Dokument: αIIbβ3-abhängige Plättchenadhäsion an mutierten und Wildtyp-von Willebrand-Faktor bei unterschiedlichen Scherraten

Titel:αIIbβ3-abhängige Plättchenadhäsion an mutierten und Wildtyp-von Willebrand-Faktor bei unterschiedlichen Scherraten
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=62447
URN (NBN):urn:nbn:de:hbz:061-20230424-092053-1
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Bleyer, Vivian [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]868,7 KB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 18.04.2023 / geändert 18.04.2023
Beitragende:Prof. Dr. Schelzig, Hubert [Gutachter]
Prof. Dr. med. Hohlfeld, Thomas [Gutachter]
Stichwörter:HPA-1-Polymorphimus F/Y2561-vWF-Polymorphimus
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Im Kontext der in westlichen Ländern sehr häufigen Koronaren Herzkrankheit (KHK) kann die Entstehung von arteriellen Thrombosen ein zentrales Merkmal der Pathogenese dieser Erkrankung sein.
In dieser Arbeit sollten die Auswirkungen zweier spezieller Polymorphismen auf die Hämostase untersucht werden, die den von-Willebrand-Faktor und das Thrombozyten-Integrin αIIbβ3 betreffen, wobei das besondere Augenmerk auf den Phenylalanin/Tyrosin-Polymorphismus (F2561-/ Y2561-Variante) des von-Willebrand-Faktors gelegt wurde.
Mittels lasermikroskopischer Beobachtung von fluoreszierenden Thrombozyten konnten Qualität und Quantität der Thrombozytenadhäsion auf unterschiedlichen von-Willebrand-Faktor-Präparaten beurteilt werden. Dass die dokumentierte Thrombozytenadhäsion zweifelsfrei durch die Interaktion des von-Willebrand-Faktors mit dem Integrin αIIbβ3 bedingt war, wurde im Vorfeld mit Antikörper-Experimenten belegt.
In Versuchen mit Probandenblut des Merkmals HPA-1a1a für das Integrins αIIbβ3 stellte sich heraus, dass auf immobilisiertem F2561-vWF (Wildtyp) eine höhere Adhäsion zu registrieren war, als auf der Y2561-Variante dieses Gerinnungsfaktors.
Dieses Resultat kann die ursprüngliche These, dass für den von Hellermann et al. [9] wahrgenommenen Zusammenhang zwischen dem vermehrten Auftreten eines Myokardinfarktes bei unter 55-jährigen Frauen und dem Vorliegen der Y2561-Variante des von-Willebrand-Faktors bei diesen Patientinnen ein erhöhtes Risiko arterieller Thrombosen ursächlich war, nicht unterstützen.
Weiterhin ließen die Versuchsergebnisse die Vermutung aufkommen, dass unter einer höheren Scherrate von 1000 s-1, wie sie beispielsweise in Koronararterien auftritt, eine Thrombozytenadhäsion auf mutiertem von-Willebrand-Faktor geringer war.
Die Untersuchung des Einflusses ansteigender Scherraten zeigte für die F2561-Variante des von-Willebrand-Faktors im Gegensatz zu der Y2561-vWF-Variante ein etwa gleichbleibendes Maß an Thrombozytenadhäsion, somit unterstreicht dieser Versuchsausgang seine erhaltene physiologische Funktion der Blutungsstillung.

In the western world, Coronary Artery Disease (CAD, or Coronary Heart Disease, CHD) is a common illness. Arterial embolism can occur as a central aspect in its pathogenesis.
This dissertation was designed to explore the impact of two specific polymorphisms in haemostaseologic function, concerning von Willebrand Factor and Integrin αIIbβ3 that is located on the surface of thrombocytes. The polymorphism of phenylalanin/tyrosine (Y2561F) of vWF was examined with particular attention, as it may increase the rate of arterial embolism due to an increased adhesion rate of thrombocytes.
Using a laser scanning microscope, quality and quantity of thrombocyteadhesion could be studied by detecting fluorescent thrombocytes adhered to varying preparations containing the different versions of von Willebrand Factor.
In advance, we established certain proof of thrombocyte-mediated adhesion by interaction with the Integrin αIIbβ3 using specific antibodies in our experimental design.
In experiments with our subjects‘ blood with the HPA-1a1a allel of Integrin αIIbβ3 we found a higher level of adhesion on immobilised F2561-vWF (wildtype) than on immobilised Y2561-vWF.
These results can not support the thesis of Hellermann et al. [9], context to our experiments, stating a correlation between an increased rate of myocardial infarction due to higher risk of arterial embolism in women aged under 55 years carrying the Y2561-vWF variant.
Additionally, our experimental results suggest that under higher shear rates of 1000 s-1, as common in coronary arteries, even less thrombocyteadhesion on mutated von Willebrand Factor (Y2561) can be found, not offering an explanation for higher risk of arterial embolism as a basis for myocardial infarction.
For the F2561-variant of von Willebrand Factor (in contrast to Y2561-vWF) our experiments showed that increasing shearrates induced a nearly constant degree of thrombocyteadhesion; the experiments therefore demonstrate its preserved physiologic function in haemostasis.
Quelle:[1] T. V. Byzova and E. F. Plow, “The PlA2 allele and cardiovascular disease: the pro33 and con,” J. Clin. Invest., vol. 105, no. 6, pp. 697–698, Mar. 2000.
[2] R. E. Scharf and R. B. Zotz, “Blood Platelets and Myocardial Infarction: Do Hyperactive Platelets Really Exist?*,” Transfus. Med. Hemotherapy, vol. 33, no. 2, pp. 189–199, 2006.
[3] R. B. Zotz and R. E. Scharf, “Platelet Receptor Polymorphisms and their Role in Cardiovascular Disease/Thrombozytäre Rezeptor-Polymorphismen und ihre Bedeutung bei kardiovaskulären Erkrankungen,” LaboratoriumsMedizin, vol. 26, no. 11/12, pp. 584–593, Jan. 2002.
[4] R. B. Zotz, M. Klein, H. P. Dauben, C. Moser, E. Gams, and R. E. Scharf, “Prospective analysis after coronary-artery bypass grafting: platelet GP IIIa polymorphism (HPA-1b/PIA2) is a risk factor for bypass occlusion, myocardial infarction, and death,” Thromb. Haemost., vol. 83, no. 3, pp. 404–407, Mar. 2000.
[5] R. B. Zotz, B. R. Winkelmann, C. Müller, B. O. Boehm, W. März, and R. E. Scharf, “Association of polymorphisms of platelet membrane integrins αIIbβ3 (HPA-1b/PlA2) and α2β1 (α2807TT) with premature myocardial infarction,” J. Thromb. Haemost., vol. 3, no. 7, pp. 1522–1529, 2005.
[6] E. J. Weiss, P. F. Bray, M. Tayback, S. P. Schulman, T. S. Kickler, L. C. Becker, J. L. Weiss, G. Gerstenblith, and P. J. Goldschmidt-Clermont, “A Polymorphism of a Platelet Glycoprotein Receptor as an Inherited Risk Factor for Coronary Thrombosis,” N. Engl. J. Med., vol. 334, no. 17, pp. 1090–1094, Apr. 1996.
[7] K. V. Vijayan and P. F. Bray, “Molecular Mechanisms of Prothrombotic Risk Due to Genetic Variations in Platelet Genes: Enhanced Outside-In Signaling Through the Pro33 Variant of Integrin β3,” Exp. Biol. Med., vol. 231, no. 5, pp. 505–513, May 2006.
[8] J. S. Bennett, F. Catella-Lawson, A. R. Rut, G. Vilaire, W. Qi, S. C. Kapoor, S. Murphy, and G. A. FitzGerald, “Effect of the PlA2 alloantigen on the function of β3-integrins in platelets,” Blood, vol. 97, no. 10, pp. 3093–3099, May 2001.
[9] N. Hellermann, B. O. Boehm, W. Maerz, J. Rischewski, B. R. Winkelmann, R. B. Zotz, and R. Schneppenheim, “The Y2561 allele of a common polymorphism in the C1 domain of von Willebrand Factor appears as a novel risk factor myocardial infarction,” J. Thromb. Haemost., vol. 5, no. 1, Aug. 2007.
[10] H. Lippert, Lehrbuch Anatomie, 7th ed. München: Urban & Fischer Verlag / Elsevier GmbH, 2006.
[11] B. Jj, F. V, C. Jh, and B. L, “Coronary atherosclerosis. A multifactorial disease.,” Circulation, vol. 87, no. 3 Suppl, pp. II3–16, Mar. 1993.
[12] Z. M. Ruggeri and G. L. Mendolicchio, “Adhesion Mechanisms in Platelet Function,” Circ. Res., vol. 100, no. 12, pp. 1673–1685, Jun. 2007.
[13] P. A. Aarts, S. A. van den Broek, G. W. Prins, G. D. Kuiken, J. J. Sixma, and R. M. Heethaar, “Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood.,” Arterioscler. Thromb. Vasc. Biol., vol. 8, no. 6, pp. 819–824, Nov. 1988.
[14] E. Falk, “Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi.,” Br. Heart J., vol. 50, no. 2, pp. 127–134, Aug. 1983.
[15] G. Herold, Innere Medizin, 2010th ed. Köln: Herold, 2010.
[16] M. S. Williams and P. F. Bray, “Genetics of Arterial Prothrombotic Risk States,” Exp. Biol. Med., vol. 226, no. 5, pp. 409–419, May 2001.
[17] J. Lefkovits, E. F. Plow, and E. J. Topol, “Platelet Glycoprotein IIb/IIIa Receptors in Cardiovascular Medicine,” N. Engl. J. Med., vol. 332, no. 23, pp. 1553–1559, 1995.
[18] S. J. Shattil and M. H. Ginsberg, “Perspectives series: cell adhesion in vascular biology. Integrin signaling in vascular biology.,” J. Clin. Invest., vol. 100, no. 1, pp. 1–5, Jul. 1997.
[19] K. V. Vijayan, T. C. Huang, Y. Liu, A. Bernardo, J.-F. Dong, P. J. Goldschmidt-Clermont, B. R. Alevriadou, and P. F. Bray, “Shear stress augments the enhanced adhesive phenotype of cells expressing the Pro33 isoform of integrin β3,” Febs Lett., vol. 540, no. 1–3, pp. 41–46, Apr. 2003.
[20] G. Andrioli, P. Minuz, P. Solero, S. Pincelli, R. Ortolani, S. Lussignoli, and P. Bellavite, “Defective platelet response to arachidonic acid and thromboxane A2 in subjects with PlA2 polymorphism of β3 subunit (glycoprotein IIIa),” Br. J. Haematol., vol. 110, no. 4, pp. 911–918, 2000.
[21] K. V. Vijayan, Y. Liu, W. Sun, M. Ito, and P. F. Bray, “The Pro33 Isoform of Integrin β3 Enhances Outside-in Signaling in Human Platelets by Regulating the Activation of Serine/Threonine Phosphatases,” J. Biol. Chem., vol. 280, no. 23, pp. 21756–21762, Oct. 2005.
[22] A. Undas, K. Brummel, J. Musial, K. G. Mann, and A. Szczeklik, “PlA2 Polymorphism of β3 Integrins Is Associated With Enhanced Thrombin Generation and Impaired Antithrombotic Action of Aspirin at the Site of Microvascular Injury,” Circulation, vol. 104, no. 22, pp. 2666–2672, Nov. 2001.
[23] D. A. Law, L. Nannizzi-Alaimo, and D. R. Phillips, “Outside-in Integrin Signal Transduction αβ-(GP IIb-IIIa) TYROSINE PHOSPHORYLATION INDUCED BY PLATELET AGGREGATION,” J. Biol. Chem., vol. 271, no. 18, pp. 10811–10815, Mar. 1996.
[24] Z. M. Ruggeri, “von Willebrand factor.,” J. Clin. Invest., vol. 99, no. 4, pp. 559–564, Feb. 1997.
[25] D. J. Mancuso, E. A. Tuley, L. A. Westfield, N. K. Worrall, B. B. Shelton-Inloes, J. M. Sorace, Y. G. Alevy, and J. E. Sadler, “Structure of the gene for human von Willebrand factor.,” J. Biol. Chem., vol. 264, no. 33, pp. 19514–19527, Nov. 1989.
[26] J. E. Sadler, U. Budde, J. C. J. Eikenboom, E. J. Favaloro, F. G. H. Hill, L. Holmberg, J. Ingerslev, C. A. Lee, D. Lillicrap, P. M. Mannucci, C. Mazurier, D. Meyer, W. L. Nichols, M. Nishino, I. R. Peake, F. Rodeghiero, R. Schneppenheim, Z. M. Ruggeri, A. Srivastava, R. R. Montgomery, A. B. Federici, and T. W. P. on V. W. D. Classification, “Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor,” J. Thromb. Haemost., vol. 4, no. 10, pp. 2103–2114, 2006.
[27] J. H. Jansson, T. K. Nilsson, and O. Johnson, “von Willebrand factor in plasma: a novel risk factor for recurrent myocardial infarction and death.,” Br. Heart J., vol. 66, no. 5, pp. 351–355, Nov. 1991.
[28] C. Lacquemant, C. Gaucher, C. Delorme, G. Chatellier, Y. Gallois, M. Rodier, P. Passa, B. Balkau, C. Mazurier, M. Marre, and P. Froguel, “Association between high von Willebrand factor levels and the Thr789Ala vWF gene polymorphism but not with nephropathy in type I diabetes,” Kidney Int., vol. 57, no. 4, pp. 1437–1443, Apr. 2000.
[29] A. M. Keightley, Y. M. Lam, J. N. Brady, C. L. Cameron, and D. Lillicrap, “Variation at the von Willebrand Factor (vWF) Gene Locus Is Associated With Plasma vWF:Ag Levels: Identification of Three Novel Single Nucleotide Polymorphisms in the vWF Gene Promoter,” Blood, vol. 93, no. 12, pp. 4277–4283, Jun. 1999.
[30] Z. M. Ruggeri, “Von Willebrand factor, platelets and endothelial cell interactions,” J. Thromb. Haemost., vol. 1, no. 7, pp. 1335–1342, 2003.
[31] H. J. Weiss, T. Hoffmann, A. Yoshioka, and Z. M. Ruggeri, “Evidence that the arg1744 gly1745 asp1746 sequence in the GPIIb-IIIa-binding domain of von Willebrand factor is involved in platelet adhesion and thrombus formation on subendothelium,” J. Lab. Clin. Med., vol. 122, no. 3, pp. 324–332, Sep. 1993.
[32] C. Baldauf, R. Schneppenheim, W. Stacklies, T. Obser, A. Pieconka, S. Schneppenheim, U. Budde, J. Zhou, and F. Gräter, “Shear-induced unfolding activates von Willebrand factor A2 domain for proteolysis,” J. Thromb. Haemost., vol. 7, no. 12, pp. 2096–2105, 2009.
[33] N. Treder, “Polymorphismus Phe/Tyr 2561 im Von-Willebrand-Faktor-Gen als Risikofaktor für Myokardinfarkt und koronare Herzkrankheit,” Aug. 2006 Dissertation aus der Klinik und Poliklinik für pädiatrische Hämatologie und Onkologiedes Zentrums für Frauen-, Kinder- und Jugendmedizindes Universitätsklinikums Hamburg-Eppendorf
[34] Z. M. Ruggeri, J. A. Dent, and E. Saldı́var, “Contribution of Distinct Adhesive Interactions to Platelet Aggregation in Flowing Blood,” Blood, vol. 94, no. 1, pp. 172–178, Jan. 1999.
[35] A. J. Reininger, H. F. G. Heijnen, H. Schumann, H. M. Specht, W. Schramm, and Z. M. Ruggeri, “Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress,” Blood, vol. 107, no. 9, pp. 3537–3545, May 2006.
[36] T. L. Kiefer and R. C. Becker, “Inhibitors of platelet adhesion,” Circulation, vol. 120, no. 24, pp. 2488–2495, Dec. 2009.
[37] B. Savage, E. Saldívar, and Z. M. Ruggeri, “Initiation of Platelet Adhesion by Arrest onto Fibrinogen or Translocation on von Willebrand Factor,” Cell, vol. 84, no. 2, pp. 289–297, Jan. 1996.
[38] Z. M. Ruggeri, “Old concepts and new developments in the study of platelet aggregation,” J. Clin. Invest., vol. 105, no. 6, pp. 699–701, Mar. 2000.
[39] R. Loncar, R. B. Zotz, C. Sucker, A. Vodovnik, M. Mihalj, and R. E. Scharf, “Platelet adhesion onto immobilized fibrinogen under arterial and venous in-vitro flow conditions does not significantly differ between men and women,” Thromb. J., vol. 5, p. 5, Apr. 2007.
[40] S. Goto, Y. Ikeda, E. Saldivar, and Z. M. Ruggeri, “Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions.,” J. Clin. Invest., vol. 101, no. 2, pp. 479–486, Jan. 1998.
[41] Z. M. Ruggeri, “Mechanisms initiating platelet thrombus formation.,” Thromb. Haemost., vol. 78, no. 1, pp. 611–616, Jul. 1997.
[42] R. Schneppenheim and U. Budde, “von Willebrand factor: the complex molecular genetics of a multidomain and multifunctional protein,” J. Thromb. Haemost., vol. 9, no. 1, pp. 209–215, 2011.
[43] D. A. Beacham, R. J. Wise, S. M. Turci, and R. I. Handin, “Selective inactivation of the Arg-Gly-Asp-Ser (RGDS) binding site in von Willebrand factor by site-directed mutagenesis.,” J. Biol. Chem., vol. 267, no. 5, pp. 3409–3415, Feb. 1992.
[44] J. F. W. Keuren, H. Ulrichts, M. A. H. Feijge, K. Hamulyak, H. Deckmyn, T. Lindhout, and J. W. M. Heemskerk, “Integrin αIIbβ3 and shear-dependent action of glycoprotein Ibα stimulate platelet-dependent thrombin formation in stirred plasma,” J. Lab. Clin. Med., vol. 141, no. 5, pp. 350–358, Mai 2003.
[45] J. A. Guerrero, M. Kyei, S. Russell, J. Liu, T. K. Gartner, B. Storrie, and J. Ware, “Visualizing the von Willebrand factor/glycoprotein Ib-IX axis with a platelet-type von Willebrand disease mutation,” Blood, vol. 114, no. 27, pp. 5541–5546, Dec. 2009.
[46] S. Goto, H. Sakai, M. Goto, M. Ono, Y. Ikeda, S. Handa, and Z. M. Ruggeri, “Enhanced Shear-Induced Platelet Aggregation in Acute Myocardial Infarction,” Circulation, vol. 99, no. 5, pp. 608–613, Feb. 1999.
[47] R. Schneppenheim, N. Hellermann, M. A. Brehm, U. Klemm, T. Obser, V. Huck, S.
W. Schneider, C. V. Denis, A. Tischer, M. Auton, W. März, E.-R. Xu, M. Wilmanns,
R. B. Zotz, "The von Willebrand factor Tyr2561 allele is a gain-of-function variant
and a risk factor for early myocardial infarction," Blood,. vol. 133, no. 4, pp.356-365,
Jan. 2019.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät » Institute » Institut für Transplantationsdiagnostik und Zelltherapeutika (ITZ)
Dokument erstellt am:24.04.2023
Dateien geändert am:24.04.2023
Promotionsantrag am:14.03.2022
Datum der Promotion:04.04.2023
english
Benutzer
Status: Gast
Aktionen