–89. Zhang, Rui; Yao, Rong-Rong; Li, Jing-Huan; Dong, Gang; Ma, Min; Zheng, Qiong-Dan et al. (2017): Activated hepatic stellate cells secrete periostin to induce stem cell-like phenotype of residual hepatocellular carcinoma cells after heat treatment. In: Scientific reports 7 (1), S. 2164. DOI: 10.1038/s41598-017-01177-6. Zhao, Lei; Westerhoff, Maria; Pai, Rish K.; Choi, Won-Tak; Gao, Zu-Hua; Hart, John (2018): Centrilobular ductular reaction correlates with fibrosis stage and fibrosis progression in non-alcoholic steatohepatitis. In: Mod Pathol 31 (1), S. 150–159. DOI: 10.1038/modpathol.2017.115. Zhu, Xiaopeng; Yan, Hongmei; Chang, Xinxia; Xia, Mingfeng; Zhang, Linshan; Wang, Liu et al. (2020): Association between non-alcoholic fatty liver disease-associated hepatic fibrosis and bone mineral density in postmenopausal women with type 2 diabetes or impaired glucose regulation. In: BMJ Open Diab Res Care 8 (1), e000999. DOI: 10.1136/bmjdrc-2019-000999. | |||||||
Lizenz: | Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät » Institute » Institut für Pathologie | |||||||
Dokument erstellt am: | 05.09.2023 | |||||||
Dateien geändert am: | 05.09.2023 | |||||||
Promotionsantrag am: | 02.03.2022 | |||||||
Datum der Promotion: | 31.08.2023 |