Dokument: Einfluss von Midazolam auf die mitochondriale Funktion im Colon und in der Leber von gesunden Ratten

Titel:Einfluss von Midazolam auf die mitochondriale Funktion im Colon und in der Leber von gesunden Ratten
Weiterer Titel:Effect of midazolam on the mitochondrial function in tissue homogenates of the colon and the liver from healthy rats
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=62490
URN (NBN):urn:nbn:de:hbz:061-20230503-110712-8
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Kurth, Nicola Elisabeth [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,07 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 25.04.2023 / geändert 25.04.2023
Beitragende:Prof. Dr. Picker, Olaf [Gutachter]
PD Dr. med Rapp, Marion [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Funktionstüchtige Mitochondrien sind für die Integrität des Organismus unabdingbar, da sie eine zentrale Rolle in der Energiebereitstellung für die Zelle durch die Bereitstellung von Adenosintriphosphat (ATP) spielen. Die Funktion der Mitochondrien kann allerdings durch Medikamente und andere schädigende Einflüsse, wie Hypoxie und Inflammation beeinträchtigt werden, was in einer unzureichenden zellulären Energieversorgung resultiert. Dysfunktionale Mitochondrien sind an der Pathogenese verschiedener Krankheitsbilder, wie akuter und chronischer Lebererkrankungen und der Entstehung von chronisch entzündlichen Darmerkrankungen (CED), beteiligt. Inwieweit das weit verbreitete Anästhetikum Midazolam, welches unter anderem in der Einleitung und Aufrechterhaltung von Anästhesien, aber auch für die Langzeitsedierung auf der Intensivstation genutzt wird, die mitochondriale Funktion im Colon und in der Leber beeinflusst, ist bisher ungeklärt.
Ziel dieser Arbeit war es daher den Effekt von Midazolam auf die mitochondriale Funktion in Colon- und Leberzellhomogenaten zu erfassen. Die Organe stammten von gesunden Wistar-Ratten, welche dann in mehreren Arbeitsschritten aufbereitet und homogenisiert wurden. Nach Bestimmung der Proteinkonzentration in den Gewebehomogenaten erfolgte anschließend die Respirometrie mit Hilfe einer Clark-Elektrode zur Messung der mitochondrialen Funktion unter Zugabe von je unterschiedlichen Konzentrationen Midazolam. Es wurden die basale Geschwindigkeit des mitochondrialen Sauerstoffverbrauchs (State 2), die Geschwindigkeit des maximalen Sauerstoffverbrauchs (State 3) und die Respirationsrate nach Verbrauch von ADP (State 4) gemessen. Anhand der Ergebnisse konnte der respiratory control index (RCI = State 3/State 2) als Maß für die Kopplung der mitochondrialen Atmungskette an die oxidative Phosphorylierung (OXPHOS) und die Effizienz der OXPHOS (ADP/O-Ratio) berechnet werden.
Die Ergebnisse dieser Arbeit zeigen, dass der Einfluss von Midazolam organspezifisch ist. Während in Colonzellhomogenaten keine Konzentration die mitochondriale Respiration, gemessen als RCI, und die ADP/O-Ratio beeinflusste, waren die Effekte in Leberzellhomogenaten komplex- und konzentrationsabhängig. In Komplex II-stimulierten Leberzellhomogenaten reduzierte 500 µM Midazolam die State 3 Respiration und den RCI, ohne die Atmungskette von der OXPHOS zu entkoppeln.

Mitochondria play a central role in energy metabolism through the production of adenosine triphosphate (ATP). Accordingly, the mitochondrial function is essential for the organism. However, the function of mitochondria can be impaired by drugs and other damaging influences such as hypoxia and inflammation, resulting in an insufficient energy supply for the cell. Dysfunctional mitochondria are involved in the pathogenesis of different diseases such as acute and chronic liver diseases and the development of inflammatory bowel diseases. Midazolam is a widely accepted anesthetic drug, which is used for induction and maintenance of anesthesia but also for long-term sedation in the intensive care unit. The extent to which the benzodiazepine influences the mitochondrial function of the colon and the liver still has not been clarified.
The aim of this work was to determine the effect of midazolam on the mitochondrial function in tissue homogenates of the colon and the liver from healthy Wistar-rats. For this purpose, the organs were prepared and then homogenized in several steps. First the protein concentration in the tissue homogenates was determined, then the measurement of mitochondrial oxygen consumption was performed using a Clark-type electrode. Tissue homogenates were incubated with different concentrations of midazolam. After stimulating complexes I and II of the mitochondrial respiratory chain, the basal mitochondrial respiration in state 2 was recorded. The maximal mitochondrial respiration in state 3 was measured after the addition of adenosine diphosphate (ADP). In State 4 the mitochondrial respiration after consumption of ADP was determined. The respiratory control index (RCI = State 3/State 2) was calculated to specify the coupling between the electron transport chain system and oxidative phosphorylation (OXPHOS). In addition to that, ADP/O-ratio as a parameter for the efficacy of OXPHOS was calculated from the amount of ADP added and oxygen consumption.
Our results show an organ-specific effect of midazolam on the mitochondrial function. In colonic mitochondria, there was no effect of midazolam on mitochondrial respiration; RCI and ADP/O-ratio remained unaltered compared to the control groups. In hepatic tissue
midazolam altered mitochondrial respiration at the highest concentration of 500 µM only for complex II. Indeed, Midazolam decreased state 3 respiration and RCI, which is interpreted only as downregulation of the electron transport chain system.
Quelle:1. Arulkumaran, N., Deutschman, C.S., Pinsky, M.R., Zuckerbraun, B., Schumacker, P.T., Gomez, H., Gomez, A., Murray, P. & Kellum, J.A. (2016). Mitochondrial Function in Sepsis. Shock (Augusta, Ga.). 45 (3). p.pp. 271–281.
2. Bader, S., Wolf, L., Milenkovic, V.M., Gruber, M., Nothdurfter, C., Rupprecht, R. & Wetzel, C.H. (2019). Differential effects of TSPO ligands on mitochondrial function in mouse microglia cells. Psychoneuroendocrinology. 106. p.pp. 65–76.
3. Bauer, C., Duewell, P., Mayer, C., Lehr, H.A., Fitzgerald, K.A., Dauer, M., Tschopp, J., Endres, S., Latz, E. & Schnurr, M. (2010). Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut. 59 (9). p.pp. 1192–1199.
4. Betlazar, C., Middleton, R.J., Banati, R. & Liu, G.-J. (2020). The Translocator Protein (TSPO) in Mitochondrial Bioenergetics and Immune Processes. Cells. 9 (2). p.p. 512.
5. Bischoff, S.C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J.-D., Serino, M., Tilg, H., Watson, A. & Wells, J.M. (2014). Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterology. 14 (1). p.p. 189.
6. Bonsack, F. & Sukumari-Ramesh, S. (2018). TSPO: An Evolutionarily Conserved Protein with Elusive Functions. International Journal of Molecular Sciences. 19 (6).
7. Brealey, D., Brand, M., Hargreaves, I., Heales, S., Land, J., Smolenski, R., Davies, N.A., Cooper, C.E. & Singer, M. (2002). Association between mitochondrial dysfunction and severity and outcome of septic shock. The Lancet. 360 (9328). p.pp. 219–223.
8. Bremer, F., Reulbach, U., Schwilden, H. & Sch??ttler, J. (2004). Midazolam Therapeutic Drug Monitoring in Intensive Care Sedation: A 5-Year Survey. Therapeutic Drug Monitoring. 26 (6). p.pp. 643–649.
9. Colleoni, M., Costa, B., Gori, E. & Santagostino, A. (1996). Biochemical Characterization of the Effects of the Benzodiazepine, Midazolam, on Mitochondrial Electron Transfer. Pharmacology & Toxicology. 78 (2). p.pp. 69–76.
10. Collins, S.L. & Patterson, A.D. (2020). The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharmaceutica Sinica B. 10 (1). p.pp. 19–32.
11. Crevat-Pisano, P., Dragna, S., Granthil, C., Coassolo, P., Cano, J.P. & Francois, G. (1986). Plasma concentrations and pharmacokinetics of midazolam during anaesthesia. The Journal of Pharmacy and Pharmacology. 38 (8). p.pp. 578–582.
12. Eccleston, H.B., Andringa, K.K., Betancourt, A.M., King, A.L., Mantena, S.K., Swain, T.M., Tinsley, H.N., Nolte, R.N., Nagy, T.R., Abrams, G.A. & Bailey, S.M. (2010). Chronic Exposure to a High-Fat Diet Induces Hepatic Steatosis, Impairs Nitric Oxide Bioavailability, and Modifies the Mitochondrial Proteome in Mice. Antioxidants & Redox Signaling. 15 (2). p.pp. 447–459.
13. Einer, C., Hohenester, S., Wimmer, R., Wottke, L., Artmann, R., Schulz, S., Gosmann, C., Simmons, A., Leitzinger, C., Eberhagen, C., Borchard, S., Schmitt, S., Hauck, S.M., von Toerne, C., Jastroch, M., Walheim, E., Rust, C., Gerbes, A.L., Popper, B., Mayr, D., Schnurr, M., Vollmar, A.M., Denk, G. & Zischka, H. (2018). Mitochondrial adaptation in steatotic mice. Mitochondrion. 40. p.pp. 1–12.
14. Fu, Y., Wang, D., Wang, H., Cai, M., Li, C., Zhang, X., Chen, H., Hu, Y., Zhang, X., Ying, M., He, W. & Zhang, J. (2020). TSPO deficiency induces mitochondrial dysfunction, leading to hypoxia, angiogenesis, and a growth-promoting metabolic shift toward glycolysis in glioblastoma. Neuro-Oncology. 22 (2). p.pp. 240–252.
15. García-Ruiz, C., Kaplowitz, N. & Fernandez-Checa, J.C. (2013). Role of Mitochondria in Alcoholic Liver Disease. Current Pathobiology Reports. 1 (3). p.pp. 159–168.
16. Guo, R., Gu, J., Zong, S., Wu, M. & Yang, M. (2018). Structure and mechanism of mitochondrial electron transport chain. Biomedical Journal. 41 (1). p.pp. 9–20.
17. Hamaoka, N., Oda, Y., Hase, I., Mizutani, K., Nakamoto, T., Ishizaki, T. & Asada, A. (1999). Propofol decreases the clearance of midazolam by inhibiting CYP3A4: an in vivo and in vitro study. Clinical Pharmacology & Therapeutics. 66 (2). p.pp. 110–117.
18. Herminghaus, A., Buitenhuis, A.J., Schulz, J., Truse, R., Vollmer, C., Relja, B., Bauer, I. & Picker, O. (2020). Indomethacin Increases the Efficacy of Oxygen Utilization of Colonic Mitochondria and Uncouples Hepatic Mitochondria in Tissue Homogenates From Healthy Rats. Frontiers in Medicine. 7. p.p. 463.
19. Herminghaus, A., Buitenhuis, A.J., Schulz, J., Vollmer, C., Scheeren, T.W.L., Bauer, I., Picker, O. & Truse, R. (2019a). Propofol improves colonic but impairs hepatic mitochondrial function in tissue homogenates from healthy rats. European Journal of Pharmacology. 853. p.pp. 364–370.
20. Herminghaus, A., Laser, E., Schulz, J., Truse, R., Vollmer, C., Bauer, I. & Picker, O. (2019b). Pravastatin and Gemfibrozil Modulate Differently Hepatic and Colonic Mitochondrial Respiration in Tissue Homogenates from Healthy Rats. Cells. 8 (9).
21. Herminghaus, A., Papenbrock, H., Eberhardt, R., Vollmer, C., Truse, R., Schulz, J., Bauer, I., Weidinger, A., Kozlov, A.V., Stiban, J. & Picker, O. (2019c). Time-related changes in hepatic and colonic mitochondrial oxygen consumption after abdominal infection in rats. Intensive Care Medicine Experimental. 7 (1). p.p. 4.
22. Hirsch, D., Beyer, F. & Blume, J. (1989). Mitochondrial Benzodiazepine Receptors Mediate Inhibition of Mitochondrial Respiratory Control. p.p. 7.
23. Ip, W.K.E., Hoshi, N., Shouval, D.S., Snapper, S. & Medzhitov, R. (2017). Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 356 (6337). p.pp. 513–519.
24. Jackson, D.N. & Theiss, A.L. (2020). Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes. 11 (3). p.pp. 285–304.
25. Kalyanaraman, B., Cheng, G., Hardy, M., Ouari, O., Lopez, M., Joseph, J., Zielonka, J. & Dwinell, M.B. (2018). A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biology. 14. p.pp. 316–327.
26. Kanto, J.H. (1985). Midazolam: the first water-soluble benzodiazepine. Pharmacology, pharmacokinetics and efficacy in insomnia and anesthesia. Pharmacotherapy. 5 (3). p.pp. 138–155.
27. La Monaca, E. & Fodale, V. (2012). Effects of Anesthetics on Mitochondrial Signaling and Function. Current Drug Safety. 7 (2). p.pp. 126–139.
28. Lee, Y., Park, Y., Nam, H., Lee, J.-W. & Yu, S.-W. (2020). Translocator protein (TSPO): the new story of the old protein in neuroinflammation. BMB reports. 53 (1). p.pp. 20–27.
29. Lemasters, J.J., Nieminen, A.-L., Qian, T., Trost, L.C., Elmore, S.P., Nishimura, Y., Crowe, R.A., Cascio, W.E., Bradham, C.A., Brenner, D.A. & Herman, B. (1998). The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1366 (1). p.pp. 177–196.
30. Li, J., Tan, H., Zhou, X., Zhang, C., Jin, H., Tian, Y., Zhao, X., Li, X., Sun, X., Duan, M. & Zhang, D. (2019). The Protection of Midazolam Against Immune Mediated Liver Injury Induced by Lipopolysaccharide and Galactosamine in Mice. Frontiers in Pharmacology. [Online]. 9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331471/. [Accessed: 16 June 2021].
31. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry. 193 (1). p.pp. 265–275.
32. Ma, X., McKeen, T., Zhang, J. & Ding, W.-X. (2020). Role and Mechanisms of Mitophagy in Liver Diseases. Cells. 9 (4).
33. Mantena, S.K., King, A.L., Andringa, K.K., Eccleston, H.B. & Bailey, S.M. (2008). Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radical Biology and Medicine. 44 (7). p.pp. 1259–1272.
34. Milenkovic, V.M., Slim, D., Bader, S., Koch, V., Heinl, E.-S., Alvarez-Carbonell, D., Nothdurfter, C., Rupprecht, R. & Wetzel, C.H. (2019). CRISPR-Cas9 Mediated TSPO Gene Knockout alters Respiration and Cellular Metabolism in Human Primary Microglia Cells. International Journal of Molecular Sciences. 20 (13). p.p. E3359.
35. Nolfi-Donegan, D., Braganza, A. & Shiva, S. (2020). Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biology. 37. p.p. 101674.
36. Ostuni, M.A., Marazova, K., Peranzi, G., Vidic, B., Papadopoulos, V., Ducroc, R. & Lacapere, J.-J. (2004). Functional characterization and expression of PBR in rat gastric mucosa: stimulation of chloride secretion by PBR ligands. American Journal of Physiology. Gastrointestinal and Liver Physiology. 286 (6). p.pp. G1069-1080.
37. Papenbrock, H.H. (2019). Veränderungen der mitochondrialen Funktion in der Leber im Verlauf einer Sepsis von 96 Stunden. Dissertation. [Online]. Heinrich-Heine-Universität, Klinik für Anästhesiologie. Available from: https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=49857. [Accessed: 8 November 2022].
38. Park, H.J., Piao, L., Seo, E.-H., Lee, S.H. & Kim, S.-H. (2020). The effect of repetitive exposure to intravenous anesthetic agents on the immunity in mice. International Journal of Medical Sciences. 17 (4). p.pp. 428–436.
39. Pecinová, A., Drahota, Z., Nůsková, H., Pecina, P. & Houštěk, J. (2011). Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion. 11 (5). p.pp. 722–728.
40. Próchnicki, T. & Latz, E. (2017). Inflammasomes on the Crossroads of Innate Immune Recognition and Metabolic Control. Cell Metabolism. 26 (1). p.pp. 71–93.
41. Prommer, E. (2020). Midazolam: an essential palliative care drug. Palliative Care and Social Practice. 14. p.p. 2632352419895527.
42. Protasoni, M. & Zeviani, M. (2021). Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. International Journal of Molecular Sciences. 22 (2).
43. Prud’homme, G.J., Glinka, Y. & Wang, Q. (2015). Immunological GABAergic interactions and therapeutic applications in autoimmune diseases. Autoimmunity Reviews. 14 (11). p.pp. 1048–1056.
44. Ramakrishnan, S.K. & Shah, Y.M. (2016). Role of Intestinal HIF-2α in Health and Disease. Annual Review of Physiology. 78 (1). p.pp. 301–325.
45. Saxena, A., Lopes, F., Poon, K.K.H. & McKay, D.M. (2017). Absence of the NOD2 protein renders epithelia more susceptible to barrier dysfunction due to mitochondrial dysfunction. American Journal of Physiology-Gastrointestinal and Liver Physiology. 313 (1). p.pp. G26–G38.
46. Siekevitz, P. (1957). Powerhouse of the Cell. Scientific American. 197 (1). p.pp. 131–144.
47. Simões, I.C.M., Fontes, A., Pinton, P., Zischka, H. & Wieckowski, M.R. (2018). Mitochondria in non-alcoholic fatty liver disease. The International Journal of Biochemistry & Cell Biology. 95. p.pp. 93–99.
48. Söderholm, J.D., Olaison, G., Peterson, K.H., Franzén, L.E., Lindmark, T., Wirén, M., Tagesson, C. & Sjödahl, R. (2002). Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn’s disease. Gut. 50 (3). p.pp. 307–313.
49. Steiner, C., Steurer, M.P., Mueller, D., Zueger, M. & Dullenkopf, A. (2016). Midazolam plasma concentration after anesthesia premedication in clinical routine - an observational study. BMC Anesthesiology. 16. p.p. 105.
50. Sunny, N.E., Parks, E.J., Browning, J.D. & Burgess, S.C. (2011). Excessive Hepatic Mitochondrial TCA Cycle and Gluconeogenesis in Humans with Nonalcoholic Fatty Liver Disease. Cell Metabolism. 14 (6). p.pp. 804–810.
51. Togao, M., Kawakami, K., Otsuka, J., Wagai, G., Ohta‐Takada, Y. & Kado, S. (2020). Effects of gut microbiota on in vivo metabolism and tissue accumulation of cytochrome P450 3A metabolized drug: Midazolam. Biopharmaceutics & Drug Disposition. 41 (7). p.pp. 275–282.
52. Truse, R., Hinterberg, J., Schulz, J., Herminghaus, A., Weber, A., Mettler-Altmann, T., Bauer, I., Picker, O. & Vollmer, C. (2017). Effect of Topical Iloprost and Nitroglycerin on Gastric Microcirculation and Barrier Function during Hemorrhagic Shock in Dogs. Journal of Vascular Research. 54 (2). p.pp. 109–121.
53. Vollmer, C., Weber, A.P.M., Wallenfang, M., Hoffmann, T., Mettler-Altmann, T., Truse, R., Bauer, I., Picker, O. & Mathes, A.M. (2017). Melatonin pretreatment improves gastric mucosal blood flow and maintains intestinal barrier function during hemorrhagic shock in dogs. Microcirculation (New York, N.Y.: 1994). 24 (4).
54. Wang, C., Datoo, T., Zhao, H., Wu, L., Date, A., Jiang, C., Sanders, R.D., Wang, G., Bevan, C. & Ma, D. (2018). Midazolam and Dexmedetomidine Affect Neuroglioma and Lung Carcinoma Cell Biology In Vitro and In Vivo. Anesthesiology. 129 (5). p.pp. 1000–1014.
55. Wang, J., Sun, P. & Liang, P. (2020). Neuropsychopharmacological effects of midazolam on the human brain. Brain Informatics. 7 (1). p.p. 15.
56. Ward, P.S. & Thompson, C.B. (2012). Signaling in Control of Cell Growth and Metabolism. Cold Spring Harbor Perspectives in Biology. 4 (7). p.p. a006783.
57. Yu, L., Lu, M., Jia, D., Ma, J., Ben-Jacob, E., Levine, H., Kaipparettu, B.A. & Onuchic, J.N. (2017). Modeling the Genetic Regulation of Cancer Metabolism: Interplay between Glycolysis and Oxidative Phosphorylation. Cancer Research. 77 (7). p.pp. 1564–1574.
58. Yuki, K., Soriano, S.G. & Shimaoka, M. (2011). Sedative Drug Modulates T-Cell and Lymphocyte Function-Associated Antigen-1 Function. Anesthesia and analgesia. 112 (4). p.pp. 830–838.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Bezug:2020-2023
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:03.05.2023
Dateien geändert am:03.05.2023
Promotionsantrag am:19.11.2022
Datum der Promotion:11.04.2023
english
Benutzer
Status: Gast
Aktionen