Dokument: Workflow zur Anreicherung und Isolierung einzelner zirkulierender Tumorzellen (CTC) von Mammakarzinom-Patientinnen zur immunzytochemischen Charakterisierung und Amplifikation ihrer genomischen DNA
Titel: | Workflow zur Anreicherung und Isolierung einzelner zirkulierender Tumorzellen (CTC) von Mammakarzinom-Patientinnen zur immunzytochemischen Charakterisierung und Amplifikation ihrer genomischen DNA | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=62656 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20230530-081619-2 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Link, Yvonne [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Hans Neubauer [Gutachter] Prof. Dr. med. Nikolas Stoecklein [Gutachter] | |||||||
Stichwörter: | CTC, zirkulierende Tumorzellen, Mammakarzinom, CellCelector | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Das Mammakarzinom ist bekannt für seine frühe lymphogene und hämatogene Metastasierung, sodass schon bei der Erstdiagnose möglicherweise eine systemische Erkrankung vorliegen kann und zirkulierende Tumorzellen (CTCs) im peripheren Blut nachweisbar sind. Cristofanilli et al. (2004) erläuterten im Rahmen einer prospektiven Studie, dass bei Patientinnen mit metastasiertem Brustkrebs ein Nachweis von mehr als 5 CTC in 7,5 ml Blut mit einem signifikant kürzeren Überleben korreliert. Diese Tumorzellen sind eine sehr heterogene Population von Tumorzellen und weisen unterschiedlichste Eigenschaften auf. Ein besseres Verständnis dieser heterogenen CTC-Biologie ermöglicht die Entwicklung prognostischer und prädiktiver Marker, die Auswahl der optimalen individuellen Therapie und somit auch die Prognose von Mammakarzinom-Patientinnen zu verbessern.
Durch die Kombination der Vorteile des CellSearch®-Systems, des VyCap- und ISET-Filters und des CellCelector-Systems konnte ein Verfahrensprotokoll entwickelt werden, welches die Detektion, Isolierung und Charakterisierung EpCAM-positiver und -negativer CTCs als Einzelzellen bei Blutproben von Mammakarzinom-Patientinnen ermöglicht. Insgesamt konnten mit dem neu entwickelten Arbeitsweg zur Einzelzellisolierung bei 32 Patientinnen 1038 CTCs detektiert und 893 dieser nach dem Transfer der Probe durch den CellCelector wiedergefunden werden. Dies entspricht einer Transfer- und Detektionseffizienz von 86 %. Anschließend konnten 98 %, also 872 CTCs, in PCR Tubes oder auf Objektträger als Einzelzellen abgelegt werden. Zur immunzytochemischen Charakterisierung der CTCs auf das, mit einer Zellinvasivität in Verbindung stehende, Protein CapG wurden aus 16 Cartridges des CellSearch-Systems 167 CTCs als Einzelzellen auf Objektträger isoliert und anschließend für den Marker CapG gefärbt. Bei 143 CTCs, 86 % der gesamten CTCs, konnte eine CapG- Expression durch die Antikörperfärbung nachgewiesen werden. 24 CTCs zeigten keine immunzytochemisch nachweisbare Expression von CapG. Zum Beweis der guten DNA-Qualität der Einzelzellproben für eine mögliche genomische Analyse der CTCs wurden aus 32 Cartridges des CellSearch-Systems 95 CTCs in PCR Tubes abgelegt und eine „Whole genome amplification“ durchgeführt. In der Qualitätskontrolle des Ampli1-WGA-Kit (silicon biosystems) hatten 24 % der WGA-Produkte eine gute DNA-Qualität mit > 3 Banden und 76 % hatten < 3 Banden. Die entwickelte Technologie für die Einzelzellisolierung von CTCs in der Kombination des CellSearch®-Systems, VyCap- und ISET-Filter und des CellCelector-Systems bietet einen Grundstein für die Verbesserung der Charakterisierung von EpCAM-positiven und -negativen CTCs aus Blutproben von Mammakarzinom-Patientinnen.Breast cancer is known for its early lymphogenic and hematogenic metastasis, so that systemic disease may already be present at initial diagnosis and circulating tumor cells (CTCs) are detectable in the peripheral blood. Cristofanilli et al (2004) explained in a prospective study that in patients with metastatic breast cancer, detection of more than 5 CTCs in 7,5 ml blood correlates with significantly shorter survival. These tumor cells are a very heterogeneous population of tumor cells and exhibit a wide variety of characteristics. Understanding this heterogeneous CTC biology will enable the development of new prognostic and predictive markers, the selection of optimal individualized therapy, and thus improve the prognosis of breast cancer patients. By combining the advantages of the CellSearch-system, the VyCap- and ISET-filter, and the CellCelector-system, a procedural protocol has been developed that enables the detection, isolation, and characterization of EpCAM-positive and -negative CTCs as single cells in blood samples from breast cancer patients. In total, 1038 CTCs were detected from 32 patients using the newly developed workflow for single cell isolation and 893 of these were recovered after transfer of the sample through the CellCelector. This corresponds to a transfer and detection efficiency of 86 %. Subsequently, 98 %, i.e. 872 CTCs, could be deposited in PCR tubes or on slides as single cells. For immunocytochemical characterization of CTCs for the protein CapG, which is associated with cell invasiveness, 167 CTCs were isolated from 16 cartridges of the CellSearch system as single cells on slides and subsequently stained for the marker CapG. CapG expression was detected in 143 CTCs, 86 % of the total CTCs, by antibody staining. 24 CTCs showed no immunocytochemically detectable expression of CapG. To prove the good DNA-quality of the single cell samples for a possible genomic analysis of the CTCs, 95 CTCs were deposited into PCR tubes from 32 cartridges of the CellSearch- system and a whole genome amplification was performed. In the quality control of Ampli1-WGA-kit (silicon biosystems), 24 % of WGA-products had good DNA-quality with > 3 bands and 76 % had < 3 bands. The developed technology for single cell isolation of CTCs in the combination of the CellSearch® System, VyCap- and ISET-filter and the CellCelector™ -System provides a cornerstone for improving the characterization of EpCAM-positive and -negative CTCs from blood samples of breast cancer patients. | |||||||
Quelle: | 1. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781-91.
2. Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, et al. Circulating tumor cells: biology and clinical significance. Signal Transduction and Targeted Therapy. 2021;6(1):404. 3. Bidard FC, Jacot W, Kiavue N, Dureau S, Kadi A, Brain E, et al. Efficacy of Circulating Tumor Cell Count-Driven vs Clinician-Driven First-line Therapy Choice in Hormone Receptor-Positive, ERBB2-Negative Metastatic Breast Cancer: The STIC CTC Randomized Clinical Trial. JAMA Oncol. 2021;7(1):34-41. 4. Robert Koch-Institut. Zentrum für Krebsregisterdaten (Brustkrebs). https://wwwkrebsdatende/Krebs/DE/Content/Krebsarten/Brustkrebs/brustkrebs_nodehtml. 2019. 5. Katalinic A, Eisemann N, Kraywinkel K, Noftz MR, Hubner J. Breast cancer incidence and mortality before and after implementation of the German mammography screening program. Int J Cancer. 2019. 6. Heidelberg DK. Krebsinformationsdienst: Brustkrebs: Informationen für Patientinnen, Angehörige und Interessierte [Available from: http://www.krebsinformationsdienst.de/tumorarten/brustkrebs. 7. Empfehlungen A. „Diagnosis and Treatment of Patients with Primary and Metastatic Breast Cancer”. April 2022. 8. Uxa S, Castillo-Binder P, Kohler R, Stangner K, Müller GA, Engeland K. Ki-67 gene expression. Cell Death Differ. 2021;28(12):3357-70. 9. Dowsett M, Nielsen TO, A'Hern R, Bartlett J, Coombes RC, Cuzick J, et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst. 2011;103(22):1656-64. 10. Gesundheitswesen IfQuWi. Biomarkerbasierte Tests zur Entscheidung für oder gegen eine adjuvante systemische Chemotherapie beim primären Mammakarzinom, Abschlussbericht D14-01. 2016. 11. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-52. 12. Deutsche Krebsgesellschaft e.V. (DKG) DGfGuGD. Interdisziplinäre S3-Leitlinie für die Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms. 06/2021. 13. Statistisches Bundesamt (Destatis) SB. Todesursachenstatistik Deutschland. 12/2022. 14. Guidelines Breast Arbeitsgemeinschaft Gynäkologische Onkologie e.V.; 2020 [Available from: https://www.ago-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_mamma/2020/PDF_DE/2020D%2002_Brustkrebsrisiko%20und%20Praevention.pdf. 15. Sun YF, Yang XR, Zhou J, Qiu SJ, Fan J, Xu Y. Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance. J Cancer Res Clin Oncol. 2011;137(8):1151-73. 16. Neumann MH, Schneck H, Decker Y, Schömer S, Franken A, Endris V, et al. Isolation and characterization of circulating tumor cells using a novel workflow combining the CellSearch(®) system and the CellCelector(™). Biotechnol Prog. 2017;33(1):125-32. 17. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897-904. 18. Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274-84. 19. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983-8. 20. Banys-Paluchowski M, Reinhardt F, Fehm T. Disseminated Tumor Cells and Dormancy in Breast Cancer Progression. Adv Exp Med Biol. 2020;1220:35-43. 21. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, et al. Tumor self-seeding by circulating cancer cells. Cell. 2009;139(7):1315-26. 22. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005;353(8):793-802. 23. Balic M, Williams A, Lin H, Datar R, Cote RJ. Circulating tumor cells: from bench to bedside. Annu Rev Med. 2013;64:31-44. 24. Ashworth TR. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J. 1869;14:146. 25. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer. 2003;3(6):453-8. 26. Fehm T, Sagalowsky A, Clifford E, Beitsch P, Saboorian H, Euhus D, et al. Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin Cancer Res. 2002;8(7):2073-84. 27. Ross AA, Cooper BW, Lazarus HM, Mackay W, Moss TJ, Ciobanu N, et al. Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood. 1993;82(9):2605-10. 28. Lin HK, Zheng S, Williams AJ, Balic M, Groshen S, Scher HI, et al. Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res. 2010;16(20):5011-8. 29. Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC. Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol. 2007;171(2):386-95. 30. Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8(5):329-40. 31. Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res. 2007;13(3):920-8. 32. Choesmel V, Pierga JY, Nos C, Vincent-Salomon A, Sigal-Zafrani B, Thiery JP, et al. Enrichment methods to detect bone marrow micrometastases in breast carcinoma patients: clinical relevance. Breast Cancer Res. 2004;6(5):R556-70. 33. Fehm T, Hoffmann O, Aktas B, Becker S, Solomayer EF, Wallwiener D, et al. Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells. Breast Cancer Res. 2009;11(4):R59. 34. Theil G, Boehm C, Fischer K, Bialek J, Hoda R, Weber E, et al. In vivo isolation of circulating tumor cells in patients with different stages of prostate cancer. Oncol Lett. 2021;21(5):357. 35. Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schutze K, et al. Isolation by size of epithelial tumor cells : a new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am J Pathol. 2000;156(1):57-63. 36. Barradas AM, Terstappen LW. Towards the Biological Understanding of CTC: Capture Technologies, Definitions and Potential to Create Metastasis. Cancers (Basel). 2013;5(4):1619-42. 37. Fischer JC, Niederacher D, Topp SA, Honisch E, Schumacher S, Schmitz N, et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc Natl Acad Sci U S A. 2013;110(41):16580-5. 38. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235-9. 39. Giuliano M, Giordano A, Jackson S, De Giorgi U, Mego M, Cohen EN, et al. Circulating tumor cells as early predictors of metastatic spread in breast cancer patients with limited metastatic dissemination. Breast Cancer Res. 2014;16(5):440. 40. Magbanua MJM, Swigart LB, Wu HT, Hirst GL, Yau C, Wolf DM, et al. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann Oncol. 2021;32(2):229-39. 41. Fabbri F, Carloni S, Zoli W, Ulivi P, Gallerani G, Fici P, et al. Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett. 2013;335(1):225-31. 42. Novak J, Georgakoudi I, Wei X, Prossin A, Lin CP. In vivo flow cytometer for real-time detection and quantification of circulating cells. Opt Lett. 2004;29(1):77-9. 43. Riethdorf S, O'Flaherty L, Hille C, Pantel K. Clinical applications of the CellSearch platform in cancer patients. Advanced Drug Delivery Reviews. 2018;125:102-21. 44. Condeelis J, Singer R, Segall J. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol. 2005;21:695–718. 45. Alix-Panabières C, Pantel K. Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy. Cancer Discov. 2016;6(5):479-91. 46. Kujur PK, Flores BCT, Ramalingam N, Chinen LTD, Jeffrey SS. Advances in the Characterization of Circulating Tumor Cells in Metastatic Breast Cancer: Single Cell Analyses and Interactions, and Patient-Derived Models for Drug Testing. In: Piñeiro R, editor. Circulating Tumor Cells in Breast Cancer Metastatic Disease. Cham: Springer International Publishing; 2020. p. 61-80. 47. Bidard FC, Michiels S, Riethdorf S, Mueller V, Esserman LJ, Lucci A, et al. Circulating Tumor Cells in Breast Cancer Patients Treated by Neoadjuvant Chemotherapy: A Meta-analysis. J Natl Cancer Inst. 2018;110(6):560-7. 48. Tewes M, Aktas B, Welt A, Mueller S, Hauch S, Kimmig R, et al. Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Res Treat. 2009;115(3):581-90. 49. De Luca F, Rotunno G, Salvianti F, Galardi F, Pestrin M, Gabellini S, et al. Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget. 2016;7(18):26107-19. 50. Ståhlberg A, Bengtsson M. Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods. 2010;50(4):282-8. 51. Blassl C, Kuhlmann JD, Webers A, Wimberger P, Fehm T, Neubauer H. Gene expression profiling of single circulating tumor cells in ovarian cancer - Establishment of a multi-marker gene panel. Mol Oncol. 2016;10(7):1030-42. 52. Ruiz-Rodríguez AJ, Molina-Vallejo MP, Aznar-Peralta I, González Puga C, Cañas García I, González E, et al. Deep Phenotypic Characterisation of CTCs by Combination of Microfluidic Isolation (IsoFlux) and Imaging Flow Cytometry (ImageStream). Cancers (Basel). 2021;13(24). 53. Lampignano R, Yang L, Neumann MHD, Franken A, Fehm T, Niederacher D, et al. A Novel Workflow to Enrich and Isolate Patient-Matched EpCAM(high) and EpCAM(low/negative) CTCs Enables the Comparative Characterization of the PIK3CA Status in Metastatic Breast Cancer. Int J Mol Sci. 2017;18(9). 54. Polzer B, Medoro G, Pasch S, Fontana F, Zorzino L, Pestka A, et al. Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol Med. 2014;6(11):1371-86. 55. Shaw JA, Guttery DS, Hills A, Fernandez-Garcia D, Page K, Rosales BM, et al. Mutation Analysis of Cell-Free DNA and Single Circulating Tumor Cells in Metastatic Breast Cancer Patients with High Circulating Tumor Cell Counts. Clin Cancer Res. 2017;23(1):88-96. 56. Piñeiro R, Martínez-Pena I, López-López R. Relevance of CTC Clusters in Breast Cancer Metastasis. Adv Exp Med Biol. 2020;1220:93-115. 57. Di Trapani M, Manaresi N, Medoro G. DEPArray™ system: An automatic image-based sorter for isolation of pure circulating tumor cells. Cytometry Part A : the journal of the International Society for Analytical Cytology. 2018;93(12):1260-6. 58. Lu Z, Moraes C, Zhao Y, You L, Simmons CA, Sun Y, editors. A micromanipulation system for single cell deposition. 2010 IEEE International Conference on Robotics and Automation; 2010 3-7 May 2010. 59. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704-15. 60. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009;11(4):R46. 61. Joosse SA, Hannemann J, Spötter J, Bauche A, Andreas A, Müller V, et al. Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells. Clin Cancer Res. 2012;18(4):993-1003. 62. Mong J, Tan M-H. Size-Based Enrichment Technologies for Non-cancerous Tumor-Derived Cells in Blood. Trends Biotechnol. 2018;36(5):511-22. 63. Hvichia GE, Parveen Z, Wagner C, Janning M, Quidde J, Stein A, et al. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int J Cancer. 2016;138(12):2894-904. 64. Xu L, Mao X, Imrali A, Syed F, Mutsvangwa K, Berney D, et al. Optimization and Evaluation of a Novel Size Based Circulating Tumor Cell Isolation System. PLoS One. 2015;10(9):e0138032. 65. Schneck H, Gierke B, Uppenkamp F, Behrens B, Niederacher D, Stoecklein NH, et al. EpCAM-Independent Enrichment of Circulating Tumor Cells in Metastatic Breast Cancer. PLoS One. 2015;10(12):e0144535. 66. Huang HL, Hsing HW, Lai TC, Chen YW, Lee TR, Chan HT, et al. Trypsin-induced proteome alteration during cell subculture in mammalian cells. J Biomed Sci. 2010;17(1):36. 67. Agerbæk MØ, Bang-Christensen SR, Yang M-H, Clausen TM, Pereira MA, Sharma S, et al. The VAR2CSA malaria protein efficiently retrieves circulating tumor cells in an EpCAM-independent manner. Nature Communications. 2018;9(1):3279. 68. Sand NT, Petersen TB, Bang-Christensen SR, Ahrens TD, Løppke C, Jørgensen AM, et al. Optimization of rVAR2-Based Isolation of Cancer Cells in Blood for Building a Robust Assay for Clinical Detection of Circulating Tumor Cells. International Journal of Molecular Sciences. 2020;21(7):2401. 69. Stoecklein NH, Klein CA. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer. 2010;126(3):589-98. 70. Kalinsky K, Mayer JA, Xu X, Pham T, Wong KL, Villarin E, et al. Correlation of hormone receptor status between circulating tumor cells, primary tumor, and metastasis in breast cancer patients. Clin Transl Oncol. 2015;17(7):539-46. 71. Méhes G, Witt A, Kubista E, Ambros PF. Circulating breast cancer cells are frequently apoptotic. The American journal of pathology. 2001;159(1):17-20. 72. Mukohara T. PI3K mutations in breast cancer: prognostic and therapeutic implications. Breast Cancer (Dove Med Press). 2015;7:111-23. 73. Dirican E, Akkiprik M, Özer A. Mutation distributions and clinical correlations of PIK3CA gene mutations in breast cancer. Tumour Biol. 2016;37(6):7033-45. 74. Franken A, Behrens B, Reinhardt F, Yang L, Rivandi M, Marass F, et al. Multiparametric Circulating Tumor Cell Analysis to Select Targeted Therapies for Breast Cancer Patients. Cancers (Basel). 2021;13(23). 75. Tamminga M, Oomens L, Hiltermann TJN, Andree KC, Tibbe A, Broekmaat J, et al. Microsieves for the detection of circulating tumor cells in leukapheresis product in non-small cell lung cancer patients. Transl Lung Cancer Res. 2020;9(4):1093-100. 76. Kitz J, Goodale D, Postenka C, Lowes LE, Allan AL. EMT-independent detection of circulating tumor cells in human blood samples and pre-clinical mouse models of metastasis. Clin Exp Metastasis. 2021;38(1):97-108. 77. Ferreira MM, Ramani VC, Jeffrey SS. Circulating tumor cell technologies. Mol Oncol. 2016;10(3):374-94. 78. Alix-Panabières C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59(1):110-8. 79. Zahn H, Steif A, Laks E, Eirew P, VanInsberghe M, Shah SP, et al. Scalable whole-genome single-cell library preparation without preamplification. Nat Methods. 2017;14(2):167-73. 80. Li X, Zhang P, Dou L, Wang Y, Sun K, Zhang X, et al. Detection of Circulating Tumor Cells in Breast Cancer Patients by Nanopore Sensing with Aptamer-Mediated Amplification. ACS Sens. 2020. | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 30.05.2023 | |||||||
Dateien geändert am: | 30.05.2023 | |||||||
Promotionsantrag am: | 06.01.2023 | |||||||
Datum der Promotion: | 11.05.2023 |