Dokument: Multimodale Magnetresonanztomografie entzündlicher und degenerativer Gelenkerkrankungen
Titel: | Multimodale Magnetresonanztomografie entzündlicher und degenerativer Gelenkerkrankungen | |||||||
Weiterer Titel: | Multimodal Magnetic Resonance Imaging of Inflammatory and Degenerative Joint Disease | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=61199 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20221123-130500-2 | |||||||
Kollektion: | Publikationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Habilitation | |||||||
Medientyp: | Text | |||||||
Autor: | Abrar, Daniel Benjamin [Autor] | |||||||
Dateien: |
| |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Erkrankungen des Bewegungsapparates gehören zu den häufigsten Gründen für den Arztbesuch und sind weltweit die führende Ursache für Schmerz und Behinderung. In der Folge ergeben sich zusätzlich zum individuellen Leidensdruck der Patienten enorme wirtschaftliche Kosten für die Gesellschaft. So belaufen sich die Kosten für Erkrankungen des Bewegungsapparates alleine in den USA jährlich auf nahezu eine Billion US-Dollar. Die verschiedenen Erkrankungen des Bewegungsapparates unterscheiden sich dabei sowohl hinsichtlich ihres zeitlichen Verlaufes und der betroffenen Körperregion als auch im Hinblick auf ihre Ätiologie. So tragen zum einen akute Verletzungen, wie Frakturen, Bandrisse oder Knorpelschäden, zum anderen chronische Erkrankungen, wie Arthrose (osteoarthritis, OA) , Arthritiden oder Lumbago zum bunten Strauß möglicher Erkrankungen des Bewegungsapparates bei. Dabei nimmt die Vielseitigkeit der Behandlungsmöglichkeiten dieser Erkrankungen stetig zu, insbesondere das weite Feld entzündlicher Gelenkerkrankungen, wie der rheumatoiden Arthritis (RA) oder der Psoriasis-Arthritis (PsA), wurde durch die Entwicklung der biologischen und gezielt synthetischen erkrankungsmodifizierenden Arzneimittel (biological und targeted-synthesized disease modifying drugs, bDMARD und tsDMARD) revolutioniert. Durch die frühzeitige Behandlung mit diesen DMARDs kann durch stetige Therapiekontrolle (sog. treat-to-target Prinzip, T2T) häufig eine dauerhafte Remission erreicht werden. Um eine derartige Erkrankung des Bewegungsapparates rechtzeitig behandeln zu können, ist eine möglichst frühzeitige Diagnose entscheidend. Seit ihrer Etablierung finden bildgebende Verfahren breite Anwendung in der Diagnostik muskuloskelettaler Erkrankungen. Konventionelle Radiografie, Computertomografie und Magnetresonanztomografie (MRT) erlauben die sensitive, häufig sofortige und nahezu ubiquitär verfügbare Diagnose und Therapiekontrolle typischer traumatischer, degenerativer oder entzündlicher Erkrankungen des Bewegungsapparates. Seit ihrer Entwicklung in den 1980er Jahren nimmt dabei die Bedeutung der MRT stetig zu. Ihre hohe Ortsauflösung, der exzellente Weichteilkontrast und die fehlende Anwendung ionisierender Strahlung machen die MRT zum Stützpfeiler muskuloskelettaler Bildgebung. Entzündliche Weichteilveränderungen von Synovialis, Sehnen, Muskeln, Faszien und Subkutis lassen sich dabei ebenso detailliert abbilden wie knöcherne Pathologien wie Erosionen, Frakturen und Tumore. Über diese strukturell-morphologischen Möglichkeiten der MRT hinaus, gibt es inzwischen moderne MRT-Verfahren, die auf molekularer Ebene unter anderem den Gelenkknorpel kompositionell analysieren können. So erlaubt beispielsweise die Glykosaminoglykan (GAG) Chemical Exchange Saturation Transfer (CEST) Bildgebung den Nachweis von Proteoglykanen im hyalinen Gelenkknorpel und in Bandscheiben. Da der Proteoglykanverlust ein frühes Zeichen von Knorpelschäden ist, wie sie im Rahmen degenerativer oder entzündlicher Gelenkveränderungen auftreten, können so potentielle Gelenkerkrankungen biochemisch-sensitiv erkannt werden, bevor diese strukturell manifest werden.
In der vorliegenden Habilitationsschrift wird die multimodale MRT entzündlicher und degenerativer Gelenkerkrankungen untersucht. Dabei kommen nicht-invasive Methoden der kompositionellen Knorpelbildgebung bei entzündlichen Gelenkerkrankungen des peripheren und Achsenskeletts sowie bei Patienten mit unspezifischen Rückenschmerzen und Leistungssportlern zum Einsatz. Außerdem wird der Stellenwert hochauflösender MRT mit speziellen Empfangsspulen für die Detektion, Unterscheidung und Therapiekontrolle typischer rheumatischer Gelenkerkrankungen näher beleuchtet. Die erste Arbeit untersucht den diagnostischen Stellenwert der hochauflösenden MRT von Ringbändern bei Patienten mit PsA im Vergleich zu Patienten mit RA und gesunden Kontrollpersonen. Im Rahmen dessen wurden die Finger D2-5 der obigen Studienpopulation mittels 3 Tesla (T) MRT und einer speziellen 16-Kanalhandspule untersucht, um so entzündliche und strukturelle Veränderungen der Ringbänder zu detektieren. Dabei zeigte sich, dass Patienten mit PsA ausgeprägtere Veränderungen der Ringbänder als die Vergleichskohorte aus RA-Patienten und Gesunden aufweisen. Ringbandveränderungen sind daher als für die PsA typisch anzusehen und können bei der Unterscheidung zwischen RA und PsA hilfreich sein. Die zweite Arbeit befasst sich mit der Etablierung und Optimierung eines gagCEST Untersuchungsprotokolls, das mit einer klinisch-anwendbaren Untersuchungsdauer von unter acht Minuten bei einer Magnetfeldstärke von 3 T anwendbar ist. Dazu wurden zunächst Bloch-Mc-Connell Simulationsexperimente durchgeführt, um ein optimales gagCEST-Protokoll zu etablieren. Anschließend wurde der tibiotalare Gelenkknorpel von Patienten nach osteochondraler Läsion des Talus sowie von gesunden Kontrollpersonen mit dem optimierten Protokoll untersucht. Dabei zeigten sich sowohl eine gute Reproduzierbarkeit der Ergebnisse als auch signifikante Unterschiede zwischen Patienten und Kontrollpersonen. Somit konnte diese Machbarkeitsstudie die Durchführbarkeit von gagCEST am tibiotalaren Gelenkknorpel bei 3 T belegen. In der dritten Arbeit wurden die symptomatischen Hände von Patienten mit RA und PsA mit einer dezidierten Handspule und 3 T MRT untersucht, um systematisch erkrankungsassoziierte Veränderungen zu erfassen und mögliche Unterschiede zwischen beiden Entitäten herauszuarbeiten. Zur exakten Analyse wurden die standardisierten und validierten Scores für RA und PsA, der RA MRI und PsA MRI Score (RAMRIS und PsAMRIS) erhoben. Diese bilden typische erkrankungsassoziierte Veränderungen, wie Synovialitis, Tenovaginitis, Osteoödem und Erosionen ab. In der Studienpopulation konnte gezeigt werden, dass die PsA signifikant häufiger mit extraartikulär gelegenen, entzündlichen Veränderungen einhergeht als die RA und mit diesem Merkmal eine Differenzierung beider Entitäten erleichtert werden kann. Die vierte Arbeit analysierte systematisch den GAG-Gehalt lumbaler Bandscheiben (intervertebral disks, IVDs) von Patienten mit radiografisch nachgewiesener axialer Spondyloarthropathie (r-axSpA) im Vergleich zu altersgleichen Kontrollpersonen. Zudem wurden typische erkrankungsassoziierte Veränderungen der Wirbelsäule, wie beispielsweise Syndesmophyten und Spondylitis, mittels morphologischer Standard-MRT erfasst. Dabei zeigten sich signifikant niedrigere IVD-gagCEST-Werte bei Patienten. Zudem zeigte sich ein Zusammenhang zwischen niedrigen IVD-gagCEST-Werten und dem Vorliegen von Syndesmophyten. In der fünften Arbeit wurde untersucht, ob und inwieweit Knorpeldegeneration mit Entzündung des Synovialis in den Fingergelenken von Patienten mit PsA assoziiert ist. Dazu wurde der Proteoglykangehalt des Gelenkknorpels der Fingergelenke mittels delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) analysiert. Die Methode ist ein biochemisch-sensitives Verfahren zur Evaluation der Knorpelzusammensetzung. Zudem wurde mittels dynamic contrast-enhanced (DCE) MRT, der sogenannten Perfusionsbildgebung, die Durchblutung der Synovialis und somit letztlich die Ausprägung bestehender Synovialitis betrachtet. Dabei zeigte sich ein Zusammenhang zwischen Proteoglykanverlust und Ausprägung der Synovialitis. Die sechste Arbeit evaluiert eine vereinfachte Version des PsAMRIS, den sogenannten sPsAMRIS, der eine schnellere Analyse erkrankungsassoziierter Veränderungen an den Fingergelenken von Patienten mit PsA erlaubt und dabei eine gleichwertige Sensitivität für Veränderungen wahrt. In der siebten Arbeit wurden die Fingergelenke von Patienten mit RA und PsA mittels dGEMRIC hinsichtlich der Zusammensetzung des Gelenkknorpels, also dem Proteoglykangehalt, untersucht. Hier zeigte sich, dass kein signifikanter Unterschied zwischen beiden Armen der Studienpopulation besteht. Somit ist von einer Beteiligung des Gelenkknorpels im Erkrankungsverlauf beider Entitäten auszugehen. Die Arbeiten acht bis zehn untersuchten den Proteoglykangehalt lumbaler Bandscheiben in unterschiedlichen Kollektiven mittels gagCEST Bildgebung. Dabei konnte gezeigt werden, dass Patienten mit unspezifischer Lumbago, Radikulopathie und juveniler idiopathischer Skoliose (adolescent idiopathic scoliosis, AIS) signifikant niedrigere IVD-gagCEST-Werte aufweisen als gesunde Kontrollpersonen. Zudem weisen IVDs, die unmittelbar an Bandscheibenherniationen oder an die Endpunkte einer skoliotischen Hauptkrümmung grenzen, niedrige gagCEST-Werte auf als entferntere IVDs. Die zehnte Arbeit untersuchte Elite-Ruderer aus der deutschen Nationalmannschaft im Verlauf ihres jährlichen Trainingszyklus. Dabei wurde festgestellt, dass in lumbalen IVDs ein belastungsabhängiges Remodeling stattfindet. So wurden in der Belastungsphase höhere IVD-gagCEST-Werte als in der Ruhephase festgestellt. Zusammenfassend zeigen die zehn Arbeiten neue und vertiefende Erkenntnisse über moderne MRT-Verfahren, die zum einen hochauflösende Bilder feiner Gelenkstrukturen und zum anderen kompositionelle Informationen über Gelenkknorpel und Bandscheiben vermitteln. So können degenerative und entzündliche Gelenkveränderungen sowohl strukturell als auch ultrastrukturell sichtbar gemacht werden, was als Ansatzpunkt für zukünftige Implementierung in Diagnostik und Therapiekontrolle entzündlicher und degenerativer Gelenkerkrankungen dienen kann.Musculoskeletal disorders are among the most common reasons for visiting a doctor and are the leading cause of pain and disability worldwide. As a result, in addition to the individual suffering of patients, there are enormous economic costs to society. For example, the cost of musculoskeletal disorders in the U.S. alone is nearly one trillion U.S. dollars annually. The various diseases of the musculoskeletal system differ in terms of their time course and the region of the body affected, as well as in terms of their etiology. Acute injuries, such as fractures, torn ligaments or cartilage damage, on the one hand, and chronic diseases, such as osteoarthritis (OA), arthritis or lumbago, on the other, contribute to the colorful bouquet of possible diseases of the musculoskeletal system. In particular, the broad field of inflammatory joint diseases, such as rheumatoid arthritis (RA) or psoriatic arthritis (PsA), has been revolutionized by the development of biological and targeted-synthesized disease modifying drugs (bDMARD and tsDMARD). Early treatment with these DMARDs can often achieve a durable remission through steady therapy control (so-called treat-to-target principle, T2T). In order to be able to treat such a musculoskeletal disease in time, early diagnosis is crucial. Since their establishment, imaging techniques have been widely used in the diagnosis of musculoskeletal diseases. Conventional radiography, computed tomography, and magnetic resonance imaging (MRI) allow sensitive, often immediate, and almost ubiquitously available diagnosis and therapy monitoring of typical traumatic, degenerative, or inflammatory diseases of the musculoskeletal system. Since its development in the 1980s, the importance of MRI has been steadily increasing. Its high spatial resolution, excellent soft tissue contrast, and lack of use of ionizing radiation make MRI the mainstay of musculoskeletal imaging. Inflammatory soft tissue changes of synovium, tendons, muscles, fascia, and subcutis can be imaged in as much detail as bony pathologies such as erosions, fractures, and tumors. Beyond these structural-morphological possibilities of MRI, there are now modern MRI techniques that can analyze articular cartilage compositionally at the molecular level, among other things. For example, glycosaminoglycan (GAG) chemical exchange saturation transfer (CEST) imaging allows detection of proteoglycans in hyaline articular cartilage and intervertebral discs. Since proteoglycan loss is an early sign of cartilage damage as it occurs in the context of degenerative or inflammatory joint changes, potential joint diseases can thus be detected biochemically-sensitively before they become structurally manifest. In the present postdoctoral thesis, multimodal MRI of inflammatory and degenerative joint diseases is investigated. Non-invasive methods of compositional cartilage imaging are used in inflammatory joint diseases of the peripheral and axial skeleton as well as in patients with non-specific back pain and competitive athletes. In addition, the value of high-resolution MRI with special receiving coils for the detection, differentiation, and therapy monitoring of typical rheumatic joint diseases is further elucidated. The first paper investigates the diagnostic value of high-resolution MRI of annular ligaments in patients with PsA compared to patients with RA and healthy controls. As part of this, fingers D2-5 of the above study population were examined using 3 Tesla (T) MRI and a dedicated 16-channel hand coil to detect inflammatory and structural changes in the annular ligaments. This showed that patients with PsA had more pronounced changes in the annular ligaments than the comparison cohort of RA patients and healthy individuals. Ring ligament changes can therefore be considered typical for PsA and may be helpful in distinguishing between RA and PsA. The second work deals with the establishment and optimization of a gagCEST examination protocol that is applicable with a clinically applicable examination time of less than eight minutes at a magnetic field strength of 3 T. To this end, Bloch-Mc-Connell simulation experiments were first performed to establish an optimal gagCEST protocol. Subsequently, the tibiotalar articular cartilage of patients after osteochondral lesion of the talus as well as of healthy control subjects was examined with the optimized protocol. The results showed good reproducibility as well as significant differences between patients and control subjects. Thus, this feasibility study was able to demonstrate the feasibility of gagCEST on tibiotalar articular cartilage at 3 T. In the third paper, the symptomatic hands of patients with RA and PsA were examined with a dedicated hand coil and 3 T MRI to systematically detect disease-associated changes and to highlight potential differences between the two entities. For accurate analysis, the standardized and validated scores for RA and PsA, the RA MRI and PsA MRI Score (RAMRIS and PsAMRIS) were collected. These map typical disease-associated changes, such as synovialitis, tenovaginitis, osteoedema, and erosions. In the study population, PsA was shown to be significantly more frequently associated with extra-articular inflammatory changes than RA, and this feature can be used to facilitate differentiation of the two entities. The fourth paper systematically analyzed the GAG content of lumbar intervertebral discs (IVDs) from patients with radiographically proven axial spondyloarthropathy (r-axSpA) compared to age-matched controls. In addition, typical disease-associated changes of the spine, such as syndesmophytes and spondylitis, were assessed by standard morphological MRI. This showed significantly lower IVD gagCEST values in patients. In addition, a correlation between low IVD-gagCEST values and the presence of syndesmophytes was shown. The fifth paper investigated whether and to what extent cartilage degeneration is associated with synovial inflammation in the finger joints of patients with PsA. For this purpose, the proteoglycan content of the articular cartilage of the finger joints was analyzed using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). This method is a biochemically sensitive method for the evaluation of cartilage composition. In addition, dynamic contrast-enhanced (DCE) MRI, so-called perfusion imaging, was used to assess synovial blood flow and ultimately the extent of existing synovitis. This showed a correlation between proteoglycan loss and the expression of synovitis. The sixth paper evaluates a simplified version of the PsAMRIS, the so-called sPsAMRIS, which allows a faster analysis of disease-associated changes in the finger joints of patients with PsA while maintaining an equivalent sensitivity for changes. In the seventh paper, finger joints of patients with RA and PsA were examined by dGEMRIC with respect to articular cartilage composition, i.e., proteoglycan content. Here, it was shown that there was no significant difference between the two arms of the study population. Thus, the involvement of articular cartilage in the disease process of both entities can be assumed. Papers eight through ten examined the proteoglycan content of lumbar intervertebral discs in different collectives using gagCEST imaging. They demonstrated that patients with nonspecific lumbago, radiculopathy, and adolescent idiopathic scoliosis (AIS) have significantly lower IVD gagCEST values than healthy controls. In addition, IVDs immediately adjacent to disc herniations or to the endpoints of a scoliotic major curve have low gagCEST values than more distant IVDs. The tenth paper examined elite rowers from the German national team during their annual training cycle. It was found that load-dependent remodeling occurs in lumbar IVDs. Thus, higher IVD gagCEST values were found in the loading phase than in the resting phase. In summary, the ten papers reveal new and in-depth insights into modern MRI techniques that provide both high-resolution images of fine articular structures and compositional information about articular cartilage and intervertebral discs. Thus, degenerative and inflammatory joint changes can be visualized both structurally and ultrastructurally, which can serve as a starting point for future implementation in diagnostics and therapy control of inflammatory and degenerative joint diseases. | |||||||
Quelle: | 1 Malik KM, Beckerly R, Imani F. Musculoskeletal Disorders a Universal Source of Pain and Disability Misunderstood and Mismanaged: A Critical Analysis Based on the U.S. Model of Care. Anesth Pain Med 2018;8(6).
2 Yelin E, Weinstein S, King T. An update on the burden of musculoskeletal diseases in the U.S. Semin Arthritis Rheum 2019;49(1):1–2. 3 Yelin E, Weinstein S, King T. The burden of musculoskeletal diseases in the United States. Semin Arthritis Rheum 2016;46(3):259–60. 4 Weinstein SL. The Burden of Musculoskeletal Conditions. J Bone Joint Surg Am 2016;98(16):1331. 5 Heidari B. Rheumatoid Arthritis: Early diagnosis and treatment outcomes. Caspian J Intern Med 2011;2(1):161–70. 6 Coates LC, Helliwell PS. Treating to target in psoriatic arthritis: how to implement in clinical practice. Ann Rheum Dis 2016;75(4):640–43. 7 Coates LC. Treating to target in psoriatic arthritis. Curr Opin Rheumatol 2015;27(2):107–10. 8 Singh JA, Guyatt G, Ogdie A, et al. Special Article: 2018 American College of Rheumatology/National Psoriasis Foundation Guideline for the Treatment of Psoriatic Arthritis. Arthritis Care Res (Hoboken) 2019;71(1):2–29. 9 Coates LC, Lubrano E, Perrotta FM, et al. What Should Be the Primary Target of "Treat to Target" in Psoriatic Arthritis? J Rheumatol 2019;46(1):38–42. 10 Møller-Bisgaard S, Hørslev-Petersen K, Ejbjerg B, et al. Effect of Magnetic Resonance Imaging vs Conventional Treat-to-Target Strategies on Disease Activity Remission and Radiographic Progression in Rheumatoid Arthritis: The IMAGINE-RA Randomized Clinical Trial. JAMA 2019;321(5):461–72. 11 van Vollenhoven R. Treat-to-target in rheumatoid arthritis - are we there yet? Nat Rev Rheumatol 2019;15(3):180–86. 12 Taljanovic MS, Hunter TB, Fitzpatrick KA, et al. Musculoskeletal magnetic resonance imaging: importance of radiography. Skeletal Radiol 2003;32(7):403–11. doi:10.1007/s00256-003-0648-7 [published Online First: 3 June 2003]. 13 Ahn JM, El-Khoury GY. Role of magnetic resonance imaging in musculoskeletal trauma. Top Magn Reson Imaging 2007;18(3):155–68. 14 Oostveen JC, van de Laar MA. Magnetic resonance imaging in rheumatic disorders of the spine and sacroiliac joints. Semin Arthritis Rheum 2000;30(1):52–69. 15 Grigoryan M, Roemer FW, Mohr A, et al. Imaging in spondyloarthropathies. Curr Rheumatol Rep 2004;6(2):102–09. 16 Hayashi D, Guermazi A, Crema MD, et al. Imaging in osteoarthritis: what have we learned and where are we going? Minerva Med 2011;102(1):15–32. 17 Boesen M, Kubassova O, Bouert R, et al. Correlation between computer-aided dynamic gadolinium-enhanced MRI assessment of inflammation and semi-quantitative synovitis and bone marrow oedema scores of the wrist in patients with rheumatoid arthritis--a cohort study. Rheumatology (Oxford) 2012;51(1):134–43. 18 Østergaard M, Boesen M. Imaging in rheumatoid arthritis: the role of magnetic resonance imaging and computed tomography. Radiol Med 2019;124(11):1128–41. doi:10.1007/s11547-019-01014-y [published Online First: 18 March 2019]. 19 Chung M, Dahabreh IJ, Hadar N, et al. Emerging MRI Technologies for Imaging Musculoskeletal Disorders Under Loading Stress. Rockville (MD) 2011. 20 Munk PL, Vellet AD, Romano C, et al. The emerging role of magnetic resonance imaging in rheumatology. Can Assoc Radiol J 1994;45(4):270–76. 21 Dean Deyle G. The role of MRI in musculoskeletal practice: a clinical perspective. J Man Manip Ther 2011;19(3):152–61. 22 Del Grande F, Guggenberger R, Fritz J. Rapid Musculoskeletal MRI in 2021: Value and Optimized Use of Widely Accessible Techniques. AJR Am J Roentgenol 2021;216(3):704–17. doi:10.2214/AJR.20.22901 [published Online First: 3 February 2021]. 23 Meier R, Kraus TM, Schaeffeler C, et al. Bone marrow oedema on MR imaging indicates ARCO stage 3 disease in patients with AVN of the femoral head. Eur Radiol 2014;24(9):2271–78. doi:10.1007/s00330-014-3216-8 [published Online First: 28 May 2014]. 24 Waldt S, Gersing A, Brügel M. Measurements and classifications in spine imaging. Semin Musculoskelet Radiol 2014;18(3):219–27. doi:10.1055/s-0034-1375565 [published Online First: 4 June 2014]. 25 Baumert B, Wörtler K, Steffinger D, et al. Assessment of the internal craniocervical ligaments with a new magnetic resonance imaging sequence: three-dimensional turbo spin echo with variable flip-angle distribution (SPACE). Magn Reson Imaging 2009;27(7):954–60. doi:10.1016/j.mri.2009.01.012 [published Online First: 17 March 2009]. 26 Wörtler K, Schäffeler C. Akute Sportverletzungen und chronische Überlastungsschäden an Vor- und Mittelfuß. Radiologe 2015;55(5):417–32. 27 Tan AL, Fukuba E, Halliday NA, et al. High-resolution MRI assessment of dactylitis in psoriatic arthritis shows flexor tendon pulley and sheath-related enthesitis. Ann Rheum Dis 2015;74(1):185–89. 28 Guermazi A, Alizai H, Crema MD, et al. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthr Cartil 2015;23(10):1639–53. doi:10.1016/j.joca.2015.05.026 [published Online First: 5 June 2015]. 29 Guermazi A, Roemer FW. Compositional MRI assessment of cartilage: what is it and what is its potential for sports medicine? Br J Sports Med 2016;50(15):896–97. doi:10.1136/bjsports-2015-095146 [published Online First: 28 October 2015]. 30 Burstein D, Velyvis J, Scott KT, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 2001;45(1):36–41. 31 Link TM. Editorial comment: the future of compositional MRI for cartilage. Eur Radiol 2018;28(7):2872–73. doi:10.1007/s00330-018-5457-4 [published Online First: 30 April 2018]. 32 Einarsson E, Peterson P, Önnerfjord P, et al. The role of cartilage glycosaminoglycan structure in gagCEST. NMR Biomed 2020;33(5):e4259. doi:10.1002/nbm.4259 [published Online First: 30 January 2020]. 33 Schreiner MM, Zbýň Š, Schmitt B, et al. Reproducibility and regional variations of an improved gagCEST protocol for the in vivo evaluation of knee cartilage at 7 T. MAGMA 2016;29(3):513–21. doi:10.1007/s10334-016-0544-5 [published Online First: 10 March 2016]. 34 Müller-Lutz A, Schleich C, Pentang G, et al. Age-dependency of glycosaminoglycan content in lumbar discs: A 3t gagcEST study. J Magn Reson Imaging 2015;42(6):1517–23. 35 Østergaard M, Peterfy CG, Bird P, et al. The OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging (MRI) Scoring System: Updated Recommendations by the OMERACT MRI in Arthritis Working Group. J Rheumatol 2017;44(11):1706–12. 36 Ostergaard M, McQueen F, Wiell C, et al. The OMERACT psoriatic arthritis magnetic resonance imaging scoring system (PsAMRIS): definitions of key pathologies, suggested MRI sequences, and preliminary scoring system for PsA Hands. J Rheumatol 2009;36(8):1816–24. 37 Nwaru CA, Nygård C-H, Virtanen P. Musculoskeletal pain and re-employment among unemployed job seekers: a three-year follow-up study. BMC Public Health 2016;16:531. doi:10.1186/s12889-016-3200-0 [published Online First: 8 July 2016]. 38 van der Woude D, van der Helm-van Mil AHM. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract Res Clin Rheumatol 2018;32(2):174–87. 39 Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis. Nat Rev Dis Primers 2016;2:16072. doi:10.1038/nrdp.2016.72 [published Online First: 13 October 2016]. 40 Huscher D, Merkesdal S, Thiele K, et al. Cost of illness in rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis and systemic lupus erythematosus in Germany. Ann Rheum Dis 2006;65(9):1175–83. doi:10.1136/ard.2005.046367 [published Online First: 15 March 2006]. 41 Salmon JH, Rat AC, Sellam J, et al. Economic impact of lower-limb osteoarthritis worldwide: a systematic review of cost-of-illness studies. Osteoarthr Cartil 2016;24(9):1500–08. doi:10.1016/j.joca.2016.03.012 [published Online First: 23 March 2016]. 42 Aletaha D, Funovits J, Smolen JS. Physical disability in rheumatoid arthritis is associated with cartilage damage rather than bone destruction. Ann Rheum Dis 2011;70(5):733–39. 43 Oliveria SA, Felson DT, Reed JI, et al. Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum 1995;38(8):1134–41. 44 KELLGREN JH, LAWRENCE JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957;16(4):494–502. 45 Robinson WH, Lepus CM, Wang Q, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2016;12(10):580–92. doi:10.1038/nrrheum.2016.136 [published Online First: 19 August 2016]. 46 Cassidy JD, Côté P, Carroll LJ, et al. Incidence and course of low back pain episodes in the general population. Spine (Phila Pa 1976) 2005;30(24):2817–23. 47 Hemanta D, Jiang X-X, Feng Z-Z, et al. Etiology for Degenerative Disc Disease. Chin Med Sci J 2016;31(3):185–91. 48 Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 2013;7(1):3–9. 49 Wu PH, Kim HS, Jang I-T. Intervertebral Disc Diseases PART 2: A Review of the Current Diagnostic and Treatment Strategies for Intervertebral Disc Disease. Int J Mol Sci 2020;21(6). doi:10.3390/ijms21062135 [published Online First: 20 March 2020]. 50 Taher F, Essig D, Lebl DR, et al. Lumbar degenerative disc disease: current and future concepts of diagnosis and management. Adv Orthop 2012;2012:970752. doi:10.1155/2012/970752 [published Online First: 2 April 2012]. 51 Tan AL, Tanner SF, Conaghan PG, et al. Role of metacarpophalangeal joint anatomic factors in the distribution of synovitis and bone erosion in early rheumatoid arthritis. Arthritis Rheum 2003;48(5):1214–22. 52 Bugatti S, Caporali R, Manzo A, et al. Involvement of subchondral bone marrow in rheumatoid arthritis: lymphoid neogenesis and in situ relationship to subchondral bone marrow osteoclast recruitment. Arthritis Rheum 2005;52(11):3448–59. 53 McGonagle D, Lories RJU, Tan AL, et al. The concept of a "synovio-entheseal complex" and its implications for understanding joint inflammation and damage in psoriatic arthritis and beyond. Arthritis Rheum 2007;56(8):2482–91. 54 McGonagle D, Tan AL. The enthesis in psoriatic arthritis. Clin Exp Rheumatol 2015;33(5 Suppl 93):S36-9. 55 Schett G, Lories RJ, D'Agostino M-A, et al. Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol 2017;13(12):731–41. 56 Sudoł-Szopińska I, Kwiatkowska B, Prochorec-Sobieszek M, et al. Enthesopathies and enthesitis. Part 1. Etiopathogenesis. J Ultrason 2015;15(60):72–84. 57 Sudoł-Szopińska I, Kwiatkowska B, Prochorec-Sobieszek M, et al. Enthesopathies and enthesitis. Part 2: Imaging studies. J Ultrason 2015;15(61):196–207. 58 Dubash S, McGonagle D, Marzo-Ortega H. New advances in the understanding and treatment of axial spondyloarthritis: from chance to choice. Ther Adv Chronic Dis 2018;9(3):77–87. doi:10.1177/2040622317743486 [published Online First: 14 December 2017]. 59 Zhu W, He X, Cheng K, et al. Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res 2019;7:22. doi:10.1038/s41413-019-0057-8 [published Online First: 5 August 2019]. 60 Appel H, Loddenkemper C, Miossec P. Rheumatoid arthritis and ankylosing spondylitis - pathology of acute inflammation. Clin Exp Rheumatol 2009;27(4 Suppl 55):S15-9. 61 Chandran V, Abji F, Perruccio AV, et al. Serum-based soluble markers differentiate psoriatic arthritis from osteoarthritis. Ann Rheum Dis 2019 (accessed 26 Apr 2019). 62 Cimmino MA, Parodi M, Innocenti S, et al. Dynamic magnetic resonance of the wrist in psoriatic arthritis reveals imaging patterns similar to those of rheumatoid arthritis. Arthritis Res Ther 2005;7(4):R725-31. 63 Colebatch AN, Edwards CJ, Østergaard M, et al. EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis 2013;72(6):804–14. 64 Schwenzer NF, Kötter I, Henes JC, et al. The role of dynamic contrast-enhanced MRI in the differential diagnosis of psoriatic and rheumatoid arthritis. AJR Am J Roentgenol 2010;194(3):715–20. 65 Zabotti A, Salvin S, Quartuccio L, et al. Differentiation between early rheumatoid and early psoriatic arthritis by the ultrasonographic study of the synovio-entheseal complex of the small joints of the hands. Clin Exp Rheumatol 2016;34(3):459–65. 66 McGonagle D, Hermann K-GA, Tan AL. Differentiation between osteoarthritis and psoriatic arthritis: implications for pathogenesis and treatment in the biologic therapy era. Rheumatology (Oxford) 2015;54(1):29–38 (accessed 26 Apr 2019). 67 Narváez J, Narváez JA, Albert M de, et al. Can magnetic resonance imaging of the hand and wrist differentiate between rheumatoid arthritis and psoriatic arthritis in the early stages of the disease? Semin Arthritis Rheum 2012;42(3):234–45. 68 Currie S, Hoggard N, Craven IJ, et al. Understanding MRI: basic MR physics for physicians. Postgrad Med J 2013;89(1050):209–23. doi:10.1136/postgradmedj-2012-131342 [published Online First: 7 December 2012]. 69 Sands MJ, Levitin A. Basics of magnetic resonance imaging. Semin Vasc Surg 2004;17(2):66–82. 70 Collins CM. Radiofrequency Field Calculations for High Field MRI. In: Ultra High Field Magnetic Resonance Imaging. Boston, MA: Springer US 2006:209–48. 71 Alizai H, Chang G, Regatte RR. MRI of the Musculoskeletal System: Advanced Applications using High and Ultrahigh Field MRI. Semin Musculoskelet Radiol 2015;19(4):363–74. doi:10.1055/s-0035-1563735 [published Online First: 19 November 2015]. 72 Buchbender C, Sewerin P, Mattes-György K, et al. Utility of combined high-resolution bone SPECT and MRI for the identification of rheumatoid arthritis patients with high-risk for erosive progression. Eur J Radiol 2013;82(2):374–79. 73 Buchbender C, Ostendorf B, Mattes-György K, et al. Synovitis and bone inflammation in early rheumatoid arthritis: high-resolution multi-pinhole SPECT versus MRI. Diagn Interv Radiol 2013;19(1):20–24. 74 Tan AL, Grainger AJ, Tanner SF, et al. A high-resolution magnetic resonance imaging study of distal interphalangeal joint arthropathy in psoriatic arthritis and osteoarthritis: are they the same? Arthritis Rheum 2006;54(4):1328–33. 75 Sudoł-Szopińska I, Matuszewska G, Kwiatkowska B, et al. Diagnostic imaging of psoriatic arthritis. Part I: etiopathogenesis, classifications and radiographic features. J Ultrason 2016;16(64):65–77. 76 Spadaro A, Lubrano E. Psoriatic arthritis: imaging techniques. Reumatismo 2012;64(2):99–106. 77 Sankowski AJ, Lebkowska UM, Cwikła J, et al. Psoriatic arthritis. Pol J Radiol 2013;78(1):7–17 (accessed 26 Apr 2019). 78 Kay J, Upchurch KS. ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology (Oxford) 2012;51 Suppl 6:vi5-9. 79 Tillett W, Costa L, Jadon D, et al. The ClASsification for Psoriatic ARthritis (CASPAR) criteria--a retrospective feasibility, sensitivity, and specificity study. J Rheumatol 2012;39(1):154–56. 80 Rudwaleit M, Braun J, Sieper J. ASAS-Klassifikationskriterien für axiale Spondyloarthritis. Z Rheumatol 2009;68(7):591–93. 81 Braun J, van den Berg R, Baraliakos X, et al. 2010 update of the ASAS/EULAR recommendations for the management of ankylosing spondylitis. Ann Rheum Dis 2011;70(6):896–904. 82 Zochling J, van der Heijde D, Burgos-Vargas R, et al. ASAS/EULAR recommendations for the management of ankylosing spondylitis. Ann Rheum Dis 2006;65(4):442–52. 83 Baraliakos X, Davis J, Tsuji W, et al. Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis before and after therapy with the tumor necrosis factor alpha receptor fusion protein etanercept. Arthritis Rheum 2005;52(4):1216–23. 84 Appel H, Loddenkemper C, Grozdanovic Z, et al. Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis. Arthritis Res Ther 2006;8(5):R143. 85 Machado P, Landewé R, Braun J, et al. Both structural damage and inflammation of the spine contribute to impairment of spinal mobility in patients with ankylosing spondylitis. Ann Rheum Dis 2010;69(8):1465–70. 86 Baraliakos X, Hermann K-GA, Xu S, et al. Spinal mobility in the cervical and lumbar spine correlates with magnetic resonance imaging findings for inflammatory and structural changes in patients with active ankylosing spondylitis. Clin Exp Rheumatol 2020. 87 Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001;26(17):1873–78. 88 Modic MT, Masaryk TJ, Ross JS, et al. Imaging of degenerative disk disease. Radiology 1988;168(1):177–86. 89 Burstein D, Gray ML. Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis? Osteoarthr Cartil 2006;14(11):1087–90. doi:10.1016/j.joca.2006.07.001 [published Online First: 9 August 2006]. 90 Bashir A, Gray ML, Hartke J, et al. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 1999;41(5):857–65. 91 Bittersohl B, Miese FR, Dekkers C, et al. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of glenohumeral cartilage in asymptomatic volunteers at 3 T. Eur Radiol 2013;23(5):1367–74. 92 Sewerin P, Schleich C, Vordenbäumen S, et al. Update on imaging in rheumatic diseases: cartilage. Clin Exp Rheumatol 2018;36 Suppl 114(5):139–44. 93 Miese FR, Ostendorf B, Wittsack H-J, et al. Knorpelqualität an den Fingergelenken: delayed Gd(DTPA)²-enhanced MRI of the cartilage (dGEMRIC) bei 3T. Rofo 2010;182(10):873–78. 94 Bittersohl B, Kircher J, Miese FR, et al. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of humeral articular cartilage--a histologically controlled study. J Shoulder Elbow Surg 2015;24(10):1644–52. 95 Schmaranzer F, Arendt L, Liechti EF, et al. Do dGEMRIC and T2 Imaging Correlate With Histologic Cartilage Degeneration in an Experimental Ovine FAI Model? Clin Orthop Relat Res 2019;477(5):990–1003. 96 Sewerin P, Schleich C, Brinks R, et al. Assessing Associations of Synovial Perfusion, Cartilage Quality, and Outcome in Rheumatoid Arthritis Using Dynamic Contrast-enhanced Magnetic Resonance Imaging. J Rheumatol 2019. 97 Sewerin P, Müller-Lutz A, Abrar DB, et al. Prevention of the progressive biochemical cartilage destruction under methotrexate therapy in early rheumatoid arthritis. Clin Exp Rheumatol 2019;37(2):179–85. 98 Herz B, Albrecht A, Englbrecht M, et al. Osteitis and synovitis, but not bone erosion, is associated with proteoglycan loss and microstructure damage in the cartilage of patients with rheumatoid arthritis. Ann Rheum Dis 2014;73(6):1101–06. 99 Deng M, Yuan J, Chen WT, et al. Evaluation of Glycosaminoglycan in the Lumbar Disc Using Chemical Exchange Saturation Transfer MR at 3.0 Tesla: Reproducibility and Correlation with Disc Degeneration. Biomed Environ Sci 2016;29(1):47–55. 100 Kim M, Chan Q, Anthony M-P, et al. Assessment of glycosaminoglycan distribution in human lumbar intervertebral discs using chemical exchange saturation transfer at 3 T: feasibility and initial experience. NMR Biomed 2011;24(9):1137–44. 101 Latz D, Frenken M, Schiffner E, et al. Assessment of glycosaminoglycan content in intervertebral discs of patients with leg length discrepancy: A pilot study. J Orthop 2019;16(5):363–67. 102 Lee YH, Yang J, Jeong H-K, et al. Assessment of the patellofemoral cartilage: Correlation of knee pain score with magnetic resonance cartilage grading and magnetization transfer ratio asymmetry of glycosaminoglycan chemical exchange saturation transfer. Magn Reson Imaging 2017;35:61–68. 103 Togao O, Hiwatashi A, Wada T, et al. A Qualitative and Quantitative Correlation Study of Lumbar Intervertebral Disc Degeneration Using Glycosaminoglycan Chemical Exchange Saturation Transfer, Pfirrmann Grade, and T1-ρ. AJNR Am J Neuroradiol 2018;39(7):1369–75. 104 Schleich C, Bittersohl B, Miese F, et al. Glycosaminoglycan chemical exchange saturation transfer at 3T MRI in asymptomatic knee joints. Acta Radiol 2016;57(5):627–32. 105 Saar G, Zhang B, Ling W, et al. Assessment of glycosaminoglycan concentration changes in the intervertebral disc via chemical exchange saturation transfer. NMR Biomed 2012;25(2):255–61. 106 Müller-Lutz A, Schleich C, Pentang G, et al. Age-dependency of glycosaminoglycan content in lumbar discs: A 3t gagcEST study. J Magn Reson Imaging 2015;42(6):1517–23. 107 Sewerin P, Brinks R, Schneider M, et al. Prevalence and incidence of psoriasis and psoriatic arthritis. Ann Rheum Dis 2019;78(2):286–87. 108 Ritchlin CT, Colbert RA, Gladman DD. Psoriatic Arthritis. N Engl J Med 2017;376(21):2095–96. 109 McGonagle D, Tan AL, Møller Døhn U, et al. Microanatomic studies to define predictive factors for the topography of periarticular erosion formation in inflammatory arthritis. Arthritis Rheum 2009;60(4):1042–51. 110 Furlan A, Stramare R. The thickening of flexor tendons pulleys: a useful ultrasonographical sign in the diagnosis of psoriatic arthritis. J Ultrasound 2018;21(4):309–14. 111 Graceffa D, Bonifati C, Lora V, et al. Ultrasound assessment of enthesis thickness in psoriasis and psoriatic arthritis: A cross-sectional study. Indian J Dermatol Venereol Leprol 2019;85(2):175–81. 112 Tinazzi I, McGonagle D, Aydin SZ, et al. 'Deep Koebner' phenomenon of the flexor tendon-associated accessory pulleys as a novel factor in tenosynovitis and dactylitis in psoriatic arthritis. Ann Rheum Dis 2018;77(6):922–25. 113 Merola JF, Espinoza LR, Fleischmann R. Distinguishing rheumatoid arthritis from psoriatic arthritis. RMD Open 2018;4(2):e000656. 114 Boutry N, do Carmo CCM, Flipo R-M, et al. Early rheumatoid arthritis and its differentiation from other joint abnormalities. Eur J Radiol 2009;71(2):217–24. 115 Narváez J, Narváez JA, Albert M de, et al. Can magnetic resonance imaging of the hand and wrist differentiate between rheumatoid arthritis and psoriatic arthritis in the early stages of the disease? Semin Arthritis Rheum 2012;42(3):234–45. 116 Matzat SJ, van Tiel J, Gold GE, et al. Quantitative MRI techniques of cartilage composition. Quant Imaging Med Surg 2013;3(3):162–74. 117 Holstein A, Zilkens C, Bittersohl B, et al. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and morphologic MRI of cartilage in the long-term follow-up after Legg-Calvé-Perthes disease (LCPD). J Med Imaging Radiat Oncol 2011;55(3):259–65. 118 Brinkhof S, Nizak R, Khlebnikov V, et al. Detection of early cartilage damage: feasibility and potential of gagCEST imaging at 7T. Eur Radiol 2018;28(7):2874–81. 119 Brinkhof S, Nizak R, Sim S, et al. In vivo biochemical assessment of cartilage with gagCEST MRI: Correlation with cartilage properties. NMR Biomed 2021;34(3):e4463. doi:10.1002/nbm.4463 [published Online First: 22 December 2020]. 120 Einarsson E, Peterson P, Önnerfjord P, et al. The role of cartilage glycosaminoglycan structure in gagCEST. NMR Biomed 2020;33(5):e4259. 121 Krakowski P, Gerkowicz A, Pietrzak A, et al. Psoriatic arthritis - new perspectives. Arch Med Sci 2019;15(3):580–89. 122 Merola JF, Espinoza LR, Fleischmann R. Distinguishing rheumatoid arthritis from psoriatic arthritis. RMD Open 2018;4(2):e000656. doi:10.1136/rmdopen-2018-000656 [published Online First: 13 August 2018]. 123 Shiraishi M, Fukuda T, Igarashi T, et al. Differentiating Rheumatoid and Psoriatic Arthritis of the Hand: Multimodality Imaging Characteristics. Radiographics 2020;40(5):1339–54. doi:10.1148/rg.2020200029 [published Online First: 31 July 2020]. 124 Khmelinskii N, Regel A, Baraliakos X. The Role of Imaging in Diagnosing Axial Spondyloarthritis. Front Med (Lausanne) 2018;5:106. doi:10.3389/fmed.2018.00106 [published Online First: 17 April 2018]. 125 Braun J, van den Berg R, Baraliakos X, et al. 2010 update of the ASAS/EULAR recommendations for the management of ankylosing spondylitis. Ann Rheum Dis 2011;70(6):896–904. 126 van der Heijde DM, Revicki DA, Gooch KL, et al. Physical function, disease activity, and health-related quality-of-life outcomes after 3 years of adalimumab treatment in patients with ankylosing spondylitis. Arthritis Res Ther 2009;11(4):R124. 127 Sudoł-Szopińska I, Płaza M, Pracoń G. Selected issues in diagnostic imaging of spondyloarthritides: psoriatic arthritis and juvenile spondyloarthritis. Reumatologia 2016;54(6):310–17. 128 Schett G, Coates LC, Ash ZR, et al. Structural damage in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: traditional views, novel insights gained from TNF blockade, and concepts for the future. Arthritis Res Ther 2011;2011. http://arthritis-research.com/supplements/13/S1/S4 (accessed 26 Apr 2019). 129 Appel H, Kuhne M, Spiekermann S, et al. Immunohistochemical analysis of hip arthritis in ankylosing spondylitis: evaluation of the bone-cartilage interface and subchondral bone marrow. Arthritis Rheum 2006;54(6):1805–13. 130 Bleil J, Sieper J, Maier R, et al. Cartilage in facet joints of patients with ankylosing spondylitis (AS) shows signs of cartilage degeneration rather than chondrocyte hypertrophy: implications for joint remodeling in AS. Arthritis Res Ther 2015;17(1). 131 Schleich C, Müller-Lutz A, Matuschke F, et al. Glycosaminoglycan chemical exchange saturation transfer of lumbar intervertebral discs in patients with spondyloarthritis. J Magn Reson Imaging 2015;42(4):1057–63. doi:10.1002/jmri.24877 [published Online First: 11 March 2015]. 132 Müller-Lutz A, Schleich C, Sewerin P, et al. Comparison of quantitative and semiquantitative dynamic contrast-enhanced MRI with respect to their correlation to delayed gadolinium-enhanced MRI of the cartilage in patients with early rheumatoid arthritis. J Comput Assist Tomogr 2015;39(1):64–69. 133 Schraml C, Schwenzer NF, Martirosian P, et al. Assessment of synovitis in erosive osteoarthritis of the hand using DCE-MRI and comparison with that in its major mimic, the psoriatic arthritis. Acad Radiol 2011;18(7):804–09. 134 Buchbender C, Scherer A, Kröpil P, et al. Cartilage quality in rheumatoid arthritis: comparison of T2* mapping, native T1 mapping, dGEMRIC, ΔR1 and value of pre-contrast imaging. Skeletal Radiol 2012;41(6):685–92. 135 Miese FR, Ostendorf B, Wittsack H-J, et al. Knorpelqualität an den Fingergelenken: delayed Gd(DTPA)²-enhanced MRI of the cartilage (dGEMRIC) bei 3T. Rofo 2010;182(10):873–78. 136 Miese F, Kröpil P, Ostendorf B, et al. Motion correction improves image quality of dGEMRIC in finger joints. Eur J Radiol 2011;80(3):e427-31. 137 Bhattaram P, Chandrasekharan U. The joint synovium: A critical determinant of articular cartilage fate in inflammatory joint diseases. Semin Cell Dev Biol 2017;62:86–93. doi:10.1016/j.semcdb.2016.05.009 [published Online First: 19 May 2016]. 138 Wu A, March L, Zheng X, et al. Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the Global Burden of Disease Study 2017. Ann Transl Med 2020;8(6):299. 139 Billis EV, McCarthy CJ, Oldham JA. Subclassification of low back pain: a cross-country comparison. Eur Spine J 2007;16(7):865–79. doi:10.1007/s00586-007-0313-2 [published Online First: 17 March 2007]. 140 Deane JA, McGregor AH. Current and future perspectives on lumbar degenerative disc disease: a UK survey exploring specialist multidisciplinary clinical opinion. BMJ Open 2016;6(9):e011075. doi:10.1136/bmjopen-2016-011075 [published Online First: 15 September 2016]. 141 Bertram H, Steck E, Zimmerman G, et al. Accelerated intervertebral disc degeneration in scoliosis versus physiological ageing develops against a background of enhanced anabolic gene expression. Biochem Biophys Res Commun 2006;342(3):963–72. 142 Haneder S, Apprich SR, Schmitt B, et al. Assessment of glycosaminoglycan content in intervertebral discs using chemical exchange saturation transfer at 3.0 Tesla: preliminary results in patients with low-back pain. Eur Radiol 2013;23(3):861–68. 143 Hosea TM, Hannafin JA. Rowing Injuries. Sports Health 2012;4(3):236–45. 144 Liu X, Krishnamoorthy D, Lin L, et al. A method for characterising human intervertebral disc glycosaminoglycan disaccharides using liquid chromatography-mass spectrometry with multiple reaction monitoring. Eur Cell Mater 2018;35:117–31. 145 Müller-Lutz A, Schleich C, Pentang G, et al. Age-dependency of glycosaminoglycan content in lumbar discs: A 3t gagcEST study. J Magn Reson Imaging 2015;42(6):1517–23. 146 Schleich C, Müller-Lutz A, Blum K, et al. Facet tropism and facet joint orientation: risk factors for the development of early biochemical alterations of lumbar intervertebral discs. Osteoarthr Cartil 2016;24(10):1761–68. 147 Müller-Lutz A, Schleich C, Schmitt B, et al. Gender, BMI and T2 dependencies of glycosaminoglycan chemical exchange saturation transfer in intervertebral discs. Magn Reson Imaging 2016;34(3):271–75. 148 Müller-Lutz A, Schleich C, Schmitt B, et al. Improvement of gagCEST imaging in the human lumbar intervertebral disc by motion correction. Skeletal Radiol 2015;44(4):505–11. doi:10.1007/s00256-014-2034-z [published Online First: 23 October 2014]. 149 McGonagle D, Marzo-Ortega H, Benjamin M, et al. Report on the Second international Enthesitis Workshop. Arthritis Rheum 2003;48(4):896–905. 150 Baraliakos X, Kleyer A, Simon D, et al. Bildgebung bei der Psoriasisarthritis und Aspekte der röntgenologischen Progression. Z Rheumatol 2020;79(1):40–52. 151 Finzel S, Englbrecht M, Engelke K, et al. A comparative study of periarticular bone lesions in rheumatoid arthritis and psoriatic arthritis. Ann Rheum Dis 2011;70(1):122–27. doi:10.1136/ard.2010.132423 [published Online First: 11 October 2010]. 152 Moll JM, Johnson G, Wright V. Psoriatic arthritis: a unique family. Rheumatol Rehabil 1974;13(3):154–57. 153 Moll JM, Wright V. Psoriatic arthritis. Semin Arthritis Rheum 1973;3(1):55–78. 154 Kaeley GS, Eder L, Aydin SZ, et al. Dactylitis: A hallmark of psoriatic arthritis. Semin Arthritis Rheum 2018;48(2):263–73. 155 Forney MC, Winalski CS, Schils JP. Magnetic resonance imaging of inflammatory arthropathies of peripheral joints. Top Magn Reson Imaging 2011;22(2):45–59. 156 Vordenbäumen S, Schleich C, Lögters T, et al. Dynamic contrast-enhanced magnetic resonance imaging of metacarpophalangeal joints reflects histological signs of synovitis in rheumatoid arthritis. Arthritis Res Ther 2014;16(5):452. 157 Jones M, Badreddine I, Mehta J, et al. The Rate of Disc Degeneration on MRI in Preoperative Adolescent Idiopathic Scoliosis. Spine J 2017;17(11):S332. 158 Connolly PJ, Schroeder HP von, Johnson GE, et al. Adolescent idiopathic scoliosis. Long-term effect of instrumentation extending to the lumbar spine. J Bone Joint Surg Am 1995;77(8):1210–16. 159 Masui T, Yukawa Y, Nakamura S, et al. Natural history of patients with lumbar disc herniation observed by magnetic resonance imaging for minimum 7 years. J Spinal Disord Tech 2005;18(2):121–26. 160 Bleil J, Maier R, Hempfing A, et al. Granulation Tissue Eroding the Subchondral Bone Also Promotes New Bone Formation in Ankylosing Spondylitis. Arthritis Rheumatol 2016;68(10):2456–65. 161 Bleil J, Maier R, Hempfing A, et al. Histomorphologic and histomorphometric characteristics of zygapophyseal joint remodeling in ankylosing spondylitis. Arthritis Rheumatol 2014;66(7):1745–54. 162 CRUICKSHANK B. Lesions of cartilaginous joints in ankylosing spondylitis. J Pathol Bacteriol 1956;71(1):73–84. 163 CRUICKSHANK B. Histopathology of diarthrodial joints in ankylosing spondylitis. Ann Rheum Dis 1951;10(4):393–404. 164 Oei EHG, Wick MC, Müller-Lutz A, et al. Cartilage Imaging: Techniques and Developments. Semin Musculoskelet Radiol 2018;22(2):245–60 (accessed 30 Apr 2019). 165 Braun HJ, Gold GE. Advanced MRI of articular cartilage. Imaging Med 2011;3(5):541–55. 166 Koning A de, Schoones JW, van der Heijde D, et al. Pathophysiology of axial spondyloarthritis: Consensus and controversies. Eur J Clin Invest 2018;48(5):e12913. 167 Roos EM, Dahlberg L. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 2005;52(11):3507–14. 168 Witwit WA, Kovac P, Sward A, et al. Disc degeneration on MRI is more prevalent in young elite skiers compared to controls. Knee Surg Sports Traumatol Arthrosc 2018;26(1):325–32. doi:10.1007/s00167-017-4545-3 [published Online First: 13 April 2017]. 169 Belavý DL, Quittner MJ, Ridgers N, et al. Running exercise strengthens the intervertebral disc. Sci Rep 2017;7:45975. doi:10.1038/srep45975 [published Online First: 19 April 2017]. 170 Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 1999;24(8):755–62. | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät » Institute » Institut für Diagnostische Radiologie | |||||||
Dokument erstellt am: | 23.11.2022 | |||||||
Dateien geändert am: | 23.11.2022 |