Dokument: The Human Induced Pluripotent Stem Cell Test as an Alternative Method for Embryotoxicity Testing

Titel:The Human Induced Pluripotent Stem Cell Test as an Alternative Method for Embryotoxicity Testing
Weiterer Titel:Der Humane Induzierte Pluripotente Stammzelltest als Alternative Methode zur Embryotoxizitätstestung
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=63196
URN (NBN):urn:nbn:de:hbz:061-20230824-152312-5
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Galanjuk, Saskia [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]5,86 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 18.07.2023 / geändert 18.07.2023
Beitragende:Prof. Dr. Fritsche, Ellen [Gutachter]
Prof. Dr. Urlacher, Vlada [Gutachter]
Stichwörter:human induced pluripotent stem cells, cardiomyocytes, developmental toxicity
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Human development can be disrupted by a variety of substances, resulting in the need to test compounds for their embryotoxic potential. Embryonic toxicity testing for marketed and newly developed compounds is regulated worldwide by different agencies, e.g. the United States Environmental Protection Agency (US EPA) or European Chemicals Agency (ECHA) by the implementation of the Organisation for Economic Co-operation and Development (OECD) or US EPA test guidelines. Since the regulation Registration, Evaluation, Authorisation of Chemicals (REACH) went into force in 2007 stipulating that substances produced or imported over ten tonnages per year have to be tested for reproductive toxicity an increase in animal testing was inevitable. At the same time, the ECHA supports the use and development of alternative methods to comply with the 3Rs, reduction, refinement, and replacement of animal testing. The embryonic stem cell test (EST) is an alternative method validated by the European Center for Validation of Alternative Methods (ECVAM) testing for embryotoxicity making use of two permanent mouse cell lines, however, the EST was not approved for regulatory purposes. To overcome the issue of species differences, the human induced pluripotent stem cell test (hiPS Test) was established in this work which is based on human induced pluripotent stem cells (hiPSC). Human iPSCs are an auspicious tool in a variety of biological research fields as they provide an almost unlimited source of human cells, which can differentiate into almost every cell type of the human body. In contrast to embryonic stem cells (ESCs), generating hiPSCs does not require human embryos and therefore, does not raise ethical concerns. The hiPS Test was established to contribute to a future test battery of in vitro embryotoxicity tests by differentiating hiPSCs into beating cardiomyocytes under substance exposure. The test system was characterized and endpoints for the test method were established. For assessing the beating frequency and area of cardiomyocytes, the software CardioVision was developed. A small training set of compounds was studied as a first proof of concept. In summary, the hiPS Test exhibits a similar result in terms of cell viability for the positive control (5-Fluorouracil) compared to other human cell-based test systems. For one compound tested as a proof-of-concept (triclabendazole), the hiPS Test seems to have a higher sensitivity compared to the zebrafish embryo test, and pre-, or postimplantation rodent whole embryo culture. One drawback of the hiPS Test is its sensitivity to small disturbances due to e.g. handling or medium constituents. Hence, it is advisable to improve its robustness. Additionally, more substances have to be screened to assess the predictivity of the hiPS Test.

Die menschliche Entwicklung kann durch eine Vielzahl von Substanzen gestört werden, weshalb es unerlässlich ist, diese auf ihr embryotoxisches Potenzial zu testen. Die Prüfung der Embryotoxizität von vermarkteten und neu entwickelten Substanzen wird weltweit von verschiedenen Behörden wie z. B. der United States Environmental Protection Agency (US EPA) oder der European Chemicals Agency (ECHA) geregelt und durch die Testrichtlinien der Organisation for Economic Co-operation and Development (OECD) oder der US EPA umgesetzt. Seit dem Inkrafttreten der Verordnung Registration, Evaluation, Authorisation of Chemicals (REACH) im Jahr 2007, die vorschreibt, dass Stoffe, die in einer Menge von mehr als zehn Tonnen pro Jahr hergestellt oder eingeführt werden, auf ihre Reproduktionstoxizität getestet werden müssen, war eine Zunahme von Tierversuchen unvermeidlich. Gleichzeitig unterstützt die ECHA jedoch die Verwendung und Entwicklung alternativer Methoden, um das 3R Prinzip, Replacement (Vermeidung), Reduction (Verringerung), Refinement (Verbesserung) von Tierversuchen zu erfüllen. Der vom European Center for Validation of Alternative Methods (ECVAM) validierte embryonale Stammzelltest (EST) ist eine alternative Testmethode zur Prüfung von Substanzen auf Embryotoxizität, bei der zwei permanente Mauszelllinien verwendet werden. Der EST wurde jedoch nicht für regulatorische Zwecke zugelassen. Um das Problem der Speziesunterschiede zu überwinden, wurde in dieser Arbeit der human induced pluripotent stem cell test (hiPS Test) entwickelt, der auf humanen induzierten pluripotenten Stammzellen (hiPSC) basiert. Humane induzierte pluripotente Stammzellen sind ein vielversprechendes Werkzeug in einer Vielzahl von biologischen Forschungsbereichen, da sie eine nahezu unbegrenzte Quelle menschlicher Zellen darstellen, die in fast jeden Zelltyp des menschlichen Körpers differenzieren können. Im Gegensatz zu embryonalen Stammzellen (ESC) werden für die Erzeugung von hiPSCs keine menschlichen Embryonen benötigt, so dass keine ethischen Bedenken bestehen. Der hiPS-Test wurde entwickelt, um einen Beitrag zu einer künftigen Testbatterie von in-vitro-Embryotoxizitätstests zu leisten, indem hiPSCs unter Substanzexposition zu schlagenden Kardiomyozyten differenziert werden. Das Testsystem wurde charakterisiert und Endpunkte definiert. Für die Bewertung der schlagenden Fläche und Schlagfrequenz der Kardiomyozyten pro Well wurde die Software CardioVision entwickelt. Ein kleines Trainingsset wurde als erster Konzeptnachweis untersucht. Zusammenfassend kann geschlossen werden, dass der hiPS-Test für die Positivkontrolle (5-Fluorouracil) ein ähnliches Ergebnis in Bezug auf die Zellviabilität zeigt wie andere auf menschlichen Zellen basierende Testsysteme. Für eine als Konzeptnachweis getestete Substanz (Triclabendazol) scheint der hiPS-Test im Vergleich zum Zebrafisch-Embryotest und zur Prä- oder Postimplantationskultur von Nagetier-Vollembryonen eine höhere Empfindlichkeit aufzuweisen. Ein Nachteil des hiPS-Tests ist seine Empfindlichkeit gegenüber kleinen Störungen, z. B. durch die Handhabung oder Bestandteile des Mediums. Daher ist es ratsam, seine Robustheit zu verbessern. Außerdem müssen mehr Substanzen untersucht werden, um die Vorhersagekraft des hiPS-Tests beurteilen zu können.
Quelle:Abassi, Y. A., Xi, B., Li, N. et al. (2012). Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment. Br J Pharmacol 165, 1424–1441. https://doi.org/10.1111/j.1476-5381.2011.01623.x.
Al Abbar, A., Ngai, S. C., Nograles, N. et al. (2020). Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. Biores Open Access 9, 121–136. https://doi.org/10.1089/biores.2019.0046.
Adler, S., Pellizzer, C., Hareng, L. et al. (2008). First steps in establishing a developmental toxicity test method based on human embryonic stem cells. Toxicol Vitr 22, 200–211. https://doi.org/10.1016/j.tiv.2007.07.013.
Afrakhte, M., Morén, A., Jossan, S. et al. (1998). Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members. Biochem Biophys Res Commun 249, 505–511. https://doi.org/10.1006/bbrc.1998.9170.
Ahola, A., Kiviaho, A. L., Larsson, K. et al. (2014). Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation. Biomed Eng Online 13, 39. https://doi.org/10.1186/1475-925X-13-39.
Aikawa, N. (2020). A novel screening test to predict the developmental toxicity of drugs using human induced pluripotent stem cells. J Toxicol Sci 45, 187–199. https://doi.org/10.2131/jts.45.187.
Assou, S., Bouckenheimer, J. and Vos, J. De (2018). Concise Review: Assessing the Genome Integrity of Human Induced Pluripotent Stem Cells: What Quality Control Metrics? Stem Cells 36, 814–821. https://doi.org/10.1002/STEM.2797.
Attia, S. M., Badary, O. A., Hamada, F. M. et al. (2008). The chemotherapeutic agents nocodazole and amsacrine cause meiotic delay and non-disjunction in spermatocytes of mice. Mutat Res Toxicol Environ Mutagen 651, 105–113. https://doi.org/10.1016/j.mrgentox.2007.10.011.
Bai, Q., Ramirez, J. M., Becker, F. et al. (2015). Temporal analysis of genome alterations induced by single-cell passaging in human embryonic stem cells. Stem Cells Dev 24, 653–662. https://doi.org/10.1089/scd.2014.0292.
Balafkan, N., Mostafavi, S., Schubert, M. et al. (2020). A method for differentiating human induced pluripotent stem cells toward functional cardiomyocytes in 96-well microplates. Sci Reports 2020 101 10, 1–14. https://doi.org/10.1038/s41598-020-73656-2.
BD Biosciences (2022). BD Human Pluripotent Stem Cell Transcription Factor Analysis Kit Instruction Manual. , 1–2. Available at: https://www.bdbiosciences.com/content/dam/bdb/products/global/reagents/flow-cytometry-reagents/research-reagents/panels-multicolor-cocktails-ruo/560589_base/pdf/23-12787.pdf [Accessed December 13, 2022].
Bedada, F. B., Wheelwright, M. and Metzger, J. M. (2016). Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes. Biochim Biophys Acta - Mol Cell Res 1863, 1829–1838. https://doi.org/10.1016/J.BBAMCR.2015.11.005.
Ben-David, U., Benvenisty, N. and Mayshar, Y. (2010). Genetic instability in human induced pluripotent stem cells: Classification of causes and possible safeguards. Cell Cycle 9, 4603–4604. https://doi.org/10.4161/cc.9.23.14094.
Van Den Berg, G., Abu-Issa, R., De Boer, B. A. J. et al. (2009). A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ Res 104, 179–188. https://doi.org/10.1161/CIRCRESAHA.108.185843.
Betts, G., Desaix, P., Johnson, E. et al. (2013). Anatomy and Physiology. Houston: Rice University. Available at: https://openstax.org/details/books/anatomy-and-physiology.
Biolamina (2022). Biolaminin 521 LN. Available at: https://biolamina.com/products/laminin-ln-521-stem-cell-matrix/ [Accessed December 13, 2022].
Bobbert, M. (2006). Ethical questions concerning research on human embryos, embryonic stem cells and chimeras. Biotechnol J 1, 1352–1369. https://doi.org/10.1002/biot.200600179.
Bocci, G., Danesi, R., Di Paolo, A. et al. (2000). Comparative pharmacokinetic analysis of 5-fluorouracil and its major metabolite 5-fluoro-5,6-dihydrouracil after conventional and reduced test dose in cancer patients. Clin Cancer Res 6, 3032–3037
Boix, N., Teixido, E., Vila-Cejudo, M. et al. (2015). Triclabendazole sulfoxide causes stage-dependent embryolethality in zebrafish and mouse in vitro. PLoS One 10. https://doi.org/10.1371/journal.pone.0121308.
Boix, N., Teixidó, E., Vila-Cejudo, M. et al. (2016). Risk assessment for human embryonic development of triclabendazole residues in milk and cheese in the diet of a rural population in Cajamarca ( Peru ): A preliminary approach. Recent Adv Pharm Sci VI 661, 37–47
Bondue, A. and Blanpain, C. (2010). Mesp1: A key regulator of cardiovascular lineage commitment. Circ Res 107, 1414–1427. https://doi.org/10.1161/CIRCRESAHA.110.227058.
von Both, I., Silvestri, C., Erdemir, T. et al. (2004). Foxh1 is essential for development of the anterior heart field. Dev Cell 7, 331–345. https://doi.org/10.1016/j.devcel.2004.07.023.
Braam, S. R., Tertoolen, L., van de Stolpe, A. et al. (2010). Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 4, 107–116. https://doi.org/10.1016/j.scr.2009.11.004.
Brade, T., Pane, L. S., Moretti, A. et al. (2013). Embryonic Heart Progenitors and Cardiogenesis. Cold Spring Harb Perspect Med 3, a013847–a013847. https://doi.org/10.1101/cshperspect.a013847.
Bradman, A., Barr, D. B., Henn, B. G. C. et al. (2003). Measurement of pesticides and other toxicants in amniotic fluid as a potential biomarker of prenatal exposure: A validation study. Environ Health Perspect 111, 1779–1782. https://doi.org/10.1289/ehp.6259.
Bradski, G. (2000). The OpenCV Library. Dr Dobb’s J Softw Tools. Available at: https://www.drdobbs.com/open-source/the-opencv-library/184404319 [Accessed December 13, 2022].
Brown, M. and Wittwer, C. (2000). Flow cytometry: Principles and clinical applications in hematology. Clin Chem 46, 1221–1229. https://doi.org/10.1093/clinchem/46.8.1221.
Bruneau, B. G., Nemer, G., Schmitt, J. P. et al. (2001). A murine model of Holt-Oram syndrome defines roles of the T-Box transcription factor Tbx5 in cardiogenesis and disease. Cell 106, 709–721. https://doi.org/10.1016/S0092-8674(01)00493-7.
Burdsal, C. A., Flannery, M. L. and Pedersen, R. A. (1998). FGF-2 alters the fate of mouse epiblast from ectoderm to mesoderm in vitro. Dev Biol 198, 231–244. https://doi.org/10.1016/S0012-1606(98)80001-8.
Burridge, P. W., Matsa, E., Shukla, P. et al. (2014). Chemically defined generation of human cardiomyocytes. Nat Methods 11, 855–860. https://doi.org/10.1038/nmeth.2999.
Bustin, S. A. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25, 169–193. https://doi.org/10.1677/JME.0.0250169.
Cai, C.-L., Liang, X., Shi, Y. et al. (2003). Isl1 Identifies a Cardiac Progenitor Population that Proliferates Prior to Differentiation and Contributes a Majority of Cells to the Heart. Dev Cell 5, 877–889. https://doi.org/10.1016/S1534-5807(03)00363-0.
Cai, J., Li, W., Su, H. et al. (2010). Generation of Human Induced Pluripotent Stem Cells from Umbilical Cord Matrix and Amniotic Membrane Mesenchymal Cells. J Biol Chem 285, 11227–11234. https://doi.org/10.1074/JBC.M109.086389.
Chalabi-Dchar, M., Fenouil, T., Machon, C. et al. (2021). A novel view on an old drug, 5-fluorouracil: an unexpected RNA modifier with intriguing impact on cancer cell fate. NAR Cancer 3, 1–13. https://doi.org/10.1093/narcan/zcab032.
Chang, W., Cheng, J., Allaire, J. J. et al. (2022). shiny: Web Application Framework for R. Available at: https://cran.r-project.org/package=shiny [Accessed December 13, 2022].
Chapin, R., Stedman, D., Paquette, J. et al. (2007). Struggles for equivalence: In vitro developmental toxicity model evolution in pharmaceuticals in 2006. Toxicol Vitr 21, 1545–1551. https://doi.org/10.1016/j.tiv.2006.10.006.
Chen, B., Dodge, M. E., Tang, W. et al. (2009). Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5, 100–107. https://doi.org/10.1038/nchembio.137.
Clements, M. and Thomas, N. (2014). High-Throughput Multi-Parameter Profiling of Electrophysiological Drug Effects in Human Embryonic Stem Cell Derived Cardiomyocytes Using Multi-Electrode Arrays. Toxicol Sci 140, 445–461. https://doi.org/10.1093/toxsci/kfu084.
Corning Incorporated Life Sciences (2022). Corning Matrigel Matrix Frequently Asked Questions. , 1–8. Available at: https://www.corning.com/catalog/cls/documents/faqs/CLS-DL-CC-026.pdf [Accessed December 13, 2022].
Cossarizza, A., Chang, H., Radbruch, A. et al. (2017). Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 47, 1584–1797. https://doi.org/10.1002/eji.201646632.
Crofton, K. M., Mundy, W. R., Lein, P. J. et al. (2011). Developmental neurotoxicity testing: Recommendations for developing alternative methods for the screening and prioritization of chemicals. ALTEX 28, 9–15. https://doi.org/10.14573/altex.2011.1.009.
Dagg, C. P. (1960). Sensitive stages for the production of developmental abnormalities in mice with 5-fluorouracil. Am J Anat 106, 89–96. https://doi.org/10.1002/aja.1001060202.
van Dartel, D. A. M., Pennings, J. L. A., de la Fonteyne, L. J. J. et al. (2010). Monitoring developmental toxicity in the embryonic stem cell test using differential gene expression of differentiation-related genes. Toxicol Sci 116, 130–139. https://doi.org/10.1093/toxsci/kfq127.
Ten Dijke, P., Yamashita, H., Sampath, T. K. et al. (1994). Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J Biol Chem 269, 16985–16988. https://doi.org/10.1016/s0021-9258(17)32506-1.
Doubilet, P. M. and Benson, C. B. (1995). Embryonic heart rate in the early first trimester: what rate is normal? J Ultrasound Med 14, 431–434. https://doi.org/10.7863/jum.1995.14.6.431.
Dudka, A. A., Sweet, S. M. M. and Heath, J. K. (2010). Stat3 Binding To the Fgf Receptor Is Activated By Receptor Amplification. Cancer Res 70, 3391. https://doi.org/10.1158/0008-5472.CAN-09-3033.STAT3.
Dunnett, C. W. and Tamhane, A. C. (1991). Step-down multiple tests for comparing treatments with a control in unbalanced one-way layouts. Stat Med 10, 939–947. https://doi.org/10.1002/sim.4780100614.
Ebisawa, T., Tada, K., Kitajima, I. et al. (1999). Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation. J Cell Sci 112, 3519–3527. https://doi.org/10.1242/jcs.112.20.3519.
ECHA (2011). The Use of Alternatives to Testing on Animals for the REACH Regulation 2011. , 69. Available at: https://echa.europa.eu/documents/10162/17231/alternatives_test_animals_2011_en.pdf/9b0f7e93-4d61-401d-ba2c-80b3b9faaf66 [Accessed December 13, 2022].
ECHA (2014). The Use of Alternatives to Testing on Animals for the REACH Regulation 2014. 117. Available at: https://echa.europa.eu/documents/10162/17231/alternatives_test_animals_2014_en.pdf/587d000c-688e-4cdd-9f59-f7d7aacc677b [Accessed December 13, 2022].
ECHA (2017). The Use of Alternatives to Testing on Animals for the REACH Regulation 2017. 117, 1–101. Available at: https://echa.europa.eu/documents/10162/17231/alternatives_test_animals_2017_en.pdf/075c690d-054c-693a-c921-f8cd8acbe9c3 [Accessed December 13, 2022].
ECHA (2020). The Use of Alternatives to Testing on Animals for the REACH Regulation 2020. 117, 85. https://doi.org/10.2823/092305.
ECHA (2022). Understanding REACH. Eur Chem Agency Helsinki. Available at: https://echa.europa.eu/regulations/reach/understanding-reach [Accessed December 13, 2022].
Emre, N., Vidal, J. G., Elia, J. et al. (2010). The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers. PLoS One 5. https://doi.org/10.1371/journal.pone.0012148.
Eng, G., Lee, B. W., Protas, L. et al. (2016). Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun 7, 1–10. https://doi.org/10.1038/ncomms10312.
Entcheva, E., Kostov, Y., Tchernev, E. et al. (2004). Fluorescence Imaging of Electrical Activity in Cardiac Cells Using An All-Solid-State System. IEEE Trans Biomed Eng 51, 333–341. https://doi.org/10.1109/TBME.2003.820376.
Farrell, R. E. (2017). RNA Methodologies Laboratory Guide for Isolation and Characterization. 5th ed. Pennsylvania. United States: Elsevier Inc. https://doi.org/10.1016/b978-0-12-804678-4.00001-4.
FDA (2016). Prescribing information. Fluorouracil injection, for intravenous use. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/012209s040lbl.pdf [Accessed December 13, 2022].
Fijnvandraat, A., van Ginneken, A. C. G., de Boer, P. A. J. et al. (2003). Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube. Cardiovasc Res 58, 399–409. https://doi.org/10.1016/S0008-6363(03)00282-7.
Frank, S., Zhang, M., Schöler, H. R. et al. (2012). Small molecule-assisted, line-independent maintenance of human pluripotent stem cells in defined conditions. PLoS One 7. https://doi.org/10.1371/journal.pone.0041958.
Fritz, B., Hallermann, C., Olert, J. et al. (2001). Cytogenetic analyses of culture failures by comparative genomic hybridisation (CGH) - Re-evaluation of chromosome aberration rates in early spontaneous abortions. Eur J Hum Genet 9, 539–547. https://doi.org/10.1038/sj.ejhg.5200669.
Galanjuk, S., Zühr, E., Dönmez, A. et al. (2022). The Human Induced Pluripotent Stem Cell Test as an Alternative Method for Embryotoxicity Testing. Int J Mol Sci 23, 3295. https://doi.org/10.3390/ijms23063295.
Genschow, E., Spielmann, H., Scholz, G. et al. (2002). The ECVAM international validation study on in vitro embryotoxicity tests: Results of the definitive phase and evaluation of prediction models. ATLA Altern to Lab Anim 30, 151–176. https://doi.org/10.1177/026119290203000204.
Genschow, E., Spielmann, H., Scholz, G. et al. (2004). Validation of the Embryonic Stem Cell Test in the International ECVAM Validation Study on Three In Vitro Embryotoxicity Tests. Altern to Lab Anim 32, 209–244. https://doi.org/10.1177/026119290403200305.
Genz, A., Bretz, F., Miwa, T. et al. (2021). Package mvtnorm: Multivariate Normal and t Distributions. J Comput Graph Stat 11, 950–971. Available at: https://mran.revolutionanalytics.com/snapshot/2020-02-09/web/packages/mvtnorm/mvtnorm.pdf [Accessed December 13, 2022].
Ghanbari, M. (1990). The cross-search algorithm for motion estimation (image coding). IEEE Trans Commun 38, 950–953. https://doi.org/10.1109/26.57512.
Gibb, S. (2008). Toxicity testing in the 21st century: A vision and a strategy. Reprod Toxicol 25, 136–138. https://doi.org/10.1016/j.reprotox.2007.10.013.
Golob, M., Moss, R. L. and Chesler, N. C. (2014). Cardiac Tissue Structure, Properties, and Performance: A Materials Science Perspective. Ann Biomed Eng 42, 2003–2013. https://doi.org/10.1007/s10439-014-1071-z.
Goto, K., Kamiya, Y., Imamura, T. et al. (2007). Selective inhibitory effects of Smad6 on bone morphogenetic protein type I receptors. J Biol Chem 282, 20603–20611. https://doi.org/10.1074/jbc.M702100200.
Grem, J. L. (2000). 5-Fluorouracil: Forty-plus and still ticking. A review of its preclinical and clinical development. Invest New Drugs 18, 299–313. https://doi.org/10.1023/A:1006416410198.
Gstraunthaler, G., Lindl, T. and van der Valk, J. (2013). A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology 65, 791–793. https://doi.org/10.1007/s10616-013-9633-8.
Gutberlet, M. (2017). Bildgebende Diagnostik angeborener Herzfehler. In Bildgebende Diagnostik angeborener Herzfehler (21–35). Stuttgart; New York: Georg Thieme Verlag.
Hardy, A., Benford, D., Halldorsson, T. et al. (2017). Update: use of the benchmark dose approach in risk assessment. EFSA J 15, e04658. https://doi.org/10.2903/j.efsa.2017.4658.
Hayakawa, T., Kunihiro, T., Dowaki, S. et al. (2012). Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis. Tissue Eng Part C Methods 18, 21–32. https://doi.org/10.1089/ten.tec.2011.0273.
Hinrichsen, K. V (1990). Humanembryologie. Heidelberg: Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07815-0.
Holmgren, G., Zeng, X. and Synnergren, J. (2015). Selection of robust reference genes for normalization of quantitative RT-PCR data from differentiating human pluripotent stem cells. Proc 7th Int Conf Bioinforma Comput Biol BICOB 2015, 65–70
Hughes, C. S., Postovit, L. M. and Lajoie, G. A. (2010). Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886–1890. https://doi.org/10.1002/pmic.200900758.
Hyer, J. S., Fong, S. and Kutteh, W. H. (2004). Predictive value of the presence of an embryonic heartbeat for live birth: Comparison of women with and without recurrent pregnancy loss. Fertil Steril 82, 1369–1373. https://doi.org/10.1016/j.fertnstert.2004.03.058.
Iyer, P. (2017). Guidelines for reproductive and developmental toxicity testing and risk assessment of chemicals. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804239-7.00010-X.
Johnson, P. D. and Besselsen, D. G. (2002). Practical Aspects of Experimental Design in Animal Research. ILAR J 43, 202–206. https://doi.org/10.1093/ilar.43.4.202.
Jordan, M. A., Thrower, D. and Wilson, L. (1992). Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci 102, 401–416. https://doi.org/10.1242/jcs.102.3.401.
Kamgoué, A., Ohayon, J., Usson, Y. et al. (2009). Quantification of cardiomyocyte contraction based on image correlation analysis. Cytom Part A 75A, 298–308. https://doi.org/10.1002/cyto.a.20700.
Kan, M., Wang, F., Xu, J. et al. (1993). An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science (80- ) 259, 1918–1921. https://doi.org/10.1126/science.8456318.
Karnofsky, D. A. and Basch, R. S. (1960). Effects of 5-fluorodeoxyuridine and related halogenated pyrimidines on the sand-dollar embryo. J Biophys Biochem Cytol 7, 61–71. https://doi.org/10.1083/jcb.7.1.61.
Kawai, T., Takahashi, T., Esaki, M. et al. (2004). Efficient Cardiomyogenic Differentiation of Embryonic Stem Cell by Fibroblast Growth Factor 2 and Bone Morphogenetic Protein 2. Circ J 68, 691–702. https://doi.org/10.1253/circj.68.691.
Keeney, M., Gratama, J. W., Chin-Yee, I. H. et al. (1998). Isotype controls in the analysis of lymphocytes and CD34+ stem and progenitor cells by flow cytometry?time to let go! Cytometry 34, 280–283. https://doi.org/10.1002/(SICI)1097-0320(19981215)34:6<280::AID-CYTO6>3.0.CO;2-H.
Kehat, I., Kenyagin-Karsenti, D., Snir, M. et al. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108, 407–414. https://doi.org/10.1172/JCI12131.
Keiser, J., Engels, D., Büscher, G. et al. (2005). Triclabendazole for the treatment of fascioliasis and paragonimiasis. Expert Opin Investig Drugs 14, 1513–1526. https://doi.org/10.1517/13543784.14.12.1513.
Kelly, R. G., Brown, N. A. and Buckingham, M. E. (2001). The Arterial Pole of the Mouse Heart Forms from Fgf10-Expressing Cells in Pharyngeal Mesoderm. Dev Cell 1, 435–440. https://doi.org/10.1016/S1534-5807(01)00040-5.
Kouhara, H., Hadari, Y. R., Spivak-Kroizman, T. et al. (1997). A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89, 693–702. https://doi.org/10.1016/S0092-8674(00)80252-4.
Krebs, A., Nyffeler, J., Karreman, C. et al. (2020). Determination of Benchmark Concentrations and Their Statistical Uncertainty for Cytotoxicity Test Data and Functional In Vitro Assays. ALTEX 37, 155–163. https://doi.org/10.14573/altex.1912021.
Kuo, C. T., Morrisey, E. E., Anandappa, R. et al. (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11, 1048–1060. https://doi.org/10.1101/gad.11.8.1048.
de la Cruz, M. V, Sánchez Gómez, C., Arteaga, M. M. et al. (1977). Experimental study of the development of the truncus and the conus in the chick embryo. J Anat 123, 661–86
Laco, F., Woo, T. L., Zhong, Q. et al. (2018). Unraveling the Inconsistencies of Cardiac Differentiation Efficiency Induced by the GSK3β Inhibitor CHIR99021 in Human Pluripotent Stem Cells. Stem Cell Reports 10, 1851–1866. https://doi.org/10.1016/j.stemcr.2018.03.023.
Lamothe, B., Yamada, M., Schaeper, U. et al. (2004). The Docking Protein Gab1 Is an Essential Component of an Indirect Mechanism for Fibroblast Growth Factor Stimulation of the Phosphatidylinositol 3-Kinase/Akt Antiapoptotic Pathway. Mol Cell Biol 24, 5657–5666. https://doi.org/10.1128/mcb.24.13.5657-5666.2004.
Lau, C., Mole, M. L., Copeland, M. F. et al. (2001). Toward a biologically based dose-response model for developmental toxicity of 5-fluorouracil in the rat: Acquisition of experimental data. Toxicol Sci 59, 37–48. https://doi.org/10.1093/toxsci/59.1.37.
Laurent, L. C., Ulitsky, I., Slavin, I. et al. (2011). Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8, 106–118. https://doi.org/10.1016/j.stem.2010.12.003.
Lauschke, K., Rosenmai, A. K., Meiser, I. et al. (2020). A novel human pluripotent stem cell-based assay to predict developmental toxicity. Arch Toxicol 94, 3831–3846. https://doi.org/10.1007/s00204-020-02856-6.
Lecaillon, J. B., Godbillon, J., Campestrini, J. et al. (1998). Effect of food on the bioavailability of triclabendazole in patients with fascioliasis. Br J Clin Pharmacol 45, 601–604. https://doi.org/10.1046/j.1365-2125.1998.00725.x.
Lescroart, F., Chabab, S., Lin, X. et al. (2014). Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol 16, 829–840. https://doi.org/10.1038/ncb3024.
Leyder, M., Laubach, M., Breugelmans, M. et al. (2011). Specific Congenital Malformations after Exposure to Cyclophosphamide, Epirubicin and 5-Fluorouracil during the First Trimester of Pregnancy. Gynecol Obstet Invest 71, 141–144. https://doi.org/10.1159/000317264.
Li, J., Chen, X., Ding, X. et al. (2013). LATS2 suppresses oncogenic Wnt signaling by disrupting β-Catenin/BCL9 interaction. Cell Rep 5, 1650–1663. https://doi.org/10.1016/j.celrep.2013.11.037.
Li, S., Zhou, D., Lu, M. M. et al. (2004). Advanced cardiac morphogenesis does not require heart tube fusion. Science (80- ) 305, 1619–1622. https://doi.org/10.1126/science.1098674.
Lian, X., Hsiao, C., Wilson, G. et al. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109. https://doi.org/10.1073/pnas.1200250109.
Lian, X., Zhang, J., Azarin, S. M. et al. (2013). Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 8, 162–175. https://doi.org/10.1038/nprot.2012.150.
Lindsley, R. C., Gill, J. G., Murphy, T. L. et al. (2008). Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 3, 55–68. https://doi.org/10.1016/j.stem.2008.04.004.
Liston, D. R. and Davis, M. (2017). Clinically relevant concentrations of anticancer drugs: A guide for nonclinical studies. Clin Cancer Res 23, 3489–3498. https://doi.org/10.1158/1078-0432.CCR-16-3083.
Lo, B. and Parham, L. (2009). Ethical issues in stem cell research. Endocr Rev 30, 204–213. https://doi.org/10.1210/er.2008-0031.
Logan, C. Y. and Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20, 781–810. https://doi.org/10.1146/annurev.cellbio.20.010403.113126.
Loh, Y. H., Agarwal, S., Park, I. H. et al. (2009). Generation of induced pluripotent stem cells from human blood. Blood 113, 5476–5479. https://doi.org/10.1182/BLOOD-2009-02-204800.
Longley, D. B., Harkin, D. P. and Johnston, P. G. (2003). 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer 3, 330–338. https://doi.org/10.1038/nrc1074.
Macías-Silva, M., Hoodless, P. A., Tang, S. J. et al. (1998). Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J Biol Chem 273, 25628–25636. https://doi.org/10.1074/jbc.273.40.25628.
Maitra, A., Arking, D. E., Shivapurkar, N. et al. (2005). Genomic alterations in cultured human embryonic stem cells. Nat Genet 37, 1099–1103. https://doi.org/10.1038/ng1631.
Masjosthusmann, S., Blum, J., Bartmann, K. et al. (2020). Establishment of an a priori protocol for the implementation and interpretation of an in‐vitro testing battery for the assessment of developmental neurotoxicity. EFSA Support Publ 17. https://doi.org/10.2903/sp.efsa.2020.en-1938.
Matlock, B. (2015). Assessment of Nucleic Acid Purity. Technical Note 52646. Tech Bull NanoDrop Spectrophotometers, 1–2. Available at: https://assets.fishersci.com/TFS-Assets/CAD/Product-Bulletins/TN52646-E-0215M-NucleicAcid.pdf [Accessed December 13, 2022].
Mayshar, Y., Ben-David, U., Lavon, N. et al. (2010). Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7, 521–531. https://doi.org/10.1016/j.stem.2010.07.017.
McCulley, D. J., Kang, J.-O., Martin, J. F. et al. (2008). BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn 237, 3200–9. https://doi.org/10.1002/dvdy.21743.
Meilhac, S. M., Esner, M., Kelly, R. G. et al. (2004). The Clonal Origin of Myocardial Cells in Different Regions of the Embryonic Mouse Heart. Dev Cell 6, 685–698. https://doi.org/10.1016/S1534-5807(04)00133-9.
Mjaatvedt, C. H., Nakaoka, T., Moreno-Rodriguez, R. et al. (2001). The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238, 97–109. https://doi.org/10.1006/dbio.2001.0409.
Molkentin, J. D., Lin, Q., Duncan, S. A. et al. (1997). Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11, 1061–1072. https://doi.org/10.1101/gad.11.8.1061.
Mummery, C. L., Zhang, J., Ng, E. S. et al. (2012). Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: A methods overview. Circ Res 111, 344–358. https://doi.org/10.1161/CIRCRESAHA.110.227512.
Murphy, C., Naderlinger, E., Mater, A. et al. (2022). Comparison of human recombinant protein coatings and fibroblast-ECM to Matrigel for induced pluripotent stem cell culture and renal podocyte differentiation_suppl2. ALTEX. https://doi.org/10.14573/altex.2112204s2.
Naito, A. T., Shiojima, I., Akazawa, H. et al. (2006). Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci 103, 19812–19817. https://doi.org/10.1073/PNAS.0605768103.
Nathan, L., Bawdon, R. E., Sidawi, J. E. et al. (1993). Penicillin levels following the administration of benzathine penicillin G in pregnancy. Obstet Gynecol 82, 338–42
National Research Council (2000). Developmental Defects and Their Causes. In Scientific frontiers in developmental toxicology and risk assessment (17–25). Washington, DC: National Academy Press. https://doi.org/10.17226/9871.
National Research Council (US) (2007). National Research Council (US) Committee on Applications of Toxicogenomic Technologies to Predictive Toxicology. Washington (DC): National Academies Press (US). https://doi.org/https://doi.org/10.17226/12037.
Naujok, O., Lentes, J., Diekmann, U. et al. (2014). Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res Notes 7, 273. https://doi.org/10.1186/1756-0500-7-273.
Nicoll, R. (2018). Environmental Contaminants and Congenital Heart Defects: A Re-Evaluation of the Evidence. Int J Environ Res Public Health 15, 2096. https://doi.org/10.3390/ijerph15102096.
Nolan, T., Hands, R. E. and Bustin, S. A. (2006). Quantification of mRNA using real-time RT-PCR. Nat Protoc 1, 1559–1582. https://doi.org/10.1038/nprot.2006.236.
Novartis (2022). Prescribing Information of Egaten. EGATEN® (triclabendazole) tablets, for oral use. Available at: https://www.novartis.com/us-en/sites/novartis_us/files/egaten.pdf [Accessed December 13, 2022].
O’Gorman, M. R. G. and Thomas, J. (1999). Isotype controls - time to let go? Cytometry 38, 78–80. https://doi.org/10.1002/(SICI)1097-0320(19990415)38:2<78::AID-CYTO6>3.0.CO;2-E.
OECD (2018a). Test No. 414: Prenatal Developmental Toxicity Study. OECD. https://doi.org/10.1787/9789264070820-en.
OECD (1983). Test No. 415: One-Generation Reproduction Toxicity Study. OECD. https://doi.org/10.1787/9789264070844-en.
OECD (2001). Test No. 416: Two-Generation Reproduction Toxicity. OECD. https://doi.org/10.1787/9789264070868-en.
OECD (2016a). Test No. 421: Reproduction/Developmental Toxicity Screening Test. OECD. https://doi.org/10.1787/9789264264380-en.
OECD (2016b). Test No. 422: Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test. OECD. https://doi.org/10.1787/9789264264403-en.
OECD (2007). Test No. 426: Developmental Neurotoxicity Study, OECD Guidelines for the Testing of Chemicals. OECD. https://doi.org/10.1787/9789264067394-en.
OECD (2018b). Test No. 443: Extended One-Generation Reproductive Toxicity Study. OECD. https://doi.org/10.1787/9789264304741-34-en.
Olivetti, G. (1996). Aging, Cardiac Hypertrophy and Ischemic Cardiomyopathy Do Not Affect the Proportion of Mononucleated and Multinucleated Myocytes in the Human Heart. J Mol Cell Cardiol 28, 1463–1477. https://doi.org/10.1006/jmcc.1996.0137.
Ornitz, D. M. and Itoh, N. (2015). The Fibroblast Growth Factor signaling pathway. WIREs Dev Biol 4, 215–266. https://doi.org/10.1002/wdev.176.
Pamies, D., Bal-Price, A., Simeonov, A. et al. (2017). Good cell culture practice for stem cells & stem-cell-derived models. In Altex (95–132). Elsevier GmbH. https://doi.org/10.14573/altex.1607121.
Paulus, W. E. (2016). Geburtseinleitung. In H. Schneider, P. Husslein and K.-T. M. Schneider (eds.), Praktische Geburtshilfe (83–113). Berlin, Heidelberg: Springer-Verlag GmbH Berlin Heidelberg. https://doi.org/10.1515/9783112355084-022.
Pellizzer, C., Adler, S., Corvi, R. et al. (2004). Monitoring of teratogenic effects in vitro by analysing a selected gene expression pattern. Toxicol Vitr 18, 325–335. https://doi.org/10.1016/j.tiv.2003.09.007.
Peters, A. K., Steemans, M., Mesens, N. et al. (2007). A higher throughput method to the Embryonic Stem cell Test (EST), to detect embryotoxicity in early development. AATEX 14, 673–677
Peters, A. K., Wouwer, G. Van de, Weyn, B. et al. (2008). Automated analysis of contractility in the embryonic stem cell test, a novel approach to assess embryotoxicity. Toxicol Vitr 22, 1948–1956. https://doi.org/10.1016/j.tiv.2008.09.008.
Peters, K. G., Marie, J., Wilson, E. et al. (1992). Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 358, 678–681. https://doi.org/10.1038/358678a0.
Peters, P., Miller, R. K. and Schaefer, C. (2015). Drugs During Pregnancy and Lactation Treatment Options and Risk Assessment. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-408078-2.00001-9.
Pistollato, F., Madia, F., Corvi, R. et al. (2021). Current EU regulatory requirements for the assessment of chemicals and cosmetic products: challenges and opportunities for introducing new approach methodologies. Arch Toxicol 95, 1867–1897. https://doi.org/10.1007/s00204-021-03034-y.
Prall, O. W. J., Menon, M. K., Solloway, M. J. et al. (2007). An Nkx2-5/Bmp2/Smad1 Negative Feedback Loop Controls Heart Progenitor Specification and Proliferation. Cell 128, 947–959. https://doi.org/10.1016/j.cell.2007.01.042.
Qyang, Y., Martin-Puig, S., Chiravuri, M. et al. (2007). The Renewal and Differentiation of Isl1+ Cardiovascular Progenitors Are Controlled by a Wnt/β-Catenin Pathway. Cell Stem Cell 1, 165–179. https://doi.org/10.1016/j.stem.2007.05.018.
R Core Team (2022). R: A Language and Environment for Statistical Computing. Available at: https://www.r-project.org/ [Accessed December 13, 2022].
Raab, S., Klingenstein, M., Liebau, S. et al. (2014). A Comparative View on Human Somatic Cell Sources for iPSC Generation. Stem Cells Int 2014, 1–12. https://doi.org/10.1155/2014/768391.
Rijsewijk, F., Schuermann, M., Wagenaar, E. et al. (1987). The Drosophila homology of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649–657. https://doi.org/10.1016/0092-8674(87)90038-9.
Riss, T. L., Moravec, R. A., Niles, A. L. et al. (2004). Cell Viability Assays. In S. Markossian, S. G. Sittampalam, A. Grossman, et al. (eds.), Assay Guidance Manual (335–359). Bethesda, MA: Eli Lilly & Company and the National Center for Advancing Translational Sciences. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23805433 [Accessed December 13, 2022].
Ritz, C., Baty, F., Streibig, J. C. et al. (2015). Dose-Response Analysis Using R. PLoS One 10, e0146021. https://doi.org/10.1371/JOURNAL.PONE.0146021.
Robertson, C., Tran, D. D. and George, S. C. (2013). Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31, 829–37. https://doi.org/10.1002/stem.1331.
Rosenzweig, B. L., Imamura, T., Okadome, T. et al. (1995). Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci U S A 92, 7632–7636. https://doi.org/10.1073/pnas.92.17.7632.
Rovida, C. and Hartung, T. (2009). Re-evaluation of animal numbers and costs for in vivo tests to accomplish REACH legislation requirements for chemicals - a report by the transatlantic think tank for toxicology (t(4)). ALTEX 26, 187–208
Russell, W. M. S. and Burch, R. L. (1959). The Principles of Humane Experimental Technique. London, UK: Methuen. Available at: https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique [Accessed December 13, 2022].
Saga, Y. (2000). Mesp1 Expression Is the Earliest Sign of Cardiovascular Development. Trends Cardiovasc Med 10, 345–352. https://doi.org/10.1016/S1050-1738(01)00069-X.
Saga, Y., Hata, N., Kobayashi, S. et al. (1996). Mesp1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development 122, 2769–2778. https://doi.org/10.1242/dev.122.9.2769.
Saga, Y., Miyagawa-Tomita, S., Takagi, A. et al. (1999). MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126, 3437–3447. https://doi.org/10.1242/dev.126.15.3437.
Schaefer, C., Spielmann, H., Vetter, K. et al. (2006). Spezielle Arzneimitteltherapie in der Schwangerschaft. In Arzneiverordnung in Schwangerschaft und Stillzeit (33–557). Elsevier. https://doi.org/10.1016/B978-343721332-8.50004-1.
Scholz, G., Genschow, E., Pohl, I. et al. (1999). Prevalidation of the Embryonic Stem Cell Test (EST) - A new in vitro embryotoxicity test. Toxicol Vitr 13, 675–681. https://doi.org/10.1016/S0887-2333(99)00046-6.
Schünke, M., Schulte, E., Schumacher, U. et al. (2018). PROMETHEUS Innere Organe. 5th ed. Stuttgart: Georg Thieme Verlag. https://doi.org/10.1055/b-006-149645.
Seiler, A. E. M. and Spielmann, H. (2011). The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc 6, 961–978. https://doi.org/10.1038/nprot.2011.348.
Seki, T., Yuasa, S., Kusumoto, D. et al. (2014). Generation and Characterization of Functional Cardiomyocytes Derived from Human T Cell-Derived Induced Pluripotent Stem Cells R. Johnson (ed.),. PLoS One 9, e85645. https://doi.org/10.1371/journal.pone.0085645.
Sepac, A., Si-Tayeb, K., Sedlic, F. et al. (2012). Comparison of cardiomyogenic potential among human ESC and iPSC lines. Cell Transplant 21, 2523–2530. https://doi.org/10.3727/096368912X653165.
Shah, R. M. and MacKay, R. A. (1978). Teratological evaluation of 5-fluorouracil and 5-bromo-2-deoxyuridine on hamster fetuses. Development 43, 47–54. https://doi.org/10.1242/dev.43.1.47.
Shuey, D. L., Lau, C., Logsdon, T. R. et al. (1994). Biologically Based Dose-Response Modeling in Developmental Toxicology: Biochemical and Cellular Sequelae of 5-Fluorouracil Exposure in the Developing Rat. Toxicol Appl Pharmacol 126, 129–144. https://doi.org/10.1006/taap.1994.1099.
Smith, A. S. T., Macadangdang, J., Leung, W. et al. (2017). Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 35, 77–94. https://doi.org/10.1016/j.biotechadv.2016.12.002.
Smith, K. P., Luong, M. X. and Stein, G. S. (2009). Pluripotency: Toward a gold standard for human ES and iPS cells. J Cell Physiol 220, 21–29. https://doi.org/10.1002/jcp.21681.
Snir, M., Kehat, I., Gepstein, A. et al. (2003). Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am J Physiol - Hear Circ Physiol 285, 2355–2363. https://doi.org/10.1152/ajpheart.00020.2003.
Spielmann, H. (2017). Reproduktionstoxikologie. In H. Greim (ed.), Das Toxikologiebuch (187–204). Wiley. https://doi.org/10.1002/9783527695447.
Spielmann, H., Seiler, A., Bremer, S. et al. (2006). The practical application of three validated in vitro embryotoxicity tests. ATLA Altern to Lab Anim 34, 527–538. https://doi.org/10.1177/026119290603400504.
Stalsberg, H. and DeHaan, R. L. (1969). The precardiac areas and formation of the tubular heart in the chick embryo. Dev Biol 19, 128–159. https://doi.org/10.1016/0012-1606(69)90052-9.
Stephens, J. D., Golbus, M. S., Miller, T. R. et al. (1980). Multiple congenital anomalies in a fetus exposed to 5-fluorouracil during the first trimester. Am J Obstet Gynecol 137, 747–749. https://doi.org/10.1016/S0002-9378(15)33259-2.
Stover, A. E. and Schwartz, P. H. (2011). Adaptation of Human Pluripotent Stem Cells to Feeder-Free Conditions in Chemically Defined Medium with Enzymatic Single-Cell Passaging. In P. H. Schwartz and R. L. Wesselschmidt (eds.), Human Pluripotent Stem Cells - Methods and Protocols (137–146). New York: Humana Press, c/o Springer Science+Business Medi. https://doi.org/10.1007/978-1-61779-201-4_10.
Stucki, A. O., Barton-Maclaren, T. S., Bhuller, Y. et al. (2022). Use of new approach methodologies (NAMs) to meet regulatory requirements for the assessment of industrial chemicals and pesticides for effects on human health. Front Toxicol 4, 1–24. https://doi.org/10.3389/ftox.2022.964553.
Sturzu, A. C. and Wu, S. M. (2011). Developmental and regenerative biology of multipotent cardiovascular progenitor cells. Circ Res 108, 353–364. https://doi.org/10.1161/CIRCRESAHA.110.227066.
Sullivan, S., Stacey, G. N., Akazawa, C. et al. (2018). Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regen Med 13. https://doi.org/10.2217/rme-2018-0095.
Suzuki, N., Ando, S., Yamashita, N. et al. (2011). Evaluation of novel high-throughput embryonic stem cell tests with new molecular markers for screening embryotoxic chemicals in vitro. Toxicol Sci 124, 460–471. https://doi.org/10.1093/toxsci/kfr250.
Takahashi, K., Tanabe, K., Ohnuki, M. et al. (2007). Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 131, 861–872. https://doi.org/10.1016/j.cell.2007.11.019.
Takahashi, K. and Yamanaka, S. (2006). Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126, 663–676. https://doi.org/10.1016/J.CELL.2006.07.024.
Thermo Fisher Scientific (2022). Culturing Pluripotent Stem Cells (PSCs) in Essential 8 TM Medium. Thermo Fish Sci 0, 1–10. Available at: https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2FLSG%2Fmanuals%2Ffeeder_free_PSCs_in_essential8_medium.pdf [Accessed December 13, 2022].
Tian, Y., Cohen, E. D. and Morrisey, E. E. (2010). The importance of Wnt signaling in cardiovascular development. Pediatr Cardiol 31, 342–8. https://doi.org/10.1007/s00246-009-9606-z.
Tigges, J., Bielec, K., Brockerhoff, G. et al. (2021). Academic application of Good Cell Culture Practice for induced pluripotent stem cells. ALTEX. https://doi.org/10.14573/altex.2101221.
Timpl, R., Rohde, H., Robey, P. G. et al. (1979). Laminin-A Glycoprotein from Basement Membranes. J Biol Chem 254. https://doi.org/10.1016/S0021-9258(19)83607-4.
Ueno, S., Weidinger, G., Osugi, T. et al. (2007). Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A 104, 9685–9690. https://doi.org/10.1073/pnas.0702859104.
Ulfig, N. and Brand-Saberi, B. (2017). Kurzlehrbuch Embryologie. In Kurzlehrbuch Embryologie (83–90). Stuttgart; New York: Georg Thieme Verlag KG.
Uosaki, H. and Taguchi, Y. (2016). Comparative Gene Expression Analysis of Mouse and Human Cardiac Maturation. Genomics Proteomics Bioinformatics 14, 207–215. https://doi.org/10.1016/J.GPB.2016.04.004.
US EPA (1991). Guidelines for Developmental Toxicity Risk Assessment. Risk Assess Forum 56, 63798–63826. Available at: https://www.epa.gov/sites/default/files/2014-11/documents/dev_tox.pdf [Accessed December 13, 2022].
US EPA (1996). Guidelines for Reproductive toxicity risk assessment. Environ Prot Agency 61, 56274–56322. Available at: https://archive.epa.gov/raf/web/pdf/repro51.pdf [Accessed December 13, 2022].
Virágh, S. and Challice, C. E. (1973). Origin and differentiation of cardiac muscle cells in the mouse. J Ultrasructure Res 42, 1–24. https://doi.org/10.1016/S0022-5320(73)80002-4.
VWR (2022). peqGOLD Total RNA Kit instruction manual. , 1–20. Available at: https://si.vwr.com/assetsvc/asset/sl_SI/id/17035099/contents [Accessed December 13, 2022].
Wakui, T. (2017). Method for evaluation of human induced pluripotent stem cell quality using image analysis based on the biological morphology of cells. J Med Imaging 4, 1. https://doi.org/10.1117/1.jmi.4.4.044003.
Waldo, K. L., Kumiski, D. H., Wallis, K. T. et al. (2001). Conotruncal myocardium arises from a secondary heart field. Development 128, 3179–3188. https://doi.org/10.1242/DEV.128.16.3179.
Walker, L. M., Sparks, N. R. L., Puig-Sanvicens, V. et al. (2021). An evaluation of human induced Pluripotent stem cells to test for cardiac developmental toxicity. Int J Mol Sci 22. https://doi.org/10.3390/ijms22158114.
Walter, A., Šarić, T., Hescheler, J. et al. (2015). Calcium Imaging in Pluripotent Stem Cell-Derived Cardiac Myocytes. In Methods in Molecular Biology (131–146). https://doi.org/10.1007/7651_2015_267.
Wang, R. N., Green, J., Wang, Z. et al. (2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 1, 87–105. https://doi.org/10.1016/J.GENDIS.2014.07.005.
Ward, C., Stadt, H., Hutson, M. et al. (2005). Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia. Dev Biol 284, 72–83. https://doi.org/10.1016/j.ydbio.2005.05.003.
Weeks, J. W., Myers, S. R., Lasher, L. et al. (1997). Persistence of penicillin G benzathine in pregnant group B streptococcus carriers. Obstet Gynecol 90, 240–243. https://doi.org/10.1016/S0029-7844(97)00247-0.
Weinhold, B. (2009). Environmental factors in birth defects: What we need to know. Environ Health Perspect 117. https://doi.org/10.1289/EHP.117-A440.
Whittaker, S. G. and Faustman, E. M. (1992). Cytotoxicity Assessment in Cultures of Differentiating Rodent Embryonic Cells. Toxicol Methods 2, 46–56. https://doi.org/10.3109/15376519209064805.
WHO (2022). Congenital Anomalies. Available at: https://www.who.int/health-topics/congenital-anomalies#tab=tab_1 [Accessed December 13, 2022].
WHO (2006). Report of the WHO Informal Meeting on Use of Triclabendazole in Fascioliasis Control. Available at: https://www.who.int/publications/i/item/WHO-CDS-NTD-PCT-2007.1.
WHO (2013). WHO Expert Committee on Biological Standardization, Annex 3: Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks Replacement. Available at: https://cdn.who.int/media/docs/default-source/biologicals/documents/trs_978_annex_3.pdf?sfvrsn=fe61af77_3&download=true [Accessed December 13, 2022].
Wilfinger, W. W., Mackey, K. and Chomczynski, P. (1997). Effect of pH and Ionic Strength on the Spectrophotometric Assessment of Nucleic Acid Purity. Biotechniques 22, 474–481. https://doi.org/10.2144/97223st01.
Wilson, J. G. (1977). Handbook of Teratology General Principles and Etiology. In J. G. Wilson and F. C. Fraser (eds.), Handbook of Teratology General Principles and Etiology (49–74). New York: Plenum Press. https://doi.org/10.1007/978-1-4684-2850-6.
Winnier, G., Blessing, M., Labosky, P. A. et al. (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9, 2105–2116. https://doi.org/10.1101/gad.9.17.2105.
Witt, G., Keminer, O., Leu, J. et al. (2021). An automated and high-throughput-screening compatible pluripotent stem cell-based test platform for developmental and reproductive toxicity assessment of small molecule compounds. Cell Biol Toxicol 37, 229–243. https://doi.org/10.1007/s10565-020-09538-0.
Woodruff, T. J., Zota, A. R. and Schwartz, J. M. (2011). Environmental Chemicals in Pregnant Women in the United States: NHANES 2003–2004. Environ Health Perspect 119, 878. https://doi.org/10.1289/EHP.1002727.
Xie, L., Hoffmann, A. D., Burnicka-Turek, O. et al. (2012). Tbx5-Hedgehog Molecular Networks Are Essential in the Second Heart Field for Atrial Septation. Dev Cell 23, 280–291. https://doi.org/10.1016/j.devcel.2012.06.006.
Yamada, S., Yamazaki, D. and Kanda, Y. (2018). 5-fluorouracil inhibits neural differentiation via Mfn1/2 reduction in human induced pluripotent stem cells. J Toxicol Sci 43, 727–734. https://doi.org/10.2131/jts.43.727.
You, L., Zhang, C., Yarravarapu, N. et al. (2016). Development of a triazole class of highly potent Porcn inhibitors. Bioorg Med Chem Lett 26, 5891–5895. https://doi.org/10.1016/J.BMCL.2016.11.012.
Yun Liu, K., May Chow, J. and Sherry, C. (2013). Early Life Obesity and Diabetes: Origins in Pregnancy. Open J Endocr Metab Dis 03, 1–12. https://doi.org/10.4236/ojemd.2013.31001.
Zaffran, S. and Kelly, R. G. (2012). New developments in the second heart field. Differentiation 84, 17–24. https://doi.org/10.1016/j.diff.2012.03.003.
Zaffran, S., Kelly, R. G., Meilhac, S. M. et al. (2004). Right ventricular myocardium derives from the anterior heart field. Circ Res 95, 261–268. https://doi.org/10.1161/01.RES.0000136815.73623.BE.
Zeisberg, E. M., Ma, Q., Juraszek, A. L. et al. (2005). Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest 115, 1522–1531. https://doi.org/10.1172/JCI23769.
Zhang, J., Wilson, G. F., Soerens, A. G. et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104. https://doi.org/10.1161/CIRCRESAHA.108.192237.
Zhang, M., Schulte, J. S., Heinick, A. et al. (2015). Universal Cardiac Induction of Human Pluripotent Stem Cells in Two and Three-Dimensional Formats: Implications for In Vitro Maturation. Stem Cells 33, 1456–1469. https://doi.org/10.1002/stem.1964.
Zhang, N., Yin, Y., Xu, S.-J. et al. (2008). 5-Fluorouracil: Mechanisms of Resistance and Reversal Strategies. Molecules 13, 1551. https://doi.org/10.3390/MOLECULES13081551.
Zhao, Q., Sun, Q., Zhou, L. et al. (2019). Complex Regulation of Mitochondrial Function During Cardiac Development. J Am Heart Assoc 8. https://doi.org/10.1161/JAHA.119.012731.
Zhou, T., Benda, C., Dunzinger, S. et al. (2012). Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 7, 2080–2089. https://doi.org/10.1038/nprot.2012.115.
Zilles, K. and Tillmann, B. N. (2010). Anatomie. Heidelberg: Springer Medizin Verlag Heidelberg.
Zwartsen, A., de Korte, T., Nacken, P. et al. (2019). Cardiotoxicity screening of illicit drugs and new psychoactive substances (NPS) in human iPSC-derived cardiomyocytes using microelectrode array (MEA) recordings. J Mol Cell Cardiol 136, 102–112. https://doi.org/10.1016/j.yjmcc.2019.09.007.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Bezug:February, 2023
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät
Dokument erstellt am:24.08.2023
Dateien geändert am:24.08.2023
Promotionsantrag am:14.12.2022
Datum der Promotion:03.02.2023
english
Benutzer
Status: Gast
Aktionen