Dokument: Bedeutung des Renin-Angiotensin-Systems für renovaskuläre Dysfunktion und arterielle Hypertonie
Titel: | Bedeutung des Renin-Angiotensin-Systems für renovaskuläre Dysfunktion und arterielle Hypertonie | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=61328 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20221201-090703-8 | |||||||
Kollektion: | Publikationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Habilitation | |||||||
Medientyp: | Text | |||||||
Autor: | Potthoff, Sebastian Alexander [Autor] | |||||||
Dateien: |
| |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibung: | Habilitationsschrift Dr. med. Sebastian Alexander Potthoff | |||||||
Quelle: | 1. Yang, G., et al., ACE2 and the Homolog Collectrin in the Modulation of Nitric Oxide and Oxidative Stress in Blood Pressure Homeostasis and Vascular Injury. Antioxid Redox Signal, 2017. 26(12): p. 645-659.
2. Murphy, T.J., et al., Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature, 1991. 351(6323): p. 233-6. 3. Kanaide, H., et al., Cellular mechanism of vasoconstriction induced by angiotensin II: it remains to be determined. Circ Res, 2003. 93(11): p. 1015-7. 4. Mergia, E., et al., Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J Clin Invest, 2006. 116(6): p. 1731-7. 5. Hirai, T., et al., Differential sympathetic nerve responses to nitric oxide synthase inhibition in anesthetized rats. Am J Physiol, 1995. 269(4 Pt 2): p. R807-13. 6. Lim, S.S., et al., A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012. 380(9859): p. 2224-60. 7. Sparks, M.A., et al., Classical Renin-Angiotensin system in kidney physiology. Compr Physiol, 2014. 4(3): p. 1201-28. 8. Stegbauer, J. and T.M. Coffman, New insights into angiotensin receptor actions: from blood pressure to aging. Curr Opin Nephrol Hypertens, 2011. 20(1): p. 84-8. 9. Montezano, A.C., et al., Angiotensin II and vascular injury. Curr Hypertens Rep, 2014. 16(6): p. 431. 10. Arruda, R.M., et al., Evaluation of vascular function in apolipoprotein E knockout mice with angiotensin-dependent renovascular hypertension. Hypertension, 2005. 46(4): p. 932-6. 11. Heitzer, T., et al., Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. Kidney Int, 1999. 55(1): p. 252-60. 12. Jung, O., et al., Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice. Circ Res, 2003. 93(7): p. 622-9. 13. Giachini, F.R., et al., Decreased cGMP level contributes to increased contraction in arteries from hypertensive rats: role of phosphodiesterase 1. Hypertension, 2011. 57(3): p. 655-63. 14. Kim, D., et al., Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: a mechanism by which angiotensin II antagonizes cGMP signaling. J Mol Cell Cardiol, 2005. 38(1): p. 175-84. 15. Kim, D., et al., Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation, 2001. 104(19): p. 2338-43. 16. Sonnenburg, W.K., et al., Identification, quantitation, and cellular localization of PDE1 calmodulin-stimulated cyclic nucleotide phosphodiesterases. Methods, 1998. 14(1): p. 3-19. 17. Huang, C.Y., et al., Mechanism of activation of cyclic nucleotide phosphodiesterase: requirement of the binding of four Ca2+ to calmodulin for activation. Proc Natl Acad Sci U S A, 1981. 78(2): p. 871-4. 18. Park, J.K., et al., p38 mitogen-activated protein kinase inhibition ameliorates angiotensin II-induced target organ damage. Hypertension, 2007. 49(3): p. 481-9. 19. Potthoff, S.A., et al., Angiotensin-(1-7) modulates renal vascular resistance through inhibition of p38 mitogen-activated protein kinase in apolipoprotein E-deficient mice. Hypertension, 2014. 63(2): p. 265-72. 20. Santos, R.A., et al., Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension, 1988. 11(2 Pt 2): p. I153-7. 21. Santos, R.A., et al., Angiotensin-(1-7) is an endogenous ligand for the G proteincoupled receptor Mas. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8258-63. 22. Santos, R.A.S., et al., The Renin-Angiotensin System: Going Beyond the Classical Paradigms. Am J Physiol Heart Circ Physiol, 2019. 23. Domenig, O., et al., Neprilysin is a Mediator of Alternative Renin-Angiotensin-System Activation in the Murine and Human Kidney. Sci Rep, 2016. 6: p. 33678. 24. Sampaio, W.O., et al., Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension, 2007. 50(6): p. 1093-8. 25. Sampaio, W.O., et al., Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension, 2007. 49(1): p. 185-92. 26. Mori, J., et al., Angiotensin 1-7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation. Circ Heart Fail, 2014. 7(2): p. 327-39. 27. Parajuli, N., et al., Loss of NOX2 (gp91phox) prevents oxidative stress and progression to advanced heart failure. Clin Sci (Lond), 2014. 127(5): p. 331-40. 28. Patel, V.B., et al., ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes, 2016. 65(1): p. 85-95. 29. Schinzari, F., et al., Favorable Vascular Actions of Angiotensin-(1-7) in Human Obesity. Hypertension, 2018. 71(1): p. 185-191. 30. Qi, Y., et al., Lentivirus-mediated overexpression of angiotensin-(1-7) attenuated ischaemia-induced cardiac pathophysiology. Exp Physiol, 2011. 96(9): p. 863-74. 31. Tallant, E.A., C.M. Ferrario, and P.E. Gallagher, Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol, 2005. 289(4): p. H1560-6. 32. Giani, J.F., et al., Angiotensin-(1-7) improves cardiac remodeling and inhibits growthpromoting pathways in the heart of fructose-fed rats. Am J Physiol Heart Circ Physiol, 2010. 298(3): p. H1003-13. 33. Gwathmey, T.M., et al., Angiotensin-(1-7)-angiotensin-converting enzyme 2 attenuates reactive oxygen species formation to angiotensin II within the cell nucleus. Hypertension, 2010. 55(1): p. 166-71. 34. Patel, V.B., et al., Cardioprotective effects mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin 1-7 in experimental heart failure in angiotensinconverting enzyme 2-null mice. Hypertension, 2012. 59(6): p. 1195-203. 35. Zhong, J., et al., Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation, 2010. 122(7): p. 717-28, 18 p following 728. 36. Tryggvason, K., J. Patrakka, and J. Wartiovaara, Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med, 2006. 354(13): p. 1387-401. 37. Quack, I., et al., beta-Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity. Proc Natl Acad Sci U S A, 2006. 103(38): p. 14110-5. 38. Quack, I., et al., PKC alpha mediates beta-arrestin2-dependent nephrin endocytosis in hyperglycemia. J Biol Chem, 2011. 286(15): p. 12959-70. 39. Sitek, B., et al., Novel approaches to analyse glomerular proteins from smallest scale murine and human samples using DIGE saturation labelling. Proteomics, 2006. 6(15): p. 4337-45. 40. Potthoff, S.A., et al., The glomerular proteome in a model of chronic kidney disease. Proteomics Clin Appl, 2008. 2(7-8): p. 1127-39. 41. Chaudhari, A. and M.A. Kirschenbaum, A rapid method for isolating rabbit renal microvessels. Am J Physiol, 1988. 254(2 Pt 2): p. F291-6. 42. Patzak, A., et al., Angiotensin II response in afferent arterioles of mice lacking either the endothelial or neuronal isoform of nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol, 2008. 294(2): p. R429-37. 43. Stegbauer, J., et al., Chronic treatment with angiotensin-(1-7) improves renal endothelial dysfunction in apolipoproteinE-deficient mice. British journal of pharmacology, 2011. 163(5): p. 974-83. 44. Potthoff, S.A., et al., Chronic p38 mitogen-activated protein kinase inhibition improves vascular function and remodeling in angiotensin II-dependent hypertension. J Renin Angiotensin Aldosterone Syst, 2016. 17(3). 45. Stegbauer, J., et al., Phosphodiesterase 5 attenuates the vasodilatory response in renovascular hypertension. PLoS One, 2013. 8(11): p. e80674. 46. Haase, R., et al., A novel in vivo method to quantify slit diaphragm protein abundance in murine proteinuric kidney disease. PLoS One, 2017. 12(6): p. e0179217. 47. Konigshausen, E., et al., Isolation of Glomeruli and In Vivo Labeling of Glomerular Cell Surface Proteins. J Vis Exp, 2019(143). 48. Thieme, M., et al., Phosphodiesterase 5 inhibition ameliorates angiotensin IIdependent hypertension and renal vascular dysfunction. Am J Physiol Renal Physiol, 2017. 312(3): p. F474-F481. 49. Broekmans, K., et al., Angiotensin II-Induced Hypertension Is Attenuated by Reduction of Sympathetic Output in NO-Sensitive Guanylyl Cyclase 1 Knockout Mice. J Pharmacol Exp Ther, 2016. 356(1): p. 191-9. 50. Wiesel, P., et al., Two-kidney, one clip and one-kidney, one clip hypertension in mice. Hypertension, 1997. 29(4): p. 1025-30. 51. Laurent, S., et al., Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke, 2003. 34(5): p. 1203-1206. 52. Mattace-Raso, F.U., et al., Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation, 2006. 113(5): p. 657-63. 53. Palatini, P., et al., Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension. Vasc Health Risk Manag, 2011. 7: p. 725-39. 54. Laurent, S., et al., Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension, 2001. 37(5): p. 1236-41. 55. Vlachopoulos, C., K. Aznaouridis, and C. Stefanadis, Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and metaanalysis. J Am Coll Cardiol, 2010. 55(13): p. 1318-27. 56. Wang, M., R.E. Monticone, and E.G. Lakatta, Proinflammation of aging central arteries: a mini-review. Gerontology, 2014. 60(6): p. 519-29. 57. Tsioufis, C., et al., Low-grade inflammation and hypoadiponectinaemia have an additive detrimental effect on aortic stiffness in essential hypertensive patients. Eur Heart J, 2007. 28(9): p. 1162-9. 58. Ushio-Fukai, M., et al., p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem, 1998. 273(24): p. 15022-9. 59. Patzak, A., et al., Adenosine enhances long term the contractile response to angiotensin II in afferent arterioles. Am J Physiol Regul Integr Comp Physiol, 2007. 293(6): p. R2232-42. 60. Cai, H. and D.G. Harrison, Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res, 2000. 87(10): p. 840-4. 61. Stegbauer, J., et al., Chronic treatment with angiotensin-(1-7) improves renal endothelial dysfunction in apolipoproteinE-deficient mice. Br J Pharmacol, 2011. 163(5): p. 974-83. 62. Ebrahimian, T., et al., Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress. Hypertension, 2011. 57(2): p. 245-54. 63. Konigshausen, E., et al., Angiotensin II increases glomerular permeability by betaarrestin mediated nephrin endocytosis. Sci Rep, 2016. 6: p. 39513. 64. Konigshausen, E., et al., Highly Sensitive Measurement of Glomerular Permeability in Mice with Fluorescein Isothiocyanate-polysucrose 70. J Vis Exp, 2019(150). | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 01.12.2022 | |||||||
Dateien geändert am: | 01.12.2022 |