Dokument: Muskelgesundheit und Prähabilitation in der Kniegelenksendoprothetik: Einfluss der Blood-Flow-Restriction Trainingstherapie als prähabilitativer Ansatz im klinisch-randomisierten Studiensetting auf die postoperative Regeneration von Muskelmasse, -kraft und Funktionalität nach elektiver Kniegelenksendoprothetik
Titel: | Muskelgesundheit und Prähabilitation in der Kniegelenksendoprothetik: Einfluss der Blood-Flow-Restriction Trainingstherapie als prähabilitativer Ansatz im klinisch-randomisierten Studiensetting auf die postoperative Regeneration von Muskelmasse, -kraft und Funktionalität nach elektiver Kniegelenksendoprothetik | |||||||
Weiterer Titel: | Muscle health and prehabilitation in total knee arthroplasty: impact of blood-flow restriction exercise as a prehabilitation therapy in a clinical randomized trial setting on postoperative recovery of muscle mass, strength, and functionality after elective total knee arthroplasty | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=62600 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20230511-105537-3 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Franz, Alexander [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | PD Dr. Bittersohl, Bernd [Gutachter] PD Dr. med. Zilkens, Christoph [Gutachter] | |||||||
Stichwörter: | Okklusionstraining, Training, Muskulatur, Atrophie, Operation | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Die endoprothetische Versorgung des Kniegelenks (engl. Total-Knee-Arthroplasty, TKA) ist eine der erfolgreichsten Eingriffe bei Gonarthrose zur Verbesserung der Mobilität und Minderung chronischer Schmerzen. Allerdings führt die Operation zu langanhaltenden muskulären Atrophien sowie Defiziten in der Muskelaktivierung und Kraftgenerierung. Ein neuer Ansatz zur Verbesserung des postoperativen klinischen Ergebnisses ist die Anwendung präoperativer Trainingsprogramme (Prähabilitation). In diesem Zusammenhang kristallisiert sich eine neue Trainingstechnik zunehmend heraus, die für Arthrose-betroffene Patienten einen schmerzfreien Weg zum Muskelaufbau generieren könnte, dass sog. Blood-Flow-Restriction Training (BFR).
Die vorliegende Dissertation bietet eine neue, empirisch-fundierte Analyse und Anwendung des BFR-Trainings als Prähabilitationskonzept vor der endoprothetischer Versorgung des Kniegelenks. Ausgehend von der Beschreibung der Muskelgesundheit der orthopädischen Patientenkohorte mit Gonarthrose, fokussiert die vorliegende Thesis die Genese der prä-, peri- und postoperativen Muskelatrophie, deren Einfluss auf die Rehabilitation und dessen Verbesserung durch eine präoperative Prähabilitationstherapie mit BFR-Training. Diese Dissertation umfasst insgesamt drei internationale Publikationen. Im Rahmen zweier Übersichtsarbeiten der aktuellen Literatur wurde zunächst die Patientenkohorte der orthopädischen Endoprothetik beschrieben und folgend die aktuellen Prähabilitationsansätze, deren Einfluss auf die postoperative Regeneration sowie die Hypothesenstellung der Einführung des BFR-Trainings thematisiert. Auf Basis dieser Erkenntnisse wurde eine klinisch-prospektive Studie konzipiert, bei der das BFR-Training als Prähabilitation vor einer elektiven TKA angewandt wurde. Die Ergebnisse ermöglichen eine erste Bewertung des Effektes einer BFR-Prähabilitation auf die prä- und postoperative Muskelgesundheit orthopädischer Patienten mit Gonarthrose.Total knee arthroplasty (TKA) is one of the most successful interventions for gonarthrosis to improve mobility and reduce chronic pain. However, the surgical procedure leads to long-lasting muscular atrophy and deficits in muscle activation and strength development. A new approach to improve postoperative clinical outcome is the use of preoperative exercise programs (prehabilitation). In this context, a new training technique is increasingly emerging that could generate a painless pathway to muscle gains for osteoarthritis-affected patients, the blood-flow restriction training (BFR). This dissertation provides a new, empirically based analysis and application of BFR-training as a prehabilitation concept prior to elective TKA. Based on the description of muscle health of the orthopedic patient cohort with gonarthrosis, this thesis analyzed the genesis of pre-, peri- and postoperative muscle atrophy, its influence on rehabilitation and its improvement by preoperative prehabilitation therapy with BFR-training. This dissertation includes a total of three international publications. In two reviews of the current literature, the muscle health of the orthopedic patient cohort which received a TKA and the current prehabilitation approaches are described. Furthermore, the impact of current prehabilitation protocols on postoperative regeneration as well as the hypothesis of the beneficial effects of BFR-training were addressed. Based on these findings, a clinical prospective study was designed, where BFR-Training was applied as prehabilitation technique in front of a TKA-surgery to investigate its impact on pre- and postoperative muscle health in orthopedic patients with gonarthrosis. | |||||||
Quelle: | Literatur
1. Abe T, Yasuda T, Midorikawa T, Sato Y, Kearns CF, Inoue K, Koizumi K, Ishii N. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. J Physiol (Lond ). 2005; 1: 6–12. doi:10.3806/ijktr.1.6. 2. Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage. 2007; 15 Suppl A: A1-56. doi:10.1016/j.joca.2006.11.009. 3. Andrade-Silva AR, Ramalho FS, Ramalho LNZ, Saavedra-Lopes M, Jordão AA, Vanucchi H, Piccinato CE, Zucoloto S. Effect of NFkappaB inhibition by CAPE on skeletal muscle ischemia-reperfusion injury. J Surg Res. 2009; 153: 254–262. doi:10.1016/j.jss.2008.04.009. 4. Arnold JB, Walters JL, Ferrar KE. Does Physical Activity Increase After Total Hip or Knee Arthroplasty for Osteoarthritis? A Systematic Review. J Orthop Sports Phys Ther. 2016; 46: 431–442. doi:10.2519/jospt.2016.6449. 5. Assis L, Almeida T, Milares LP, dos Passos N, Araújo B, Bublitz C, Veronez S, Renno ACM. Musculoskeletal Atrophy in an Experimental Model of Knee Osteoarthritis: The Effects of Exercise Training and Low-Level Laser Therapy. Am J Phys Med Rehabil. 2015; 94: 609–616. doi:10.1097/PHM.0000000000000219. 6. Baar K. Involvement of PPAR gamma co-activator-1, nuclear respiratory factors 1 and 2, and PPAR alpha in the adaptive response to endurance exercise. Proc Nutr Soc. 2004; 63: 269–273. doi:10.1079/PNS2004334. 7. Bade MJ, Kohrt WM, Stevens-Lapsley JE. Outcomes before and after total knee arthroplasty compared to healthy adults. J Orthop Sports Phys Ther. 2010; 40: 559–567. doi:10.2519/jospt.2010.3317. 8. Bailey AN, Hocker AD, Vermillion BR, Smolkowski K, Shah SN, Jewett BA, Dreyer HC. MAFbx, MuRF1, and the stress-activated protein kinases are upregulated in muscle cells during total knee arthroplasty. Am J Physiol Regul Integr Comp Physiol. 2012; 303: R376-86. doi:10.1152/ajpregu.00146.2012. 9. Bar-Shai M, Carmeli E, Reznick AZ. The role of NF-kappaB in protein breakdown in immobilization, aging, and exercise: from basic processes to promotion of health. Ann N Y Acad Sci. 2005; 1057: 431–447. doi:10.1196/annals.1356.034. 10. Beaupre LA, Lier D, Davies DM, Johnston DBC. The effect of a preoperative exercise and education program on functional recovery, health related quality of life, and health service utilization following primary total knee arthroplasty. J Rheumatol. 2004; 31: 1166–1173. 11. Berend KR, Lombardi AV, Mallory TH. Rapid recovery protocol for peri-operative care of total hip and total knee arthroplasty patients. Surg Technol Int. 2004; 13: 239–247. 12. Bialek P, Morris C, Parkington J, St Andre M, Owens J, Yaworsky P, Seeherman H, Jelinsky SA. Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy. Physiol Genomics. 2011; 43: 1075–1086. doi:10.1152/physiolgenomics.00247.2010. 13. Bond CW, Hackney KJ, Brown SL, Noonan BC. Blood Flow Restriction Resistance Exercise as a Rehabilitation Modality Following Orthopaedic Surgery: A Review of Venous Thromboembolism Risk. J Orthop Sports Phys Ther. 2019; 49: 17–27. doi:10.2519/jospt.2019.8375. 14. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KDJ. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res. 2010; 468: 57–63. doi:10.1007/s11999-009-1119-9. 15. Bryk FF, Dos Reis AC, Fingerhut D, Araujo T, Schutzer M, Cury RdPL, Duarte A, Fukuda TY. Exercises with partial vascular occlusion in patients with knee osteoarthritis: a randomized clinical trial. Knee Surg Sports Traumatol Arthrosc. 2016; 24: 1580–1586. doi:10.1007/s00167-016-4064-7. 16. Cabilan CJ, Hines S, Munday J. The effectiveness of prehabilitation or preoperative exercise for surgical patients: a systematic review. JBI Database System Rev Implement Rep. 2015; 13: 146–187. doi:10.11124/jbisrir-2015-1885. 17. Canovas F, Dagneaux L. Quality of life after total knee arthroplasty. Orthop Traumatol Surg Res. 2018; 104: S41-S46. doi:10.1016/j.otsr.2017.04.017. 18. Charles A-L, Guilbert A-S, Guillot M, Talha S, Lejay A, Meyer A, Kindo M, Wolff V, Bouitbir J, Zoll J, Geny B. Muscles Susceptibility to Ischemia-Reperfusion Injuries Depends on Fiber Type Specific Antioxidant Level. Front Physiol. 2017; 8: 52. doi:10.3389/fphys.2017.00052. 19. Charles D, White R, Reyes C, Palmer D. A SYSTEMATIC REVIEW OF THE EFFECTS OF BLOOD FLOW RESTRICTION TRAINING ON QUADRICEPS MUSCLE ATROPHY AND CIRCUMFERENCE POST ACL RECONSTRUCTION. Int J Sports Phys Ther. 2020; 15: 882–891. doi:10.26603/ijspt20200882. 20. Chen H, Li S, Ruan T, Liu L, Fang L. Is it necessary to perform prehabilitation exercise for patients undergoing total knee arthroplasty: meta-analysis of randomized controlled trials. Phys Sportsmed. 2018; 46: 36–43. doi:10.1080/00913847.2018.1403274. 21. Clark BC, Manini TM, Hoffman RL, Williams PS, Guiler MK, Knutson MJ, McGlynn ML, Kushnick MR. Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand J Med Sci Sports. 2011; 21: 653–662. doi:10.1111/j.1600-0838.2010.01100.x. 22. Counts BR, Dankel SJ, Barnett BE, Kim D, Mouser JG, Allen KM, Thiebaud RS, Abe T, Bemben MG, Loenneke JP. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve. 2016; 53: 438–445. doi:10.1002/mus.24756. 23. Crenshaw AG, Hargens AR, Gershuni DH, Rydevik B. Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop Scand. 1988; 59: 447–451. doi:10.3109/17453678809149401. 24. Cristina-Oliveira M, Meireles K, Spranger MD, O'Leary DS, Roschel H, Peçanha T. Clinical safety of blood flow-restricted training? A comprehensive review of altered muscle metaboreflex in cardiovascular disease during ischemic exercise. Am J Physiol Heart Circ Physiol. 2020; 318: H90-H109. doi:10.1152/ajpheart.00468.2019. 25. Davison MJ, Maly MR, Keir PJ, Hapuhennedige SM, Kron AT, Adachi JD, Beattie KA. Lean muscle volume of the thigh has a stronger relationship with muscle power than muscle strength in women with knee osteoarthritis. Clin Biomech (Bristol, Avon). 2017; 41: 92–97. doi:10.1016/j.clinbiomech.2016.11.005. 26. den Hartog YM, Mathijssen NMC, Vehmeijer SBW. Reduced length of hospital stay after the introduction of a rapid recovery protocol for primary THA procedures. Acta Orthop. 2013; 84: 444–447. doi:10.3109/17453674.2013.838657. 27. Deng Z, Wang Z, Jin J, Wang Y, Bao N, Gao Q, Zhao J. SIRT1 protects osteoblasts against particle-induced inflammatory responses and apoptosis in aseptic prosthesis loosening. Acta Biomater. 2017; 49: 541–554. doi:10.1016/j.actbio.2016.11.051. 28. Dennis DA, Kittelson AJ, Yang CC, Miner TM, Kim RH, Stevens-Lapsley JE. Does Tourniquet Use in TKA Affect Recovery of Lower Extremity Strength and Function? A Randomized Trial. Clin Orthop Relat Res. 2016; 474: 69–77. doi:10.1007/s11999-015-4393-8. 29. Dreyer HC, Strycker LA, Senesac HA, Hocker AD, Smolkowski K, Shah SN, Jewett BA. Essential amino acid supplementation in patients following total knee arthroplasty. J Clin Invest. 2013; 123: 4654–4666. doi:10.1172/JCI70160. 30. Elboim-Gabyzon M, Rozen N, Laufer Y. Does neuromuscular electrical stimulation enhance the effectiveness of an exercise programme in subjects with knee osteoarthritis? A randomized controlled trial. Clin Rehabil. 2013; 27: 246–257. doi:10.1177/0269215512456388. 31. Farquhar S, Snyder-Mackler L. The Chitranjan Ranawat Award: The nonoperated knee predicts function 3 years after unilateral total knee arthroplasty. Clin Orthop Relat Res. 2010; 468: 37–44. doi:10.1007/s11999-009-0892-9. 32. Ferlito JV, Pecce SAP, Oselame L, Marchi T de. The blood flow restriction training effect in knee osteoarthritis people: a systematic review and meta-analysis. Clin Rehabil. 2020; 34: 1378–1390. doi:10.1177/0269215520943650. 33. Ferraz RB, Gualano B, Rodrigues R, Kurimori CO, Fuller R, Lima FR, Sá-Pinto AL de, Roschel H. Benefits of Resistance Training with Blood Flow Restriction in Knee Osteoarthritis. Med Sci Sports Exerc. 2018; 50: 897–905. doi:10.1249/MSS.0000000000001530. 34. Ferrer MD, Tauler P, Sureda A, Tur JA, Pons A. Antioxidant regulatory mechanisms in neutrophils and lymphocytes after intense exercise. J Sports Sci. 2009; 27: 49–58. doi:10.1080/02640410802409683. 35. Franz A, Berndt F, Raabe J, Harmsen J-F, Zilkens C, Behringer M. Invasive Assessment of Hemodynamic, Metabolic and Ionic Consequences During Blood Flow Restriction Training. Front Physiol. 2020; 11: 617668. doi:10.3389/fphys.2020.617668. 36. Franz A, Ji S, Bittersohl B, Zilkens C, Behringer M. Impact of a Six-Week Prehabilitation With Blood-Flow Restriction Training on Pre- and Postoperative Skeletal Muscle Mass and Strength in Patients Receiving Primary Total Knee Arthroplasty. Front Physiol. 2022; 13: 881484. doi:10.3389/fphys.2022.881484. 37. Franz A, Queitsch FP, Behringer M, Mayer C, Krauspe R, Zilkens C. Blood flow restriction training as a prehabilitation concept in total knee arthroplasty: A narrative review about current preoperative interventions and the potential impact of BFR. Med Hypotheses. 2018; 110: 53–59. doi:10.1016/j.mehy.2017.10.029. 38. Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, Abe T, Dhanani S, Volpi E, Rasmussen BB. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol (1985). 2010; 108: 1199–1209. doi:10.1152/japplphysiol.01266.2009. 39. Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol (1985). 2007; 103: 903–910. doi:10.1152/japplphysiol.00195.2007. 40. Giggins O, Fullen B, Coughlan G. Neuromuscular electrical stimulation in the treatment of knee osteoarthritis: a systematic review and meta-analysis. Clin Rehabil. 2012; 26: 867–881. doi:10.1177/0269215511431902. 41. Grantham B, Korakakis V, O'Sullivan K. Does blood flow restriction training enhance clinical outcomes in knee osteoarthritis: A systematic review and meta-analysis. Phys Ther Sport. 2021; 49: 37–49. doi:10.1016/j.ptsp.2021.01.014. 42. Grapar Zargi T, Drobnic M, Jkoder J, Strazar K, Kacin A. The effects of preconditioning with ischemic exercise on quadriceps femoris muscle atrophy following anterior cruciate ligament reconstruction: a quasi-randomized controlled trial. Eur J Phys Rehabil Med. 2016; 52: 310–320. 43. Harding P, Holland AE, Delany C, Hinman RS. Do activity levels increase after total hip and knee arthroplasty? Clin Orthop Relat Res. 2014; 472: 1502–1511. doi:10.1007/s11999-013-3427-3. 44. Häussinger D. The role of cellular hydration in the regulation of cell function. Biochem J. 1996; 313 (Pt 3): 697–710. doi:10.1042/bj3130697. 45. Hedayatpour N, Falla D. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training. Biomed Res Int. 2015; 2015: 193741. doi:10.1155/2015/193741. 46. Huang CH, Cheng CK, Lee YT, Lee KS. Muscle strength after successful total knee replacement: a 6- to 13-year followup. Clin Orthop Relat Res. 1996: 147–154. 47. Hurley MV, Jones DW, Newham DJ. Arthrogenic quadriceps inhibition and rehabilitation of patients with extensive traumatic knee injuries. Clin Sci. 1994; 86: 305–310. 48. Hurley MV, Scott DL, Rees J, Newham DJ. Sensorimotor changes and functional performance in patients with knee osteoarthritis. Ann Rheum Dis. 1997; 56: 641–648. 49. Husted H, Holm G, Rud K, Bach-Dal C, Hansen HC, Andersen KL, Kehlet H. Indlaeggelsesvarighed ved primaer total hofte- og knaealloplastik i Danmark 2001-2003. Ugeskr Laeg. 2006; 168: 276–279. 50. Hylden C, Burns T, Stinner D, Owens J. Blood flow restriction rehabilitation for extremity weakness: a case series. J Spec Oper Med. 2015; 15: 50–56. 51. Ikeda S, Tsumura H, Torisu T. Age-related quadriceps-dominant muscle atrophy and incident radiographic knee osteoarthritis. J Orthop Sci. 2005; 10: 121–126. doi:10.1007/s00776-004-0876-2. 52. Ilett MJ, Rantalainen T, Keske MA, May AK, Warmington SA. The Effects of Restriction Pressures on the Acute Responses to Blood Flow Restriction Exercise. Front Physiol. 2019; 10: 1018. doi:10.3389/fphys.2019.01018. 53. Jawhar A, Hermanns S, Ponelies N, Obertacke U, Roehl H. Tourniquet-induced ischaemia during total knee arthroplasty results in higher proteolytic activities within vastus medialis cells: a randomized clinical trial. Knee Surg Sports Traumatol Arthrosc. 2016; 24: 3313–3321. doi:10.1007/s00167-015-3859-2. 54. Jones CA, Voaklander DC, Johnston DW, Suarez-Almazor ME. Health related quality of life outcomes after total hip and knee arthroplasties in a community based population. J Rheumatol. 2000; 27: 1745–1752. 55. Kacin A, Drobnič M, Marš T, Miš K, Petrič M, Weber D, Tomc Žargi T, Martinčič D, Pirkmajer S. Functional and molecular adaptations of quadriceps and hamstring muscles to blood flow restricted training in patients with ACL rupture. Scand J Med Sci Sports. 2021; 31: 1636–1646. doi:10.1111/sms.13968. 56. Kambič T, Novaković M, Tomažin K, Strojnik V, Božič-Mijovski M, Jug B. Hemodynamic and Hemostatic Response to Blood Flow Restriction Resistance Exercise in Coronary Artery Disease: A Pilot Randomized Controlled Trial. J Cardiovasc Nurs. 2021; 36: 507–516. doi:10.1097/JCN.0000000000000699. 57. Keller K, Engelhardt M. Arthrogene Muskelinhibition nach Traumata - besteht eine Altersabhängigkeit der Intensität der Muskelinhibition? Sportverletz Sportschaden. 2014; 28: 199–203. doi:10.1055/s-0034-1385015. 58. KELLGREN JH, LAWRENCE JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957; 16: 494–502. doi:10.1136/ard.16.4.494. 59. Kemnitz J, Wirth W, Eckstein F, Ruhdorfer A, Culvenor AG. Longitudinal change in thigh muscle strength prior to and concurrent with symptomatic and radiographic knee osteoarthritis progression: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2017; 25: 1633–1640. doi:10.1016/j.joca.2017.07.003. 60. Kouw IWK, Groen BBL, Smeets JSJ, Kramer IF, van Kranenburg JMX, Nilwik R, Geurts JAP, Broeke RHM ten, Poeze M, van Loon LJC, Verdijk LB. One Week of Hospitalization Following Elective Hip Surgery Induces Substantial Muscle Atrophy in Older Patients. J Am Med Dir Assoc. 2019; 20: 35–42. doi:10.1016/j.jamda.2018.06.018. 61. Kurtz SM, Ong KL, Lau E, Widmer M, Maravic M, Gómez-Barrena E, Pina MF de, Manno V, Torre M, Walter WL, Steiger R de, Geesink RGT, Peltola M, Röder C. International survey of primary and revision total knee replacement. Int Orthop. 2011; 35: 1783–1789. doi:10.1007/s00264-011-1235-5. 62. LaStayo PC, Meier W, Marcus RL, Mizner R, Dibble L, Peters C. Reversing muscle and mobility deficits 1 to 4 years after TKA: a pilot study. Clin Orthop Relat Res. 2009; 467: 1493–1500. doi:10.1007/s11999-009-0801-2. 63. Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem. 2005; 280: 2737–2744. doi:10.1074/jbc.M407517200. 64. Laufer Y, Shtraker H, Elboim Gabyzon M. The effects of exercise and neuromuscular electrical stimulation in subjects with knee osteoarthritis: a 3-month follow-up study. Clin Interv Aging. 2014; 9: 1153–1161. doi:10.2147/CIA.S64104. 65. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004; 18: 39–51. doi:10.1096/fj.03-0610com. 66. Lee S, Leone TC, Rogosa L, Rumsey J, Ayala J, Coen PM, Fitts RH, Vega RB, Kelly DP. Skeletal muscle PGC-1β signaling is sufficient to drive an endurance exercise phenotype and to counteract components of detraining in mice. Am J Physiol Endocrinol Metab. 2017; 312: E394-E406. doi:10.1152/ajpendo.00380.2016. 67. Lee YG, Park W, Kim SH, Yun SP, Jeong H, Kim HJ, Yang DH. A case of rhabdomyolysis associated with use of a pneumatic tourniquet during arthroscopic knee surgery. Korean J Intern Med. 2010; 25: 105–109. doi:10.3904/kjim.2010.25.1.105. 68. Leurcharusmee P, Sawaddiruk P, Punjasawadwong Y, Chattipakorn N, Chattipakorn SC. The Possible Pathophysiological Outcomes and Mechanisms of Tourniquet-Induced Ischemia-Reperfusion Injury during Total Knee Arthroplasty. Oxid Med Cell Longev. 2018; 2018: 8087598. doi:10.1155/2018/8087598. 69. Levinger I, Levinger P, Trenerry MK, Feller JA, Bartlett JR, Bergman N, McKenna MJ, Cameron-Smith D. Increased inflammatory cytokine expression in the vastus lateralis of patients with knee osteoarthritis. Arthritis Rheum. 2011; 63: 1343–1348. doi:10.1002/art.30287. 70. Lixandrão ME, Ugrinowitsch C, Berton R, Vechin FC, Conceição MS, Damas F, Libardi CA, Roschel H. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med. 2018; 48: 361–378. doi:10.1007/s40279-017-0795-y. 71. Loenneke JP, Fahs CA, Rossow LM, Abe T, Bemben MG. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses. 2012; 78: 151–154. doi:10.1016/j.mehy.2011.10.014. 72. Loenneke JP, Fahs CA, Wilson JM, Bemben MG. Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses. 2011; 77: 748–752. doi:10.1016/j.mehy.2011.07.029. 73. Madarame H, Kurano M, Takano H, Iida H, Sato Y, Ohshima H, Abe T, Ishii N, Morita T, Nakajima T. Effects of low-intensity resistance exercise with blood flow restriction on coagulation system in healthy subjects. Clin Physiol Funct Imaging. 2010; 30: 210–213. doi:10.1111/j.1475-097X.2010.00927.x. 74. Mahir L, Belhaj K, Zahi S, Azanmasso H, Lmidmani F, El Fatimi A. Impact of knee osteoarthritis on the quality of life. Annals of Physical and Rehabilitation Medicine. 2016; 59: e159. doi:10.1016/j.rehab.2016.07.355. 75. Mangione KK, McCully K, Gloviak A, Lefebvre I, Hofmann M, Craik R. The effects of high-intensity and low-intensity cycle ergometry in older adults with knee osteoarthritis. J Gerontol A Biol Sci Med Sci. 1999; 54: M184-90. doi:10.1093/gerona/54.4.m184. 76. Maughan RJ, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol (Lond ). 1983; 338: 37–49. doi:10.1113/jphysiol.1983.sp014658. 77. Mayer C, Franz A, Harmsen J-F, Queitsch F, Behringer M, Beckmann J, Krauspe R, Zilkens C. Soft-tissue damage during total knee arthroplasty: Focus on tourniquet-induced metabolic and ionic muscle impairment. J Orthop. 2017; 14: 347–353. doi:10.1016/j.jor.2017.06.015. 78. McEwen JA, Owens JG, Jeyasurya J. Why is it Crucial to Use Personalized Occlusion Pressures in Blood Flow Restriction (BFR) Rehabilitation? J. Med. Biol. Eng. 2019; 39: 173–177. doi:10.1007/s40846-018-0397-7. 79. McKay C, Prapavessis H, Doherty T. The effect of a prehabilitation exercise program on quadriceps strength for patients undergoing total knee arthroplasty: a randomized controlled pilot study. PM R. 2012; 4: 647–656. doi:10.1016/j.pmrj.2012.04.012. 80. Minns Lowe CJ, Barker KL, Dewey M, Sackley CM. Effectiveness of physiotherapy exercise after knee arthroplasty for osteoarthritis: systematic review and meta-analysis of randomised controlled trials. BMJ. 2007; 335: 812. doi:10.1136/bmj.39311.460093.BE. 81. Mizner RL, Petterson SC, Stevens JE, Axe MJ, Snyder-Mackler L. Preoperative quadriceps strength predicts functional ability one year after total knee arthroplasty. J Rheumatol. 2005; 32: 1533–1539. 82. Mizner RL, Petterson SC, Stevens JE, Vandenborne K, Snyder-Mackler L. Early quadriceps strength loss after total knee arthroplasty. The contributions of muscle atrophy and failure of voluntary muscle activation. J Bone Joint Surg Am. 2005; 87: 1047–1053. doi:10.2106/JBJS.D.01992. 83. Monaghan B, Caulfield B, O'Mathúna DP. Surface neuromuscular electrical stimulation for quadriceps strengthening pre and post total knee replacement. Cochrane Database Syst Rev. 2010: CD007177. doi:10.1002/14651858.CD007177.pub2. 84. Moyer R, Ikert K, Long K, Marsh J. The Value of Preoperative Exercise and Education for Patients Undergoing Total Hip and Knee Arthroplasty: A Systematic Review and Meta-Analysis. JBJS Rev. 2017; 5: e2. doi:10.2106/JBJS.RVW.17.00015. 85. Musarò A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet. 2001; 27: 195–200. doi:10.1038/84839. 86. Muyskens JB, Hocker AD, Turnbull DW, Shah SN, Lantz BA, Jewett BA, Dreyer HC. Transcriptional profiling and muscle cross-section analysis reveal signs of ischemia reperfusion injury following total knee arthroplasty with tourniquet. Physiol Rep. 2016; 4. doi:10.14814/phy2.12671. 87. Nakajima T, Kurano M, Sakagami F, Iida H, Fukumura K, Fukuda T, Takano H, Madarame H, Yasuda T, Nagata T, Sato Y, Yamasoba T, Morita T. Effects of low-intensity KAATSU resistance training on skeletal muscle size/strength and endurance capacity in patients with ischemic heart disease. Int. J. KAATSU Ttaining Res. 2010; 6: 1–7. doi:10.3806/ijktr.6.1. 88. Nakajima T, Takano H, Kurano M, Iida H, Kubota N, Yasuda T, Kato M, Meguro K, Sato Y, Yamazaki Y, Kawashima S, Ohshima H, Tachibana S, Nagata T, Abe T, Ishii N, Morita T. Effects of KAATSU training on haemostasis in healthy subjects. Int. J. KAATSU Ttaining Res. 2007; 3: 11–20. doi:10.3806/ijktr.3.11. 89. Nascimento DdC, Petriz B, Oliveira SdC, Vieira DCL, Funghetto SS, Silva AO, Prestes J. Effects of blood flow restriction exercise on hemostasis: a systematic review of randomized and non-randomized trials. Int J Gen Med. 2019; 12: 91–100. doi:10.2147/IJGM.S194883. 90. Norrbom J, Sällstedt EK, Fischer H, Sundberg CJ, Rundqvist H, Gustafsson T. Alternative splice variant PGC-1α-b is strongly induced by exercise in human skeletal muscle. Am J Physiol Endocrinol Metab. 2011; 301: E1092-8. doi:10.1152/ajpendo.00119.2011. 91. Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E, Gustafsson T. PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol (1985). 2004; 96: 189–194. doi:10.1152/japplphysiol.00765.2003. 92. Oliveira Melo M de, Aragão FA, Vaz MA. Neuromuscular electrical stimulation for muscle strengthening in elderly with knee osteoarthritis - a systematic review. Complement Ther Clin Pract. 2013; 19: 27–31. doi:10.1016/j.ctcp.2012.09.002. 93. Palmieri-Smith RM, Thomas AC, Karvonen-Gutierrez C, Sowers M. A clinical trial of neuromuscular electrical stimulation in improving quadriceps muscle strength and activation among women with mild and moderate osteoarthritis. Phys Ther. 2010; 90: 1441–1452. doi:10.2522/ptj.20090330. 94. Patterson SD, Brandner CR. The role of blood flow restriction training for applied practitioners: A questionnaire-based survey. J Sports Sci. 2018; 36: 123–130. doi:10.1080/02640414.2017.1284341. 95. Patterson SD, Hughes L, Warmington S, Burr J, Scott BR, Owens J, Abe T, Nielsen JL, Libardi CA, Laurentino G, Neto GR, Brandner C, Martin-Hernandez J, Loenneke J. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol. 2019; 10: 533. doi:10.3389/fphys.2019.00533. 96. Petersen SG, Beyer N, Hansen M, Holm L, Aagaard P, Mackey AL, Kjaer M. Nonsteroidal anti-inflammatory drug or glucosamine reduced pain and improved muscle strength with resistance training in a randomized controlled trial of knee osteoarthritis patients. Arch Phys Med Rehabil. 2011; 92: 1185–1193. doi:10.1016/j.apmr.2011.03.009. 97. Pfirrmann CWA, Notzli HP, Dora C, Hodler J, Zanetti M. Abductor tendons and muscles assessed at MR imaging after total hip arthroplasty in asymptomatic and symptomatic patients. Radiology. 2005; 235: 969–976. doi:10.1148/radiol.2353040403. 98. Pietrosimone BG, Saliba SA, Hart JM, Hertel J, Kerrigan DC, Ingersoll CD. Effects of transcutaneous electrical nerve stimulation and therapeutic exercise on quadriceps activation in people with tibiofemoral osteoarthritis. J Orthop Sports Phys Ther. 2011; 41: 4–12. doi:10.2519/jospt.2011.3447. 99. Pitsillides A, Stasinopoulos D, Mamais I. Blood flow restriction training in patients with knee osteoarthritis: Systematic review of randomized controlled trials. J Bodyw Mov Ther. 2021; 27: 477–486. doi:10.1016/j.jbmt.2021.04.015. 100. Poton R, Polito MD. Hemodynamic response to resistance exercise with and without blood flow restriction in healthy subjects. Clin Physiol Funct Imaging. 2016; 36: 231–236. doi:10.1111/cpf.12218. 101. Queiros VS de, Dantas M, Neto GR, da Silva LF, Assis MG, Almeida-Neto PF, Dantas PMS, Cabral BGdAT. Application and side effects of blood flow restriction technique: A cross-sectional questionnaire survey of professionals. Medicine (Baltimore). 2021; 100: e25794. doi:10.1097/MD.0000000000025794. 102. Rafsanjani H, Khademi-Kalantari K, Rezasoltani A, Naimi SS, Ghasemi M, Jaberzadeh S. Immediate effect of common peroneal nerve electrical stimulation on quadriceps muscle arthrogenic inhibition in patients with knee osteoarthritis. J Bodyw Mov Ther. 2017; 21: 879–883. doi:10.1016/j.jbmt.2017.03.003. 103. Rasch A, Dalén N, Berg HE. Muscle strength, gait, and balance in 20 patients with hip osteoarthritis followed for 2 years after THA. Acta Orthop. 2010; 81: 183–188. doi:10.3109/17453671003793204. 104. Ratchford SM, Bailey AN, Senesac HA, Hocker AD, Smolkowski K, Lantz BA, Jewett BA, Gilbert JS, Dreyer HC. Proteins regulating cap-dependent translation are downregulated during total knee arthroplasty. Am J Physiol Regul Integr Comp Physiol. 2012; 302: R702-11. doi:10.1152/ajpregu.00601.2011. 105. Reilly KA, Beard DJ, Barker KL, Dodd CAF, Price AJ, Murray DW. Efficacy of an accelerated recovery protocol for Oxford unicompartmental knee arthroplasty--a randomised controlled trial. Knee. 2005; 12: 351–357. doi:10.1016/j.knee.2005.01.002. 106. Rice D, McNair PJ, Dalbeth N. Effects of cryotherapy on arthrogenic muscle inhibition using an experimental model of knee swelling. Arthritis Rheum. 2009; 61: 78–83. doi:10.1002/art.24168. 107. Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum. 2010; 40: 250–266. doi:10.1016/j.semarthrit.2009.10.001. 108. Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM. PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A. 2006; 103: 16260–16265. doi:10.1073/pnas.0607795103. 109. Sato Y, Yoshitomi A, Abe T. Acute growth hormone response to low-intensity KAATSU resistance exercise: Comparison between arm and leg. Int. J. KAATSU Ttaining Res. 2005; 1: 45–50. doi:10.3806/ijktr.1.45. 110. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. J Strength Cond Res. 2017; 31: 3508–3523. doi:10.1519/JSC.0000000000002200. 111. Scott BR, Peiffer JJ, Thomas HJ, Marston KJ, Hill KD. Hemodynamic Responses to Low-Load Blood Flow Restriction and Unrestricted High-Load Resistance Exercise in Older Women. Front Physiol. 2018; 9: 1324. doi:10.3389/fphys.2018.01324. 112. Segal NA, Williams GN, Davis MC, Wallace RB, Mikesky AE. Efficacy of blood flow-restricted, low-load resistance training in women with risk factors for symptomatic knee osteoarthritis. PM R. 2015; 7: 376–384. doi:10.1016/j.pmrj.2014.09.014. 113. Skoffer B, Dalgas U, Maribo T, Søballe K, Mechlenburg I. No Exacerbation of Knee Joint Pain and Effusion Following Preoperative Progressive Resistance Training in Patients Scheduled for Total Knee Arthroplasty: Secondary Analyses From a Randomized Controlled Trial. PM R. 2018; 10: 687–692. doi:10.1016/j.pmrj.2017.11.002. 114. Spranger MD, Krishnan AC, Levy PD, O'Leary DS, Smith SA. Blood flow restriction training and the exercise pressor reflex: a call for concern. Am J Physiol Heart Circ Physiol. 2015; 309: H1440-52. doi:10.1152/ajpheart.00208.2015. 115. Stambough JB, Nunley RM, Curry MC, Steger-May K, Clohisy JC. Rapid recovery protocols for primary total hip arthroplasty can safely reduce length of stay without increasing readmissions. J Arthroplasty. 2015; 30: 521–526. doi:10.1016/j.arth.2015.01.023. 116. Stevens JE, Mizner RL, Snyder-Mackler L. Neuromuscular electrical stimulation for quadriceps muscle strengthening after bilateral total knee arthroplasty: a case series. J Orthop Sports Phys Ther. 2004; 34: 21–29. doi:10.2519/jospt.2004.34.1.21. 117. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006; 127: 397–408. doi:10.1016/j.cell.2006.09.024. 118. Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol (1985). 2000; 88: 61–65. doi:10.1152/jappl.2000.88.1.61. 119. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, Biswal S. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest. 2006; 116: 984–995. doi:10.1172/JCI25790. 120. Thompson KMA, Slysz JT, Burr JF. Risks of Exertional Rhabdomyolysis With Blood Flow-Restricted Training: Beyond the Case Report. Clin J Sport Med. 2018; 28: 491–492. doi:10.1097/JSM.0000000000000488. 121. Topp R, Swank AM, Quesada PM, Nyland J, Malkani A. The effect of prehabilitation exercise on strength and functioning after total knee arthroplasty. PM R. 2009; 1: 729–735. doi:10.1016/j.pmrj.2009.06.003. 122. van Cant J, Dawe-Coz A, Aoun E, Esculier J-F. Quadriceps strengthening with blood flow restriction for the rehabilitation of patients with knee conditions: A systematic review with meta-analysis. J Back Musculoskelet Rehabil. 2020; 33: 529–544. doi:10.3233/BMR-191684. 123. Vasilakis I, Solomou E, Vitsas V, Fennema P, Korovessis P, Siamblis DK. Correlative analysis of MRI-evident abductor hip muscle degeneration and power after minimally invasive versus conventional unilateral cementless THA. Orthopedics. 2012; 35: e1684-91. doi:10.3928/01477447-20121120-10. 124. Vechin FC, Libardi CA, Conceição MS, Damas FR, Lixandrão ME, Berton RPB, Tricoli VAA, Roschel HA, Cavaglieri CR, Chacon-Mikahil MPT, Ugrinowitsch C. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res. 2015; 29: 1071–1076. doi:10.1519/JSC.0000000000000703. 125. Wang L, Lee M, Zhang Z, Moodie J, Cheng D, Martin J. Does preoperative rehabilitation for patients planning to undergo joint replacement surgery improve outcomes? A systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2016; 6: e009857. doi:10.1136/bmjopen-2015-009857. 126. Wernbom M, Apro W, Paulsen G, Nilsen TS, Blomstrand E, Raastad T. Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol. 2013; 113: 2953–2965. doi:10.1007/s00421-013-2733-5. 127. Wernbom M, Paulsen G, Nilsen TS, Hisdal J, Raastad T. Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction. Eur J Appl Physiol. 2012; 112: 2051–2063. doi:10.1007/s00421-011-2172-0. 128. Wernbom M, Schoenfeld BJ, Paulsen G, Bjørnsen T, Cumming KT, Aagaard P, Clark BC, Raastad T. Commentary: Can Blood Flow Restricted Exercise Cause Muscle Damage? Commentary on Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol. 2020; 11: 243. doi:10.3389/fphys.2020.00243. 129. Wijnen A, Bouma SE, Seeber GH, van der Woude LHV, Bulstra SK, Lazovic D, Stevens M, van den Akker-Scheek I. The therapeutic validity and effectiveness of physiotherapeutic exercise following total hip arthroplasty for osteoarthritis: A systematic review. PLoS ONE. 2018; 13: e0194517. doi:10.1371/journal.pone.0194517. 130. Wurtzel CN, Gumucio JP, Grekin JA, Khouri RK, Russell AJ, Bedi A, Mendias CL. Pharmacological inhibition of myostatin protects against skeletal muscle atrophy and weakness after anterior cruciate ligament tear. J Orthop Res. 2017; 35: 2499–2505. doi:10.1002/jor.23537. 131. Xu S, Liu X, Chen Z, Li G, Chen Q, Zhou G, Ma R, Yao X, Huang X. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow. Gene. 2016; 594: 229–237. doi:10.1016/j.gene.2016.09.008. 132. Yasuda T, Fukumura K, Fukuda T, Iida H, Imuta H, Sato Y, Yamasoba T, Nakajima T. Effects of low-intensity, elastic band resistance exercise combined with blood flow restriction on muscle activation. Scand J Med Sci Sports. 2014; 24: 55–61. doi:10.1111/j.1600-0838.2012.01489.x. | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 11.05.2023 | |||||||
Dateien geändert am: | 11.05.2023 | |||||||
Promotionsantrag am: | 08.03.2018 | |||||||
Datum der Promotion: | 09.03.2023 |