Dokument: Bedeutung akustisch evozierter Fern- und Nahfeldpotentiale für das funktionelle Ergebnis und die Lebensqualität bei Vestibularisschwannom-Operationen
Titel: | Bedeutung akustisch evozierter Fern- und Nahfeldpotentiale für das funktionelle Ergebnis und die Lebensqualität bei Vestibularisschwannom-Operationen | |||||||
Weiterer Titel: | Significance of auditory brainstem responses and cochlear nerve action potentials for functional outcome and quality of life in vestibular schwannoma surgery | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=60503 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20220831-110846-6 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Hoffmann, Celine Wilma [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. med. Cornelius, Jan Frederick [Gutachter] Prof. Dr. Dr. Schipper, Jörg [Gutachter] | |||||||
Stichwörter: | Vestibularisschwannom | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Bedeutung akustisch evozierter Fern- und Nahfeldpotentiale für das funktionelle Ergebnis und die Lebensqualität bei Vestibularisschwannom-Operationen
Analyse des funktionellen Ergebnisses und der Lebensqualität nach Vestibularisschwannom-Operationen Der Erhalt einer guten Lebensqualität (QOL) ist von entscheidender Bedeutung in der Therapie von Vestibularisschwannomen (VS). Bei Vorliegen eines VS und im Anschluss an therapeutische Interventionen können die QOL sowie die Hör-, Fazialis- und Gleichgewichtsfunktion beeinträchtigt sein. Das Ziel der vorliegenden Analyse war die prä- und postoperative Evaluation der Hirnnervfunktionen und deren Einfluss auf die QOL. Zum Zeitpunkt einer Langzeitkontrolle (⌀ 38.5 Monate) wurde die QOL sowie die Hör-, Fazialis- und Gleichgewichtsfunktion bei 83 Patient:innen erhoben, bei denen eine VS-Operation via retrosigmoidalen Zugang zwischen Januar 2012 und Dezember 2019 durchgeführt worden war. Die QOL wurde zwischen Patient:innen mit funktioneller bzw. nicht-funktioneller Hör-, Fazialis- und Gleichgewichtsfunktion verglichen. Zudem wurde der Einfluss der präoperativen Tumorgröße und des Zeitraums zwischen Operation und Langzeitkontrolle auf die QOL untersucht. Insgesamt konnte ein signifikanter Einfluss von Schwindel und einer eingeschränkten Fazialisfunktion auf die QOL festgestellt werden. Die Rehabilitation dieser Hirnnervfunktionen kann in der postoperativen Patientenbegleitung eine Verbesserung der QOL ermöglichen. Analyse der akustisch evozierten Fern- und Nahfeldpotentiale bei Vestibularisschwannom-Operationen Die Durchführung von intraoperativen Neuromonitoring (IOM) ist ein essenzieller Bestandteil bei VS-Operationen. Für die Überwachung des N. cochlearis werden Reizantworten der Hörbahn auf Schallreize gemessen. Diese können als Fernfeldpotentiale bzw. Auditory Brainstem Responses (ABR) am Tragus oder als Nahfeldpotentiale bzw. Cochlear Nerve Action Potentials (CNAP) am Nerven abgeleitet werden. Aufgrund der niedrigen Signalqualität der ABR wird die Verwendung der ABR von einigen Autoren als obsolet bewertet. Ebenso liegt keine sufffiziente Evidenz für die definitive Empfehlung zur Verwendung der CNAP vor. Das Ziel der vorliegenden Analyse war eine prä-liminäre Evaluation der Vor- und Nachteile von ABR und CNAP nach Einführung von CNAP in unserem Zentrum. Zunächst wurden kritische Zeitpunkte bezüglich des Funktionserhalt des N. cochlearis während der VS-Operation von 17 Patient:innen erhoben, bei welchen im Zeitraum von Juli 2020 bis Mai 2021 eine VS-Operation via retrosigmoidalen Zugang durchgeführt wurde. Weiterhin wurden die CNAP im Hinblick auf ihre Morphologie und der Lageabhängigkeit ihrer Morphologie von 2 Patient:innen analysiert. Abschließend wurden die ABR und CNAP bezüglich der Amplitude, der Störanfälligkeit, der resultierenden notwendigen Reizantwortanzahl und der Positionierung der Ableit-elektrode analysiert. Darauf basierend wurde die Fähigkeit der ABR und CNAP zur Detektion eines Potenzialverlustes verglichen und evaluiert. Insgesamt kann der komplementäre Einsatz der ABR und CNAP als positiv bewertet werden, da so von den ermittelten Vorteilen beider Ableitverfahren profitiert werden kann. Durch die Verwendung der ABR können Potenzialveränderung während des gesamten Operationsverlaufes detektiert werden. Mit Hilfe der CNAP ist eine Detektion von Potenzialveränderung aufgrund der hohen Amplitude sowie der niedrigen notwendigen Reizantwortanzahl nahezu in Echtzeit möglich.Significance of auditory brainstem responses and cochlear nerve action potentials for functional outcome and quality of life in vestibular schwannoma surgery Analysis of functional outcome and quality of life after vestibular schwannoma surgery Maintaining good quality of life (QOL) is of critical importance in the treatment of vestibular schwannomas (VS). In the presence of a VS and following therapeutic interventions, QOL as well as hearing, facial and balance function may be impaired. Therefore, the aim of this retrospective analysis was to evaluate QOL as well as cranial nerve functions to assess their influence on QOL. At the time of a long-term follow-up (⌀ 38.5 months), QOL and auditory, facial and vestibular functions were assessed in 83 patients who underwent VS surgery via retrosigmoid approach between January 2012 and December 2019. QOL was compared between patients with functional and nonfunctional hearing, facial and balance function. Furthermore, the impact of preoperative tumor size and of time between surgery and long-term follow-up on QOL were analyzed. Overall, a significant impact of vertigo and impaired facial function on QOL was found. Rehabilitation of these cranial nerve functions may improve QOL in postoperative patient follow-up. Analysis of auditory brainstem responses and cochlear nerve action potentials in vestibular schwannoma surgery The performance of intraoperative neuromonitoring (IOM) is an essential component of VS surgery. Auditory pathway responses to sound stimuli are measured for monitoring the cochlear nerve. These can be derived as far-field potentials, so-called auditory brainstem responses (ABR), at the tragus, or as near-field potentials, so-called cochlear nerve action potentials (CNAP), at the nerve. Due to the low signal quality of ABR, its use is considered obsolete by some authors. Similarly, there is no sufficient evidence for the definitive recommendation to obtain CNAP. Therefore, the aim of this preliminary analysis was to evaluate the advantages and disadvantages of ABR and CNAP after introduction of CNAP in our center. First, critical time points regarding functional preservation of the cochlear nerve during VS surgery were investigated of 17 patients who underwent VS surgery via retrosigmoidal approach between July 2020 and May 2021. Furthermore, the CNAP were analyzed regarding their morphology and the position dependence of their morphology in 2 patients. Finally, the ABR and CNAP were evaluated with respect to amplitude, susceptibility to interference, the resulting necessary stimulus response number, and the positioning of the recording electrode. Based on this, the ability of the ABR and CNAP to detect a loss of potential was compared and evaluated. Overall, the complementary use of ABR and CNAP can be considered as positive, as it allows to benefit from the identified advantages of both audiomonitoring techniques. Using ABR, potential changes can be detected during the entire course of the operation. Using CNAP, a detection of potential changes is possible almost in real-time due to the high amplitude as well as the low necessary stimulus response number and allows a direct adjustment of the operation procedure in case of potential deteriorations. | |||||||
Quelle: | 1. Roosli, C., et al., What is the site of origin of cochleovestibular schwannomas? Audiol Neurootol, 2012. 17(2): p. 121-5.
2. Matthies, C. and M. Samii, Management of 1000 vestibular schwannomas (acoustic neuromas): Clinical presentation. Neurosurgery, 1997. 40(1): p. 1-9. 3. Tos, M., S. Charabi, and J. Thomsen, Clinical experience with vestibular schwannomas: epidemiology, symptomatology, diagnosis, and surgical results. Eur Arch Otorhinolaryngol, 1998. 255(1): p. 1-6. 4. Gal, T.J., J. Shinn, and B. Huang, Current epidemiology and management trends in acoustic neuroma. Otolaryngol Head Neck Surg, 2010. 142(5): p. 677-81. 5. Starnoni, D., et al., Surgical management for large vestibular schwannomas: a systematic review, meta-analysis, and consensus statement on behalf of the EANS skull base section. Acta Neurochir (Wien), 2020. 162(11): p. 2595-2617. 6. Hadjipanayis, C.G., et al., Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on Surgical Resection for the Treatment of Patients With Vestibular Schwannomas. Neurosurgery, 2018. 82(2): p. E40-E43. 7. Goldbrunner, R., et al., EANO guideline on the diagnosis and treatment of vestibular schwannoma. Neuro Oncol, 2020. 22(1): p. 31-45. 8. Kshettry, V.R., et al., Incidence of vestibular schwannomas in the United States. J Neurooncol, 2015. 124(2): p. 223-8. 9. Reznitsky, M., et al., Epidemiology Of Vestibular Schwannomas - Prospective 40-Year Data From An Unselected National Cohort. Clin Epidemiol, 2019. 11: p. 981-986. 10. Evans, D.G., Neurofibromatosis 2 [Bilateral acoustic neurofibromatosis, central neurofibromatosis, NF2, neurofibromatosis type II]. Genet Med, 2009. 11(9): p. 599-610. 11. Evans, D.G., Neurofibromatosis type 2 (NF2): a clinical and molecular review. Orphanet J Rare Dis, 2009. 4: p. 16. 12. Evans, D.G.R., et al., Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: higher incidence than previously thought. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 2005. 26(1): p. 93-97. 13. Schoemaker, M.J., et al., Medical history, cigarette smoking and risk of acoustic neuroma: an international case-control study. Int J Cancer, 2007. 120(1): p. 103-10. 14. Bhimrao, S.K., et al., Lack of association between human herpesvirus and vestibular schwannoma: analysis of 121 cases. Otolaryngol Head Neck Surg, 2015. 152(3): p. 513-7. 15. Corona, A.P., et al., Risk factors associated with vestibular nerve schwannomas. Otol Neurotol, 2012. 33(3): p. 459-65. 16. Foley, R.W., et al., Signs and Symptoms of Acoustic Neuroma at Initial Presentation: An Exploratory Analysis. Cureus, 2017. 9(11): p. e1846. 17. Lloyd, S.K.W., et al., Bruns' Nystagmus in Patients With Vestibular Schwannoma. Otology & Neurotology, 2009. 30(5): p. 625-628. 18. Kaye, A.H., R.J.S. Briggs, and A.P. Morokoff, Acoustic neurinoma (vestibular schwannoma), in Brain Tumors. 2012. p. 518-569. 19. Rosahl, S., et al., [Diagnosis and Management of Vestibular Schwannomas - An Interdisciplinary Challenge]. Laryngorhinootologie, 2017. 96(S 01): p. S152-S182. 20. Dunn, I.F., et al., Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Role of Imaging in the Diagnosis and Management of Patients With Vestibular Schwannomas. Neurosurgery, 2018. 82(2): p. E32-E34. 21. Committee on Hearing and Equilibrium guidelines for the evaluation of hearing preservation in acoustic neuroma (vestibular schwannoma). American Academy of Otolaryngology-Head and Neck Surgery Foundation, INC. Otolaryngol Head Neck Surg, 1995. 113(3): p. 179-80. 22. Gardner, G. and J.H. Robertson, Hearing preservation in unilateral acoustic neuroma surgery. Ann Otol Rhinol Laryngol, 1988. 97(1): p. 55-66. 23. Gimsing, S., Vestibular schwannoma: when to look for it? J Laryngol Otol, 2010. 124(3): p. 258-64. 24. Saliba, I., et al., Rule 3,000: a more reliable precursor to perceive vestibular schwannoma on MRI in screened asymmetric sensorineural hearing loss. European Archives of Oto-Rhino-Laryngology, 2011. 268(2): p. 207-212. 25. Koors, P.D., L.R. Thacker, and D.H. Coelho, ABR in the diagnosis of vestibular schwannomas: a meta-analysis. Am J Otolaryngol, 2013. 34(3): p. 195-204. 26. House, J.W. and D.E. Brackmann, Facial nerve grading system. Otolaryngol Head Neck Surg, 1985. 93(2): p. 146-7. 27. Rahne, T., et al., [Preoperative determination of nerve of origin in patients with vestibular schwannoma. German version]. HNO, 2017. 65(12): p. 966-972. 28. Schmalbrock, P., et al., Assessment of internal auditory canal tumors: a comparison of contrast-enhanced T1-weighted and steady-state T2-weighted gradient-echo MR imaging. AJNR Am J Neuroradiol, 1999. 20(7): p. 1207-13. 29. Giesemann, A. and E. Hofmann, Some Remarks on Imaging of the Inner Ear: Options and Limitations. Clin Neuroradiol, 2015. 25 Suppl 2: p. 197-203. 30. Jeurissen, B., et al., Diffusion MRI fiber tractography of the brain. NMR in Biomedicine, 2019. 32(4): p. e3785. 31. Louis, D.N., et al., The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol, 2021. 23(8): p. 1231-1251. 32. Wippold, F.J., 2nd, et al., Neuropathology for the neuroradiologist: Antoni A and Antoni B tissue patterns. AJNR Am J Neuroradiol, 2007. 28(9): p. 1633-8. 33. Antoni, N., Über Ruckenmarkstumoren und Neurofibrome. 1920, Munich: Bergmann. 34. Wu, H., et al., Summary and consensus in 7th International Conference on acoustic neuroma: An update for the management of sporadic acoustic neuromas. World J Otorhinolaryngol Head Neck Surg, 2016. 2(4): p. 234-239. 35. Koos, W.T., et al., Neurotopographic considerations in the microsurgical treatment of small acoustic neurinomas. J Neurosurg, 1998. 88(3): p. 506-12. 36. Carlson, M.L., et al., The Changing Landscape of Vestibular Schwannoma Management in the United States--A Shift Toward Conservatism. Otolaryngol Head Neck Surg, 2015. 153(3): p. 440-6. 37. Apicella, G., et al., Radiotherapy for vestibular schwannoma: Review of recent literature results. Rep Pract Oncol Radiother, 2016. 21(4): p. 399-406. 38. Patel, J., et al., The changing face of acoustic neuroma management in the USA: analysis of the 1998 and 2008 patient surveys from the acoustic neuroma association. Br J Neurosurg, 2014. 28(1): p. 20-4. 39. Goshtasbi, K., et al., The changing landscape of vestibular schwannoma diagnosis and management: A cross-sectional study. Laryngoscope, 2020. 130(2): p. 482-486. 40. Andrews, D.W., et al., Stereotactic radiosurgery and fractionated stereotactic radiotherapy for the treatment of acoustic schwannomas: comparative observations of 125 patients treated at one institution. International Journal of Radiation Oncology, Biology, Physics, 2001. 50(5): p. 1265-1278. 41. Combs, S.E., et al., Long-term outcome after highly advanced single-dose or fractionated radiotherapy in patients with vestibular schwannomas – Pooled results from 3 large German centers. Radiotherapy and Oncology, 2015. 114(3): p. 378-383. 42. Collen, C., et al., Single Fraction Versus Fractionated Linac-Based Stereotactic Radiotherapy for Vestibular Schwannoma: A Single-Institution Experience. International Journal of Radiation Oncology, Biology, Physics, 2011. 81(4): p. e503-e509. 43. Kopp, C., et al., Stereotactic Fractionated Radiotherapy and LINAC Radiosurgery in the Treatment of Vestibular Schwannoma—Report About Both Stereotactic Methods From a Single Institution. International Journal of Radiation Oncology, Biology, Physics, 2011. 80(5): p. 1485-1491. 44. Anderson, B.M., et al., Single institution experience treating 104 vestibular schwannomas with fractionated stereotactic radiation therapy or stereotactic radiosurgery. Journal of Neuro-Oncology, 2014. 116(1): p. 187-193. 45. Gurgel, R.K., P.V. Theodosopoulos, and R.K. Jackler, Subtotal/near-total treatment of vestibular schwannomas. Current Opinion in Otolaryngology & Head and Neck Surgery, 2012. 20(5). 46. Nonaka, Y., et al., Contemporary surgical management of vestibular schwannomas: analysis of complications and lessons learned over the past decade. Neurosurgery, 2013. 72(2 Suppl Operative): p. ons103-15; discussion ons115. 47. Starnoni, D., et al., Systematic review and meta-analysis of the technique of subtotal resection and stereotactic radiosurgery for large vestibular schwannomas: a “nerve-centered” approach. Neurosurgical Focus FOC, 2018. 44(3): p. E4. 48. Daniel, R.T., et al., Preserving normal facial nerve function and improving hearing outcome in large vestibular schwannomas with a combined approach: planned subtotal resection followed by gamma knife radiosurgery. Acta Neurochirurgica, 2017. 159(7): p. 1197-1211. 49. Chamoun, R., et al., Surgical approaches for resection of vestibular schwannomas: translabyrinthine, retrosigmoid, and middle fossa approaches. Neurosurg Focus, 2012. 33(3): p. E9. 50. Mastronardi, L., et al., Hearing preservation after removal of small vestibular schwannomas by retrosigmoid approach: comparison of two different ABR neuromonitoring techniques. Acta Neurochir (Wien), 2019. 161(1): p. 69-78. 51. McLaughlin, M.R., et al., Microvascular decompression of cranial nerves: lessons learned after 4400 operations. J Neurosurg, 1999. 90(1): p. 1-8. 52. Matsushima, K., M. Kohno, and N. Nakajima, Hearing preservation in vestibular schwannoma surgery via retrosigmoid transmeatal approach. Acta Neurochir (Wien), 2019. 161(11): p. 2265-2269. 53. Strauss, C., et al., Vasoactive treatment for hearing preservation in acoustic neuroma surgery. J Neurosurg, 2001. 95(5): p. 771-7. 54. Scheller, C., et al., Prophylactic nimodipine treatment improves hearing outcome after vestibular schwannoma surgery in men: a subgroup analysis of a randomized multicenter phase III trial. Neurosurg Rev, 2021. 44(3): p. 1729-1735. 55. Carlson, A.P., et al., Nimodipine Reappraised: An Old Drug With a Future. Curr Neuropharmacol, 2020. 18(1): p. 65-82. 56. Ebner, F.H. and M. Tatagiba, [Update on diagnostics and microsurgical treatment of vestibular schwannoma]. Nervenarzt, 2019. 90(6): p. 578-586. 57. Nunes, R.R., C.D.A. Bersot, and J.G. Garritano, Intraoperative neurophysiological monitoring in neuroanesthesia. Curr Opin Anaesthesiol, 2018. 31(5): p. 532-538. 58. Scheller, C., et al., Prophylactic intravenous nimodipine treatment in skull base surgery: pharmacokinetic aspects. J Neurol Surg A Cent Eur Neurosurg, 2012. 73(3): p. 153-9. 59. Leslie-Mazwi, T.M., et al., Periprocedural blood pressure management in neurointerventional surgery. J Neurointerv Surg, 2011. 3(1): p. 66-73. 60. Ansari, S.F., C. Terry, and A.A. Cohen-Gadol, Surgery for vestibular schwannomas: a systematic review of complications by approach. Neurosurg Focus, 2012. 33(3): p. E14. 61. Kohlberg, G.D., et al., Middle Cranial Fossa Approach to Vestibular Schwannoma Resection in the Older Patient Population. Otol Neurotol, 2021. 42(1): p. e75-e81. 62. Akard, W., et al., Evolution of techniques for the resection of vestibular schwannomas: from saving life to saving function. J Neurosurg, 2009. 110(4): p. 642-7. 63. Koerbel, A., et al., Evolution of vestibular schwannoma surgery: the long journey to current success. Neurosurg Focus, 2005. 18(4): p. e10. 64. Soulier, G., et al., Quality of Life in 807 Patients with Vestibular Schwannoma: Comparing Treatment Modalities. Otolaryngol Head Neck Surg, 2017. 157(1): p. 92-98. 65. Abuse., W.H.O.D.o.M.H.a.P.o.S., WHOQOL : measuring quality of life. World Health Organization. https://apps.who.int/iris/handle/10665/63482, 1997. WHO/MSA/MNH/PSF/97.4. 66. Carlson, M.L., et al., What drives quality of life in patients with sporadic vestibular schwannoma? Laryngoscope, 2015. 125(7): p. 1697-702. 67. Ware, J.E., Jr. and C.D. Sherbourne, The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care, 1992. 30(6): p. 473-83. 68. Kristin, J., et al., Multistep translation and cultural adaptation of the Penn acoustic neuroma quality-of-life scale for German-speaking patients. Acta Neurochir (Wien), 2017. 159(11): p. 2161-2168. 69. Glaas, M.F., et al., Quality of Life After Translabyrinthine Vestibular Schwannoma Resection-Reliability of the German PANQOL Questionnaire. Otol Neurotol, 2018. 39(6): p. e481-e488. 70. Van Leeuwen, B.M., et al., Validating the Penn Acoustic Neuroma Quality of Life Scale in a Sample of Dutch Patients Recently Diagnosed With Vestibular Schwannoma. Otology & Neurotology, 2013. 34(5): p. 952–957. 71. Oddon, P.A., et al., Conservative treatment of vestibular schwannoma: growth and Penn Acoustic Neuroma Quality of Life scale in French language. Acta Otorhinolaryngol Ital, 2017. 37(4): p. 320-327. 72. Shaffer, B.T., et al., Validation of a disease-specific quality-of-life instrument for acoustic neuroma: the Penn Acoustic Neuroma Quality-of-Life Scale. Laryngoscope, 2010. 120(8): p. 1646-54. 73. Kristin, J., et al., Patient quality of life after vestibular schwannoma removal: possibilities and limits to measuring different domains of patients' wellbeing. Eur Arch Otorhinolaryngol, 2019. 276(9): p. 2441-2447. 74. Vivas, E.X., et al., Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on Intraoperative Cranial Nerve Monitoring in Vestibular Schwannoma Surgery. Neurosurgery, 2018. 82(2): p. E44-E46. 75. Youssef, A.S. and A.E. Downes, Intraoperative neurophysiological monitoring in vestibular schwannoma surgery: advances and clinical implications. Neurosurg Focus, 2009. 27(4): p. E9. 76. Romstock, J., C. Strauss, and R. Fahlbusch, Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg, 2000. 93(4): p. 586-93. 77. Colletti, V., et al., ECochG, CNAP and ABR monitoring during vestibular Schwannoma surgery. Audiology, 1998. 37(1): p. 27-37. 78. Jewett, D.L. and J.S. Williston, Auditory-evoked far fields averaged from the scalp of humans. Brain, 1971. 94(4): p. 681-96. 79. Jewett, D.L., M.N. Romano, and J.S. Williston, Human auditory evoked potentials: Possible brain stem components detected on the scalp. Science, 1970. 80. Grundy, B.L., et al., Intraoperative monitoring of brain-stem auditory evoked potentials. J Neurosurg, 1982. 57(5): p. 674-81. 81. Colletti, V. and F.G. Fiorino, Vulnerability of hearing function during acoustic neuroma surgery. Acta Otolaryngol, 1994. 114(3): p. 264-70. 82. Attias, J., et al., Hearing preservation using combined monitoring of extra-tympanic electrocochleography and auditory brainstem responses during acoustic neuroma surgery. Int J Audiol, 2008. 47(4): p. 178-84. 83. Yamakami, I., et al., Hearing preservation and intraoperative auditory brainstem response and cochlear nerve compound action potential monitoring in the removal of small acoustic neurinoma via the retrosigmoid approach. J Neurol Neurosurg Psychiatry, 2009. 80(2): p. 218-27. 84. Danner, C., B. Mastrodimos, and R.A. Cueva, A comparison of direct eighth nerve monitoring and auditory brainstem response in hearing preservation surgery for vestibular schwannoma. Otol Neurotol, 2004. 25(5): p. 826-32. 85. Moller, A.R. and P.J. Jannetta, Comparison between intracranially recorded potentials from the human auditory nerve and scalp recorded auditory brainstem responses (ABR). Scand Audiol, 1982. 11(1): p. 33-40. 86. Yamakami, I., N. Oka, and A. Yamaura, Intraoperative monitoring of cochlear nerve compound action potential in cerebellopontine angle tumour removal. Journal of Clinical Neuroscience, 2003. 10(5): p. 567-570. 87. Moller, A.R. and P.J. Jannetta, Compound action potentials recorded intracranially from the auditory nerve in man. Exp Neurol, 1981. 74(3): p. 862-74. 88. Moller, A.R. and P.J. Jannetta, Interpretation of brainstem auditory evoked potentials: results from intracranial recordings in humans. Scand Audiol, 1983. 12(2): p. 125-33. 89. Moller, A.R. and H.D. Jho, Compound action potentials recorded from the intracranial portion of the auditory nerve in man: effects of stimulus intensity and polarity. Audiology, 1991. 30(3): p. 142-63. 90. Moller, A.R. and P.J. Jannetta, Auditory evoked potentials recorded intracranially from the brain stem in man. Exp Neurol, 1982. 78(1): p. 144-57. 91. Aihara, N., et al., Cochlear nerve action potential monitoring with the microdissector in vestibular schwannoma surgery. Skull Base, 2009. 19(5): p. 325-32. 92. Rowed, D.W., et al., Cochlear nerve monitoring during cerebellopontine angle operations. Can J Neurol Sci, 1988. 15(1): p. 68-72. 93. Piccirillo, E., et al., Intraoperative cochlear nerve monitoring in vestibular schwannoma surgery--does it really affect hearing outcome? Audiol Neurootol, 2008. 13(1): p. 58-64. 94. Olusanya, B.O., A.C. Davis, and H.J. Hoffman, Hearing loss grades and the International classification of functioning, disability and health. Bull World Health Organ, 2019. 97(10): p. 725-728. 95. Hummel, M., et al., Auditory Monitoring in Vestibular Schwannoma Surgery: Intraoperative Development and Outcome. World Neurosurg, 2016. 96: p. 444-453. 96. Cronbach, L.J., Coefficient alpha and the internal structure of tests. Psychometrika, 1951. 16(3): p. 297-334. 97. Medina, M.D., et al., Validation of the Penn Acoustic Neuroma Quality-of-Life Scale (PANQOL) for Spanish-Speaking Patients. Otolaryngol Head Neck Surg, 2017. 156(4): p. 728-734. 98. Turel, M.K., S. Thakar, and V. Rajshekhar, Quality of life following surgery for large and giant vestibular schwannomas: a prospective study. J Neurosurg, 2015. 122(2): p. 303-11. 99. Schipper, J., et al., [Hearing rehabilitation with the cochlea implant following translabyrinthine CPA tumor removal ?]. Laryngorhinootologie, 2017. 96(12): p. 836-843. 100. Drusin, M.A., et al., Trends in hearing rehabilitation use among vestibular schwannoma patients. 2019. 101. Nordvik, O., et al., Quality of life in persons with hearing loss: a study of patients referred to an audiological service. Int J Audiol, 2019. 58(11): p. 696-703. 102. Trakolis, L., et al., Postoperative Tinnitus After Vestibular Schwannoma Surgery Depends on Preoperative Tinnitus and Both Pre- and Postoperative Hearing Function. Frontiers in Neurology, 2018. 9. 103. Kohno, M., et al., Prognosis of tinnitus after acoustic neuroma surgery--surgical management of postoperative tinnitus. World Neurosurg, 2014. 81(2): p. 357-67. 104. Lee, J., et al., Assessing Impairment and Disability of Facial Paralysis in Patients With Vestibular Schwannoma. Arch Otolaryngol Head Neck Surg, 2007. 133(1). 105. Fu, L., C. Bundy, and S.A. Sadiq, Psychological distress in people with disfigurement from facial palsy. Eye (Lond), 2011. 25(10): p. 1322-6. 106. Ojha, S. and P.J. Clamp, A Systematic Review of Interventions for Balance Dysfunction in Patients With Vestibular Schwannoma. Otol Neurotol, 2020. 41(3): p. e295-e303. 107. Yang, J., et al., Intratympanic Gentamicin for Small Vestibular Schwannomas With Intractable Vertigo. Otol Neurotol, 2018. 39(8): p. e699-e703. 108. Samii, M., H. Metwali, and V. Gerganov, Efficacy of microsurgical tumor removal for treatment of patients with intracanalicular vestibular schwannoma presenting with disabling vestibular symptoms. J Neurosurg, 2017. 126(5): p. 1514-1519. 109. Thomeer, H., et al., Prognostic Factors of Balance Quality After Transpetrosal Vestibular Schwannoma Microsurgery: An Instrumentally and DHI-based Prospective Cohort Study of 48 Patients. Otol Neurotol, 2015. 36(5): p. 886-91. 110. Di Maio, S. and R. Akagami, Prospective comparison of quality of life before and after observation, radiation, or surgery for vestibular schwannomas. J Neurosurg, 2009. 111(4): p. 855-62. 111. Aihara, N., et al., Postoperative Headache after Undergoing Acoustic Neuroma Surgery via the Retrosigmoid Approach. Neurol Med Chir (Tokyo), 2017. 57(12): p. 634-640. 112. Levo, H., I. Pyykkö, and G. Blomstedt, Postoperative Headache after Surgery for Vestibular Schwannoma. Annals of Otology, Rhinology & Laryngology, 2000. 109(9): p. 853–858. 113. Sekiya, T. and A.R. Møller, Avulsion rupture of the internal auditory artery during operations in the cerebellopontine angle: a study in monkeys. Neurosurgery, 1987. 21(5): p. 631-7. 114. Sekiya, T., A.R. Moller, and P.J. Jannetta, Pathophysiological mechanisms of intraoperative and postoperative hearing deficits in cerebellopontine angle surgery: an experimental study. Acta Neurochir (Wien), 1986. 81(3-4): p. 142-51. 115. Marchese, E., et al., Application of indocyanine green video angiography in vascular neurosurgery. J Neurosurg Sci, 2019. 63(6): p. 656-660. 116. Chen, S.C., et al., Fluorescence-assisted visualization of facial nerve during mastoidectomy: A novel technique for preventing iatrogenic facial paralysis. Auris Nasus Larynx, 2015. 42(2): p. 113-8. 117. Eriksson, A.R., T. Albrektsson, and B. Albrektsson, Heat caused by drilling cortical bone. Temperature measured in vivo in patients and animals. Acta Orthop Scand, 1984. 55(6): p. 629-31. 118. Bernabeu-Mira, J.C., et al., Low-speed drilling without irrigation versus conventional drilling for dental implant osteotomy preparation: a systematic review. Clin Oral Investig, 2021. 25(7): p. 4251-4267. 119. Brisman, D.L., The effect of speed, pressure, and time on bone temperature during the drilling of implant sites. Int J Oral Maxillofac Implants, 1996. 11(1): p. 35-7. 120. Chauhan, C.J., D.N. Shah, and F.B. Sutaria, Various bio-mechanical factors affecting heat generation during osteotomy preparation: A systematic review. Indian J Dent Res, 2018. 29(1): p. 81-92. 121. Ercoli, C., et al., The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability. Int J Oral Maxillofac Implants, 2004. 19(3): p. 335-49. 122. Le, T.N., et al., Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J Otolaryngol Head Neck Surg, 2017. 46(1): p. 41. 123. Struck, R., et al. Knochenablation und Nasennebenhöhlenchirugie mit dem Holmium:YAG-Laser. 1996. Berlin, Heidelberg: Springer Berlin Heidelberg. 124. Beltran Bernal, L.M., et al., Optimizing deep bone ablation by means of a microsecond Er:YAG laser and a novel water microjet irrigation system. Biomed Opt Express, 2020. 11(12): p. 7253-7272. 125. Demirbas, A.E., et al., Is Ultrasonic Bone Scalpel Useful in Le Fort I Osteotomy? J Oral Maxillofac Surg, 2020. 78(1): p. 141.e1-141.e10. 126. Meller, C. and T.E. Havas, Piezoelectric technology in otolaryngology, and head and neck surgery: a review. J Laryngol Otol, 2017. 131(S2): p. S12-s18. 127. Jiang, Q., et al., Piezoelectric Versus Conventional Rotary Techniques for Impacted Third Molar Extraction: A Meta-analysis of Randomized Controlled Trials. Medicine (Baltimore), 2015. 94(41): p. e1685. 128. Costa, D.L., et al., Use of Lasers and Piezoelectric in Intraoral Surgery. Oral Maxillofac Surg Clin North Am, 2021. 33(2): p. 275-285. 129. Miyazaki, H. and P. Caye-Thomasen, Intraoperative Auditory System Monitoring, in Advances in Hearing Rehabilitation. 2018. p. 123-132. 130. Sass, H.C.R., et al., Extended Retrolabyrinthine Approach: Results of Hearing Preservation Surgery Using a New System for Continuous Near Real-time Neuromonitoring in Patients With Growing Vestibular Schwannomas. Otol Neurotol, 2019. 40(5S Suppl 1): p. S72-S79. 131. Silverstein, H., et al., Hearing preservation after acoustic neuroma surgery with intraoperative direct eighth cranial nerve monitoring: Part II. A classification of results. Otolaryngol Head Neck Surg, 1986. 95(3 Pt 1): p. 285-91. 132. Rampp, S., et al., [Intraoperative monitoring of cochlear nerve function during cerebello-pontine angle surgery]. HNO, 2017. 65(5): p. 413-418. 133. Meisel, C. and K.A. Bailey, Identifying signal-dependent information about the preictal state: A comparison across ECoG, EEG and EKG using deep learning. EBioMedicine, 2019. 45: p. 422-431. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 31.08.2022 | |||||||
Dateien geändert am: | 31.08.2022 | |||||||
Promotionsantrag am: | 20.06.2022 | |||||||
Datum der Promotion: | 23.08.2022 |