Dokument: Charakterisierung der p21-GFP-Expression in Genom-editierten humanen Zelllinien
Titel: | Charakterisierung der p21-GFP-Expression in Genom-editierten humanen Zelllinien | |||||||
Weiterer Titel: | Characterization of p21-GFP expression in genome-edited human cell lines | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=60612 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20220919-105715-9 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Büchel, Simon [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof.Dr Fritz Boege [Gutachter] PD Dr. rer. nat. Stork, Björn [Gutachter] | |||||||
Stichwörter: | p21, DNA-Schädigung, Expressionsdynamik, Zellzyklus | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Diese Arbeit beschäftigt sich mit den Antwortmechanismen humaner Zellen auf eine DNA-Schädigung, welche essentiell zur Tumorprävention ist. Untersucht wird das Tumorsupressorprotein p21, welches eine wesentliche Rolle in der Kontrolle des Zellzyklus einnimmt. Bei einer Schädigung der Körperzelle wird die Expression von p21 induziert, welches einen Zellzyklusarrest induziert, um die DNA-Reparatur zu ermöglichen.
Studien haben gezeigt, dass sich die Induktion von p21 auf Einzelzellniveau unterschiedlich darstellt. In manchen Zellen erfolgte eine sofortige Induktion der p21 Expression, in anderen eine verzögerte und in einigen gar keine. In dieser Arbeit sollte zum einen geprüft werden, ob diese individuelle p21-Antwort abhängig ist von der Zellzyklusphase, in der die Zellschädigung stattgefunden hat. Zum anderen sollte untersucht werden, ob sich die Dynamik der p21-Expression zwischen verschiedenen Arten der DNA-Schädigung unterscheidet. Für die Experimente wurden HT-1080- Fibrosarkomzellen verwendet, in denen p21 durch CRISPR/Cas9-Genomeditierung mit dem grün fluoreszierenden Protein GFP fusioniert wurde. Bei einer Zellschädigung kann somit die Expression des p21-GFP-Fusionsproteins unter dem Fluoreszenzmikroskop beobachtet werden. Durch die Expression eines Fusionsproteins aus dem Zellzyklusmarker PCNA und dem roten Fluoreszenzprotein RFP kann anhand der Verteilung der roten Fluoreszenz der Zellzyklus bestimmt werden, da sich diese in G1-, S- und G2-Phase unterscheidet. Zusätzlich stand ein durch CRISPR/Cas9-generierter p21-Knockout-Klon zur Verfügung. Um zu prüfen, ob die p21 Antwort vom Zellzyklus zum Zeitpunkt der Zellschädigung abhängt, wurden die Zellen mit Camptothecin geschädigt und die p21-GFP-Induktion 48 Stunden lang nachverfolgt. Dabei hat sich zwar bestätigt, dass einzelne Zellen stärker nach der Schädigung fluoreszieren, aber eine Zuordnung zum Zellzyklus war durch technische Probleme des Mikroskops nicht möglich. Zusätzlich konnte durch einen Vergleich des p21-Knockout-Klons mit dem Wildtyp gezeigt werden, dass Zellen ohne p21 trotz Schädigung häufiger in die S-Phase gehen, die Zellzyklus-Kontrolle also behindert ist. Um die zweite Frage zur p21-Expression bei verschiedenen Arten der DNA-Schädigung zu bearbeiten, wurden die Zellen mit unterschiedlichen Dosen an UVA Strahlen geschädigt und die p21-GFP-Expression quantifiziert. Es hat sich ein sigmoidaler Anstieg der mittleren Fluoreszenz gezeigt. Da bei Röntgenstrahlen ein linearer Anstieg stattfindet, verursacht die Art der DNA-Schädigung also tatsächlich unterschiedliche p21-GFP-Expressionskinetiken. Außerdem zeigte sich, dass p21-GFP-exprimierende Zellen in G1 und G2 verharren, in welcher Phase vermehrt war jedoch abhängig von der Schädigungsart. Zusammenfassend konnte gezeigt werden, dass die p21-GFP-Induktion schadensspezifische Kinetiken aufweist, sodass dieses Zellsystem als biologisches System zur Toxizitätsbestimmung verschiedenster Substanzen geeignet erscheint.This work deals with the response mechanisms of human cells to DNA damage, which is essential for tumor prevention. The tumor suppressor protein p21 is investigated, which plays an essential role in cell cycle control. Upon damage to the somatic cell, the expression of p21 is induced, which induces cell cycle arrest to allow DNA repair. Studies have shown that the induction of p21 varies at the single-cell level. In some cells there was an immediate induction of p21 expression, in others a delayed induction and in some none at all. In this work, it was the aim to determine whether this individual p21 response is dependent on the cell cycle phase in which cell damage occurred. The second aim was to investigate whether the dynamics of p21 expression differ between different types of DNA damage. For the experiments, HT-1080- fibrosarcoma cells were used in which p21 was fused to the green fluorescent protein GFP by CRISPR/Cas9 genome editing. Thus, upon cell injury, expression of the p21-GFP fusion protein can be observed under the fluorescence microscope. By expressing a fusion protein of the cell cycle marker PCNA and the red fluorescent protein RFP, the cell cycle can be determined based on the distribution of red fluorescence as it differs into G1, S, and G2 phases. In addition, a p21 knockout clone generated by CRISPR/Cas9 was available. To test whether the p21 response depends on the cell cycle at the time of cell damage, cells were damaged with camptothecin and p21-GFP induction was followed up for 48 hours. This confirmed that individual cells fluoresced more strongly after damage, but assignment to the cell cycle was not possible due to technical problems with the microscope. In addition, by comparing the p21 knockout clone with the wild type, it was shown that cells without p21 enter S phase more frequently despite damage, thus cell cycle control is impaired. To address the second question about p21 expression in different types of DNA damage, cells were damaged with different doses of UVA radiation and p21-GFP expression was quantified. A sigmoidal increase in mean fluorescence was shown. Thus, since a linear increase occurs with X-rays, the type of DNA damage actually causes different p21-GFP expression kinetics. Moreover, p21-GFP-expressing cells were shown to persist in G1 and G2, but in which phase increased was dependent on the type of damage. In summary, it was shown that p21-GFP induction exhibits damage-specific kinetics, so that this cell system appears to be suitable as a biological system for toxicity determination of a wide variety of substances. | |||||||
Quelle: | Literaturverzeichnis
Abbas, Tarek; Dutta, Anindya (2009): p21 in cancer: intricate networks and multiple activities. In: Nature reviews. Cancer 9 (6), S. 400–414. DOI: 10.1038/nrc2657. Adnane, J.; Jackson, R. J.; Nicosia, S. V.; Cantor, A. B.; Pledger, W. J.; Sebti, S. M. (2000): Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. In: Oncogene 19 (47), S. 5338–5347. DOI: 10.1038/sj.onc.1203956. Anwar, Adil; Norris, David A.; Fujita, Mayumi (2011): Ubiquitin proteasomal pathway mediated degradation of p53 in melanoma. In: Archives of biochemistry and biophysics 508 (2), S. 198–203. DOI: 10.1016/j.abb.2010.12.012. Aparicio, Oscar M. (2013): Location, location, location: it's all in the timing for replication origins. In: Genes & Development 27 (2), S. 117–128. DOI: 10.1101/gad.209999.112. Ball, K. L. (1997): p21: structure and functions associated with cyclin-CDK binding. In: Progress in cell cycle research 3, S. 125–134. DOI: 10.1007/978-1-4615-5371-7_10. Barnum, Kevin J.; O'Connell, Matthew J. (2014): Cell cycle regulation by checkpoints. In: Methods in molecular biology (Clifton, N.J.) 1170, S. 29–40. DOI: 10.1007/978-1-4939-0888-2_2. Barr, Alexis R.; Cooper, Samuel; Heldt, Frank S.; Butera, Francesca; Stoy, Henriette; Mansfeld, Jörg et al. (2017): DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. In: Nature Communications 8, S. 14728. DOI: 10.1038/ncomms14728. Biochemie, Zellbiologie, Ökologie, Evolution (2000). Heidelberg: Spektrum Akad. Verl. (Spektrum Lehrbuch). Bode, Ann M.; Dong, Zigang (2004): Post-translational modification of p53 in tumorigenesis. In: Nature reviews. Cancer 4 (10), S. 793–805. DOI: 10.1038/nrc1455. Bohnsack, Brenda L.; Hirschi, Karen K. (2004): Nutrient regulation of cell cycle progression. In: Annual review of nutrition 24, S. 433–453. DOI: 10.1146/annurev.nutr.23.011702.073203. Brosius, Felix (2018): SPSS. Umfassendes Handbuch zu Statistik und Datenanalyse. 8. Auflage. Frechen: mitp (mitp Professional). Online verfügbar unter http://www.content-select.com/index.php?id=bib_view&ean=9783958456693. Carrassa, Laura; Damia, Giovanna (2017): DNA damage response inhibitors: Mechanisms and potential applications in cancer therapy. In: Cancer treatment reviews 60, S. 139–151. DOI: 10.1016/j.ctrv.2017.08.013. Caspari, Thomas (2000): Checkpoints: How to activate p53. In: Current Biology 10 (8), R315-R317. DOI: 10.1016/s0960-9822(00)00439-5. Cayrol, C.; Knibiehler, M.; Ducommun, B. (1998): p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells. In: Oncogene 16 (3), S. 311–320. DOI: 10.1038/sj.onc.1201543. Chao, Chuck C-K (2015): Mechanisms of p53 degradation. In: Clinica chimica acta; international journal of clinical chemistry 438, S. 139–147. DOI: 10.1016/j.cca.2014.08.015. Chatterjee, Nimrat; Walker, Graham C. (2017): Mechanisms of DNA damage, repair, and mutagenesis. In: Environmental and molecular mutagenesis 58 (5), S. 235–263. DOI: 10.1002/em.22087. Connolly, K. M.; Bogdanffy, M. S. (1993): Evaluation of proliferating cell nuclear antigen (PCNA) as an endogenous marker of cell proliferation in rat liver: a dual-stain comparison with 5-bromo-2'-deoxyuridine. In: The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 41 (1), S. 1–6. DOI: 10.1177/41.1.7678022. Cuddihy, Andrew R.; O'Connell, Matthew J. (2003): Cell-cycle responses to DNA damage in G2. In: International review of cytology 222, S. 99–140. DOI: 10.1016/s0074-7696(02)22013-6. Dröge, Peter; Meister, Gunter; Schiebel, Elmar (2018): Molekulare Genetik. 11., unveränderte Auflage. Hg. v. Alfred Nordheim und Rolf Knippers. Stuttgart: Thieme. Online verfügbar unter http://nbn-resolving.org/urn:nbn:de:bsz:24-epflicht-1936767. Fortini, P.; Pascucci, B.; Parlanti, E.; D'Errico, M.; Simonelli, V.; Dogliotti, E. (2003): 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways. In: Mutation research 531 (1-2), S. 127–139. DOI: 10.1016/j.mrfmmm.2003.07.004. Fotedar, R.; Diederich, L.; Fotedar, A. (1996): Apoptosis and the cell cycle. In: Progress in cell cycle research 2, S. 147–163. DOI: 10.1007/978-1-4615-5873-6_15. Garbe, C.; Rassner, G. (Hg.) (1998): Dermatologie. Leitlinien und Qualitätssicherung für Diagnostik und Therapie Berichte von der 39. Tagung der Deutschen Dermatologischen Gesellschaft. Berlin, Heidelberg: Springer Berlin Heidelberg. Gartel, Andrei L.; Radhakrishnan, Senthil K. (2005): Lost in transcription: p21 repression, mechanisms, and consequences. In: Cancer research 65 (10), S. 3980–3985. DOI: 10.1158/0008-5472.CAN-04-3995. González-Magaña, Amaia; Blanco, Francisco J. (2020): Human PCNA Structure, Function and Interactions. In: Biomolecules 10 (4). DOI: 10.3390/biom10040570. Gossauer, Albert (2006): Struktur und Reaktivität der Biomoleküle. Eine Einführung in die organische Chemie. Zürich: Verl. Helvetica Chimica Acta. Graw, Jochen (2015): Genetik. 6. Aufl. 2015. Berlin, Heidelberg: Springer Berlin Heidelberg. Online verfügbar unter http://nbn-resolving.org/urn:nbn:de:bsz:31-epflicht-1515205. Hainaut, Pierre (2007): 25 Years of p53 Research. Dordrecht: Springer. Online verfügbar unter http://gbv.eblib.com/patron/FullRecord.aspx?p=238607. Hayes, Andrew F.; Cai, Li (2007): Using heteroskedasticity-consistent standard error estimators in OLS regression: an introduction and software implementation. In: Behavior Research Methods 39 (4), S. 709–722. DOI: 10.3758/BF03192961. Hoeferlin, L. Alexis; Oleinik, Natalia V.; Krupenko, Natalia I.; Krupenko, Sergey A. (2011): Activation of p21-Dependent G1/G2 Arrest in the Absence of DNA Damage as an Antiapoptotic Response to Metabolic Stress. In: Genes & Cancer 2 (9), S. 889–899. DOI: 10.1177/1947601911432495. Hsu, Chien-Hsiang; Altschuler, Steven J.; Wu, Lani F. (2019): Patterns of Early p21 Dynamics Determine Proliferation-Senescence Cell Fate after Chemotherapy. In: Cell 178 (2), 361-373.e12. DOI: 10.1016/j.cell.2019.05.041. Huang, J. C.; Svoboda, D. L.; Reardon, J. T.; Sancar, A. (1992): Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5' and the 6th phosphodiester bond 3' to the photodimer. In: Proceedings of the National Academy of Sciences of the United States of America 89 (8), S. 3664–3668. DOI: 10.1073/pnas.89.8.3664. Huang, Rui-Xue; Zhou, Ping-Kun (2020): DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. In: Sig Transduct Target Ther 5 (1), S. 60. DOI: 10.1038/s41392-020-0150-x. ibidi: Instructions micro–Insert 4 Well FulTrac. Version 1.0 (2016-05-09). Hg. v. ibidi. Martiensried. Jackson, S. P. (2002): Sensing and repairing DNA double-strand breaks. In: Carcinogenesis 23 (5), S. 687–696. DOI: 10.1093/carcin/23.5.687. Jänicke, Reiner U.; Sohn, Dennis; Essmann, Frank; Schulze-Osthoff, Klaus (2007): The multiple battles fought by anti-apoptotic p21. In: Cell cycle (Georgetown, Tex.) 6 (4), S. 407–413. DOI: 10.4161/cc.6.4.3855. Jin, Juan; Tao, Zhonghua; Cao, Jun; Li, Ting; Hu, Xichun (2021): DNA damage response inhibitors: An avenue for TNBC treatment. In: Biochimica et biophysica acta. Reviews on cancer 1875 (2), S. 188521. DOI: 10.1016/j.bbcan.2021.188521. Jones, Matthew C.; Zha, Junzhe; Humphries, Martin J. (2019): Connections between the cell cycle, cell adhesion and the cytoskeleton. In: Philosophical Transactions of the Royal Society B: Biological Sciences 374 (1779), S. 20180227. DOI: 10.1098/rstb.2018.0227. Kalfalah, Faiza M.; Berg, Elke; Christensen, Morten O.; Linka, René M.; Dirks, Wilhelm G.; Boege, Fritz; Mielke, Christian (2015): Spatio-temporal regulation of the human licensing factor Cdc6 in replication and mitosis. In: Cell Cycle 14 (11), S. 1704–1715. DOI: 10.1080/15384101.2014.1000182. Karakas, Bedri; Weeraratna, Ashani T.; Abukhdeir, Abde M.; Konishi, Hiroyuki; Gustin, John P.; Vitolo, Michele I. et al. (2007): P21 gene knock down does not identify genetic effectors seen with gene knock out. In: Cancer biology & therapy 6 (7), S. 1025–1030. DOI: 10.4161/cbt.6.7.4202. Karimian, Ansar; Ahmadi, Yasin; Yousefi, Bahman (2016): Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. In: DNA repair 42, S. 63–71. DOI: 10.1016/j.dnarep.2016.04.008. Karran, Peter; Brem, Reto (2016): Protein oxidation, UVA and human DNA repair. In: DNA repair 44, S. 178–185. DOI: 10.1016/j.dnarep.2016.05.024. Kida, Naoko; Matsuo, Yoshiyuki; Hashimoto, Yoshiko; Nishi, Kenichiro; Tsuzuki-Nakao, Tomoko; Bono, Hidemasa et al. (2021): Cigarette Smoke Extract Activates Hypoxia-Inducible Factors in a Reactive Oxygen Species-Dependent Manner in Stroma Cells from Human Endometrium. In: Antioxidants (Basel, Switzerland) 10 (1). DOI: 10.3390/antiox10010048. Kisielewska, Jolanta; Lu, Pin; Whitaker, Michael (2005): GFP-PCNA as an S-phase marker in embryos during the first and subsequent cell cycles. In: Biology of the cell 97 (3), S. 221–229. DOI: 10.1042/BC20040093. Koike, Manabu; Yutoku, Yasutomo; Koike, Aki (2011): Accumulation of p21 proteins at DNA damage sites independent of p53 and core NHEJ factors following irradiation. In: Biochemical and biophysical research communications 412 (1), S. 39–43. DOI: 10.1016/j.bbrc.2011.07.032. Komiya, T.; Hosono, Y.; Hirashima, T.; Masuda, N.; Yasumitsu, T.; Nakagawa, K. et al. (1997): p21 expression as a predictor for favorable prognosis in squamous cell carcinoma of the lung. In: Clinical cancer research : an official journal of the American Association for Cancer Research 3 (10), S. 1831–1835. Kontopidis, George; Wu, Su-Ying; Zheleva, Daniella I.; Taylor, Paul; McInnes, Campbell; Lane, David P. et al. (2005): Structural and biochemical studies of human proliferating cell nuclear antigen complexes provide a rationale for cyclin association and inhibitor design. In: Proceedings of the National Academy of Sciences of the United States of America 102 (6), S. 1871–1876. DOI: 10.1073/pnas.0406540102. Kuefner, M. A.; Brand, M.; Engert, C.; Schwab, S. A.; Uder, M. (2015): Radiation Induced DNA Double-Strand Breaks in Radiology. In: RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 187 (10), S. 872–878. DOI: 10.1055/s-0035-1553209. Kumari, Ruchi; Jat, Parmjit (2021): Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. In: Front. Cell Dev. Biol. 9, S. 645593. DOI: 10.3389/fcell.2021.645593. Lane, D. P. (1992): Cancer. p53, guardian of the genome. In: Nature 358 (6381), S. 15–16. DOI: 10.1038/358015a0. Lee, Ciaran M.; Zhu, Haibao; Davis, Timothy H.; Deshmukh, Harshahardhan; Bao, Gang (2017): Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells. In: Methods in molecular biology (Clifton, N.J.) 1498, S. 3–21. DOI: 10.1007/978-1-4939-6472-7_1. Li, Rong; Hannon, Gregory J.; Beach, David; Stillman, Bruce (1996): Subcellular distribution of p21 and PCNA in normal and repair-deficient cells following DNA damage. In: Current Biology 6 (2), S. 189–199. DOI: 10.1016/S0960-9822(02)00452-9. Liu, Jing; Peng, Yunhua; Wei, Wenyi (2022): Cell cycle on the crossroad of tumorigenesis and cancer therapy. In: Trends in cell biology 32 (1), S. 30–44. DOI: 10.1016/j.tcb.2021.07.001. Lorence, Argelia; Nessler, Craig L. (2004): Camptothecin, over four decades of surprising findings. In: Phytochemistry 65 (20), S. 2735–2749. DOI: 10.1016/j.phytochem.2004.09.001. Ma, Yuanwu; Zhang, Lianfeng; Huang, Xingxu (2014): Genome modification by CRISPR/Cas9. In: The FEBS journal 281 (23), S. 5186–5193. DOI: 10.1111/febs.13110. Mansilla, Sabrina Florencia; La Vega, María Belén de; Calzetta, Nicolás Luis; Siri, Sebastián Omar; Gottifredi, Vanesa (2020): CDK-Independent and PCNA-Dependent Functions of p21 in DNA Replication. In: Genes 11 (6). DOI: 10.3390/genes11060593. Mielke, Christian; Kalfalah, Faiza M.; Christensen, Morten O.; Boege, Fritz (2007): Rapid and prolonged stalling of human DNA topoisomerase I in UVA-irradiated genomic areas. In: DNA repair 6 (12), S. 1757–1763. DOI: 10.1016/j.dnarep.2007.06.014. Moeller, Stephanie J.; Sheaff, Robert J. (2006): G1 phase: components, conundrums, context. In: Results and problems in cell differentiation 42, S. 1–29. Online verfügbar unter https://pubmed.ncbi.nlm.nih.gov/16903206/. Moreno, Natália Cestari; Garcia, Camila Carrião Machado; Rocha, Clarissa Ribeiro Reily; Munford, Veridiana; Menck, Carlos Frederico Martins (2019): ATR/Chk1 Pathway is Activated by Oxidative Stress in Response to UVA Light in Human Xeroderma Pigmentosum Variant Cells. In: Photochemistry and photobiology 95 (1), S. 345–354. DOI: 10.1111/php.13041. Nickoloff, Jac A.; Sharma, Neelam; Taylor, Lynn (2020): Clustered DNA Double-Strand Breaks: Biological Effects and Relevance to Cancer Radiotherapy. In: Genes 11 (1), S. 99. DOI: 10.3390/genes11010099. O'Connor, P. M. (1997): Mammalian G1 and G2 phase checkpoints. In: Cancer surveys 29, S. 151–182. Online verfügbar unter https://pubmed.ncbi.nlm.nih.gov/9338101/. Ohtani, Naoko; Imamura, Yuko; Yamakoshi, Kimi; Hirota, Fumiko; Nakayama, Rika; Kubo, Yoshiaki et al. (2007): Visualizing the dynamics of p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression in living animals. In: Proceedings of the National Academy of Sciences of the United States of America 104 (38), S. 15034–15039. DOI: 10.1073/pnas.0706949104. Parplys, Ann Christin; Petermann, Eva; Petersen, Cordula; Dikomey, Ekkehard; Borgmann, Kerstin (2012): DNA damage by X-rays and their impact on replication processes. In: Radiotherapy and Oncology 102 (3), S. 466–471. DOI: 10.1016/j.radonc.2012.01.005. Perucca, Paola; Cazzalini, Ornella; Mortusewicz, Oliver; Necchi, Daniela; Savio, Monica; Nardo, Tiziana et al. (2006): Spatiotemporal dynamics of p21CDKN1A protein recruitment to DNA-damage sites and interaction with proliferating cell nuclear antigen. In: Journal of cell science 119 (Pt 8), S. 1517–1527. DOI: 10.1242/jcs.02868. Redman, Melody; King, Andrew; Watson, Caroline; King, David (2016): What is CRISPR/Cas9? In: Archives of Disease in Childhood. Education and Practice Edition 101 (4), S. 213–215. DOI: 10.1136/archdischild-2016-310459. Ribatti, Domenico (2017): A revisited concept: Contact inhibition of growth. From cell biology to malignancy. In: Experimental Cell Research 359 (1), S. 17–19. DOI: 10.1016/j.yexcr.2017.06.012. Robinson, J. Paul; Roederer, Mario (2015): HISTORY OF SCIENCE. Flow cytometry strikes gold. In: Science (New York, N.Y.) 350 (6262), S. 739–740. DOI: 10.1126/science.aad6770. Rodríguez-Rodríguez, Diana Raquel; Ramírez-Solís, Ramiro; Garza-Elizondo, Mario Alberto; Garza-Rodríguez, María De Lourdes; Barrera-Saldaña, Hugo Alberto (2019): Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review). In: International Journal of Molecular Medicine 43 (4), S. 1559–1574. DOI: 10.3892/ijmm.2019.4112. Rudolf, Matthias; Müller, Johannes (2020): Multivariate Verfahren. Eine praxisorientierte Einführung mit Anwendungsbeispielen. 3., überarbeitete Auflage. Göttingen: Hogrefe (Psychlehrbuch plus). Online verfügbar unter https://elibrary.hogrefe.com/book/99.110005/9783840929007. Rumora, Amy E.; Kolodziejczak, Katarzyna M.; Malhowski Wagner, Anne; Núñez, Megan E. (2008): Thymine dimer-induced structural changes to the DNA duplex examined with reactive probes (†). In: Biochemistry 47 (49), S. 13026–13035. DOI: 10.1021/bi801417u. Sakasai, Ryo; Iwabuchi, Kuniyoshi (2016): The distinctive cellular responses to DNA strand breaks caused by a DNA topoisomerase I poison in conjunction with DNA replication and RNA transcription. In: Genes & genetic systems 90 (4), S. 187–194. DOI: 10.1266/ggs.15-00023. Salkind, Neil (2010): Encyclopedia of research design. Volume 1 - 3. Los Angeles, London, New Delhi, Singapore, Washington, D.C.: Sage. Online verfügbar unter http://worldcatlibraries.org/wcpa/oclc/568735323. Sander van den Heuvel (2005): Cell-cycle regulation. In: Sander den van Heuvel (Hg.): WormBook: The Online Review of C. elegans Biology [Internet]: WormBook. Online verfügbar unter https://www.ncbi.nlm.nih.gov/books/NBK19719/. Satyanarayana, Ande; Kaldis, Philipp (2009): A dual role of Cdk2 in DNA damage response. In: Cell Division 4, S. 9. DOI: 10.1186/1747-1028-4-9. Schendera, Christian F. G. (2014): Regressionsanalyse mit SPSS. 2., korrigierte und aktualisierte Aufl. München: De Gruyter Oldenbourg. Shamloo, Bahar; Usluer, Sinem (2019): p21 in Cancer Research. In: Cancers 11 (8). DOI: 10.3390/cancers11081178. Sheng, Caibin; Mendler, Isabella-Hilda; Rieke, Sara; Snyder, Petra; Jentsch, Marcel; Friedrich, Dhana et al. (2019): PCNA-Mediated Degradation of p21 Coordinates the DNA Damage Response and Cell Cycle Regulation in Individual Cells. In: Cell reports 27 (1), 48-58.e7. DOI: 10.1016/j.celrep.2019.03.031. Shiloh, Yosef (2001): ATM and ATR: networking cellular responses to DNA damage. In: Current Opinion in Genetics & Development 11 (1), S. 71–77. DOI: 10.1016/S0959-437X(00)00159-3. Shtarkman, I. N.; Gudkov, S. V.; Chernikov, A. V.; Bruskov, V. I. (2008): Effect of amino acids on X-ray-induced hydrogen peroxide and hydroxyl radical formation in water and 8-oxoguanine in DNA. In: Biochemistry. Biokhimiia 73 (4), S. 470–478. DOI: 10.1134/s0006297908040135. Shtutman, Michael; Chang, Bey-Dih; Schools, Gary P.; Broude, Eugenia V. (2017): Cellular Model of p21-Induced Senescence. In: Methods in molecular biology (Clifton, N.J.) 1534, S. 31–39. DOI: 10.1007/978-1-4939-6670-7_3. Siede, W.; Friedberg, A. S.; Dianova, I.; Friedberg, E. C. (1994): Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents. In: Genetics 138 (2), S. 271–281. DOI: 10.1093/genetics/138.2.271. Smith, Joanne; Tho, Lye Mun; Xu, Naihan; Gillespie, David A. (2010): The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. In: Advances in cancer research 108, S. 73–112. DOI: 10.1016/B978-0-12-380888-2.00003-0. Srinivas, Upadhyayula Sai; Tan, Bryce W. Q.; Vellayappan, Balamurugan A.; Jeyasekharan, Anand D. (2019): ROS and the DNA damage response in cancer. In: Redox biology 25, S. 101084. DOI: 10.1016/j.redox.2018.101084. Stewart-Ornstein, Jacob; Lahav, Galit (2016): Dynamics of CDKN1A in Single Cells Defined by an Endogenous Fluorescent Tagging Toolkit. In: Cell reports 14 (7), S. 1800–1811. DOI: 10.1016/j.celrep.2016.01.045. Strzalka, Wojciech; Ziemienowicz, Alicja (2011): Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. In: Annals of Botany 107 (7), S. 1127–1140. DOI: 10.1093/aob/mcq243. Sun, Linlin; Lutz, Brianna Marie; Tao, Yuan-Xiang (2016): The CRISPR/Cas9 system for gene editing and its potential application in pain research. In: Translational perioperative and pain medicine 1 (3), S. 22–33. Toledo, Franck; Wahl, Geoffrey M. (2006): Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. In: Nature reviews. Cancer 6 (12), S. 909–923. DOI: 10.1038/nrc2012. Vidalin, Olivier; Muslmani, Machadiya; Estienne, Clément; Echchakir, Hamid; Abina, Amine M. (2009): In vivo target validation using gene invalidation, RNA interference and protein functional knockout models: it is the time to combine. In: Current opinion in pharmacology 9 (5), S. 669–676. DOI: 10.1016/j.coph.2009.06.017. Voet, Donald; Voet, Judith G.; Pratt, Charlotte W. (2019): Lehrbuch der Biochemie. Dritte, vollständig überarbeitete und erweiterte Auflage. Weinheim: Wiley-VCH. Online verfügbar unter https://books.google.de/books?id=aaySDwAAQBAJ. Vousden, Karen H.; Prives, Carol (2009): Blinded by the Light: The Growing Complexity of p53. In: Cell 137 (3), S. 413–431. DOI: 10.1016/j.cell.2009.04.037. Warfel, Noel A.; El-Deiry, Wafik S. (2013): p21WAF1 and tumourigenesis: 20 years after. In: Current opinion in oncology 25 (1), S. 52–58. DOI: 10.1097/CCO.0b013e32835b639e. Wischhusen, J.; Naumann, U.; Ohgaki, H.; Rastinejad, F.; Weller, M. (2003): CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. In: Oncogene 22 (51), S. 8233–8245. DOI: 10.1038/sj.onc.1207198. Woods, Douglas B.; Vousden, Karen H. (2001): Regulation of p53 Function. In: Experimental Cell Research 264 (1), S. 56–66. DOI: 10.1006/excr.2000.5141. Yadav, Vipin Kumar; Awasthi, Poorwa; Kumar, Amit (2019): Detection of UV-Induced Thymine Dimers. In: Methods in molecular biology (Clifton, N.J.) 2031, S. 313–322. DOI: 10.1007/978-1-4939-9646-9_17. Yamauchi, Takahiro; Yoshida, Akira; Ueda, Takanori (2011): Camptothecin induces DNA strand breaks and is cytotoxic in stimulated normal lymphocytes. In: Oncology reports 25 (2), S. 347–352. DOI: 10.3892/or.2010.1100. Zentralinstitut für Klinische Chemie und Laboratoriumsdiagnostik des UKD: Vorarbeiten zur Dynamik der p21 Induktion nach Bestrahlung mit Röntgenstrahlen. Zhao, Hong; Zhuang, Yafei; Li, Ruibin; Liu, Yinyin; Mei, Zijie; He, Zhongshi et al. (2019): Effects of different doses of X-ray irradiation on cell apoptosis, cell cycle, DNA damage repair and glycolysis in HeLa cells. In: Oncology letters 17 (1), S. 42–54. DOI: 10.3892/ol.2018.9566. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät » Institute » Zentralinstitut für Klinische Chemie und Laboratoriumsdiagnostik | |||||||
Dokument erstellt am: | 19.09.2022 | |||||||
Dateien geändert am: | 19.09.2022 | |||||||
Promotionsantrag am: | 28.04.2022 | |||||||
Datum der Promotion: | 08.09.2022 |