Dokument: Stellenwert von somatischen Genmutationen auf die Prognose von Patienten mit Myelodysplastischen Syndromen sowie deren Assoziation zu Komorbiditäten

Titel:Stellenwert von somatischen Genmutationen auf die Prognose von Patienten mit Myelodysplastischen Syndromen sowie deren Assoziation zu Komorbiditäten
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=58775
URN (NBN):urn:nbn:de:hbz:061-20220323-090750-8
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Seidler, Jenny [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]16,14 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 06.02.2022 / geändert 06.02.2022
Beitragende:Prof. Dr. Germing, Ulrich [Gutachter]
Prof. Dr. Wieczorek, Dagmar [Gutachter]
Stichwörter:MDS
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Zusammenfassung
Myelodysplastische Syndrome (MDS) sind sehr heterogene Erkrankungen in Bezug auf ihr molekulares sowie klinisches Erscheinungsbild, was sich in ihrer Prognose und Behandlung widerspiegelt. Die Therapie richtet sich nach der Zugehörigkeit zu einer Risikogruppe und somit nach einem prognostischen Bewertungssystem. Der bislang bestehende Goldstandard IPSS (International Prognostic Scoring System) wurde 2012 überarbeitet (Greenberg et al. 1997). Der aktuelle in Anwendung befindliche IPSS-R verwendet weiterhin Zellzahlen, Knochenmarkblasten sowie Veränderungen des Karyotyps, um Patienten in Risikogruppen zu stratifizieren (Greenberg et al. 2012). Mehr als die Hälfte aller MDS-Patienten weisen einen normalen Karyotyp auf und sogar bei Patienten mit identischen chromosomalen Veränderungen unterscheiden sich die Auswirkungen in Bezug auf Prognose und Therapieerfolg auf die Patienten erheblich. Somatische Mutationen sind bei mehr als 70% aller MDS-Patienten nachweisbar und somit häufiger als zytogenetische Aberrationen (Bejar et al. 2011). Dies eröffnet die Möglichkeit, somatische Mutationen in etablierte Prognosesysteme mitaufzunehmen, um diese zu spezifizieren und um therapeutische Strategien weiter zu personalisieren.
Das Interesse dieser Arbeit gilt den molekularen Veränderungen der Patienten ebenso wie den Komorbiditäten in Zusammenhang mit den untersuchten Biomarkern.
Für die vorliegende Arbeit wurden 166 Patienten mit verschiedenen MDS-Subtypen analysiert, von denen 74 Personen bis zum Ende des Beobachtungszeitraums verstarben. Das Durchschnittsalter des Patientenkollektivs lag bei 68 Jahren (16-87 Jahre), die mediane Überlebenszeit betrug 5,7 Jahre (95% CI 3,5-7,8). Für die molekulargenetischen Analysen des Gen-Panels (ASXL1, DNMT3A, EZH2, FLT3-ITD, IDH1, IDH2, MLL-PTD, KRAS, NRAS, CBL, RUNX1, SF3B1, SRSF2, TET2, JAK2 und TP53) wurde hauptsächlich Next-Generation Sequencing verwendet. Innerhalb des vorliegenden Patientenkollektivs waren TET2-Mutationen (30,7%) am häufigsten vertreten, gefolgt von SF3B1 (27,5%), ASXL1 (23,5%), RUNX1 (21,1%), SRSF2 (19,5%), DNMT3A (13,9%), EZH2 (8,5%), TP53 (6,7%), MLL-PTD (4,2%), NRAS (3,9%), JAK2 (3,8%), FLT3-ITD (3,7%), IDH1 (3,1%), IDH2 (3,1%), KRAS (2,5%) und CBL (2,2%) -Mutationen.
In einer univariaten Analyse konnte ein signifikanter Einfluss auf die Überlebenszeit für folgende Biomarker demonstriert werden: TP53 (p≤0,001), EZH2 (p=0,011), SF3B1 (p=0,014), ASXL1 (p≤0,001), NRAS (p=0,022), IDH2 (p=0,031) und RUNX1 (p=0,006). SF3B1-Mutationen waren bei Patienten mit einem MDS mit einer günstigeren Prognose, Mutationen in den Genen TP53, EZH2, RUNX1, ASXL1, NRAS sowie IDH2 mit einem reduzierten Gesamtüberleben assoziiert.
Einen ebenfalls signifikanten Einfluss auf die Überlebenszeit hatte das Alter bei Erstdiagnose (p<0,014), die FAB-Klassifikation (p<0,011), die WHO2016 Klassifikation (p≤0,001), der Hb nach IPSS und IPSS-R (p=0,002/ p=0,015), die Thrombozytenzahl nach IPSS und IPSS-R (p=0,006/ p=0,019), die Anzahl an Knochenmarkblasten nach IPSS (p=0,006) und die Prognoseklassifikation nach IPSS-R (p<0,033). Mit Hilfe der multivariaten Regressionsanalyse konnten ASXL1 und KRAS sowie die Klassifikation der Genetik nach IPSS-R als unabhängige prognostische Variablen mit Einfluss auf die Überlebenszeit definiert werden.
Komorbiditäten haben einen signifikanten Einfluss auf die Prognose von Patienten mit MDS. In der vorliegenden Arbeit konnte ein möglicher Zusammenhang zwischen Mutationen und Komorbiditäten konstatiert werden. Ein Beispiel ist ein möglicher Zusammenhang von Autoimmunerkrankungen und SRSF2-Mutationen insbesondere bei männlichen MDS-Patienten. Perspektivisch erscheint es erstrebenswert, patientenindividuelle Parameter (weiterhin und großzügiger) in Prognose-Scores zu integrieren.
Die Integration von Mutationsanalysen sowie Komorbiditäten in die klinische Routine könnte somit zur weiteren Spezifizierung der Diagnostik, Prognose und somit Therapiestrategieerstellung im Sinne einer personalisierten Medizin den Patienten zugutekommen.

Summary
Myelodysplastic syndromes (MDS) are heterogeneous in terms of clinical and molecular characteristics, as well as prognosis and treatment approaches. Therapeutic decision-making relies greatly on prognostic scoring systems. In 2012 the gold-standard IPSS (International prognostic scoring system) has been revised (Greenberg et al. 1997). The new IPSS-R still uses cell counts, marrow blast count and karyotypic abnormalities to stratify patients (pts) into risk groups (Greenberg et al. 2012). However, more than 50% of all MDS pts present with a normal karyotype and even in pts with identical chromosomal abnormalities outcome may vary. Somatic mutations are more common than cytogenetic abnormalities and can be identified in over 70% of pts including pts with normal karyotype (Bejar et al. 2011). Therefore, the addition of such mutations to common prognostic markers might help to refine prognostication in MDS pts and improve therapeutic procedures by individualizing MDS treatment.
Due to the highly individual course of MDS, and to individualize therapeutic decisions, somatic mutations and the connection of somatic mutations and comorbidities (present in over 60% of patients) were examined.
We analyzed 166 pts with different subtypes of MDS. Most of the data was collected prospectively within the clinical routine diagnostic procedures. During that time the marker panel was adjusted, when new analyses became available. Thus, not all markers are currently available for all pts. To assess the impact of the biomarkers, Kaplan-Meier analyses were estimated starting from the day of diagnosis.
Various molecular assays were performed including sensitive next-generation sequencing for mutations in ASXL1, DNMT3A, EZH2, FLT3-ITD, IDH1, IDH2, MLL-PTD, KRAS, NRAS, CBL, RUNX1, SF3B1, SRSF2, TET2, JAK2, and TP53. The most frequent mutation was TET2 (30.7%), followed by SF3B1 (27.5%), ASXL1 (23.5%), RUNX1 (21.1%), SRSF2 (19.5%), DNMT3A (13.9%), EZH2 (8.5%), TP53 (6.7%), MLL-PTD (4.2%), NRAS (3.9%), JAK2 (3.8%), FLT3-ITD (3.7%), IDH1 (3.1%), IDH2 (3.1%), KRAS (2.5%) and CBL (2.2%). A significant influence on survival in univariate analysis could be demonstrated for TP53 (p≤0.001), EZH2 (p=0.011), SF3B1(p= 0.014), ASXL1 (p≤0.001), NRAS (p= 0.022), IDH2 (p=0.031) and RUNX1 (p= 0.006). Other prognostic variables with significant impact regarding survival were age at diagnosis (p<0.014), FAB subgroup (p≤0.011), WHO2016 subgroup (p≤0.001), Hb according to IPSS and IPSS-R (p=0.002/ p=0.015), platelet count according to IPSS and IPSS-R (p=0.006/ p=0.019), marrow blast count according to IPSS (p=0.006) and the IPSS-R classification (p<0.033).
We could confirm mutations in TP53, EZH2, RUNX1 and ASXL1 to be predictors of poor overall survival and demonstrate a poor outcome for mutations in NRAS, IDH2, while SF3B1 mutations conferred a favorable prognosis in pts with MDS. To determine the relative contribution of mutation status to overall survival, we generated a multivariable Cox model, using a stepwise variable-selection procedure incorporating cytogenetics according to IPSS-R and mutation status for the 16 most frequently mutated genes in this study. Mutations of ASXL1 and KRAS and cytogenetics according to IPSS-R emerged as independent predictors of survival.
Comorbidities also have a significant impact on the prognosis of patients with MDS. The purpose of this study, inter alia, was to determine the association of somatic mutations with comorbidities in MDS. In the present work a possible connection between e.g. autoimmune diseases and SRSF2 in patients with MDS was stated. Additionally, incorporating comorbidities in risk assessment systems may improve the prediction of prognosis and allow for a more individual treatment approach.
Integrating mutation assessment and individual comorbidities into the clinical routine might improve diagnostic procedures as well as prognostication, and individualize treatment approaches.
Quelle:1. An international system for human cytogenetic nomenclature (1978) ISCN (1978). Report of the Standing Commitee on Human Cytogenetic Nomenclature. Cytogenetics and cell genetics 21, 309–409 (1978).
2. An introduction to Next-Generation Sequencing Technology. Available at https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf (2020).
3. Aleshin, A. et al. Molecular pathophysiology of the myelodysplastic syndromes: insights for targeted therapy. Blood advances 2, 2787–2797 (2018).
4. Al-Kali, A. et al. Prognostic impact of RAS mutations in patients with myelodysplastic syndrome. American journal of hematology 88, 365–369 (2013).
5. Anderson, L.A. et al. Risks of myeloid malignancies in patients with autoimmune conditions. British journal of cancer 100, 822–828 (2009).
6. Arber, D.A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016).
7. Aujla, A. et al. SRSF2 mutations in myelodysplasia/myeloproliferative neoplasms. Biomarker research 6, 29 (2018).
8. Aul, C. et al. Pathogenesis, etiology and epidemiology of myelodysplastic syndromes. Haematologica 83, 71–86 (1998).
9. Aul, C. et al. Primary myelodysplastic syndromes: analysis of prognostic factors in 235 patients and proposals for an improved scoring system. Leukemia 6, 52–59 (1992).
10. Bacher, U. Myelodysplastische Syndrome von A bis Z. 16 Tab. 3rd ed. (Thieme, Stuttgart, 2014).
11. Badar, T. et al. Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes. Leukemia research 39, 1367–1374 (2015).
12. Bains, A. et al. FLT3 and NPM1 mutations in myelodysplastic syndromes: Frequency and potential value for predicting progression to acute myeloid leukemia. American journal of clinical pathology 135, 62–69 (2011).
13. Bally, C. et al. Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leukemia research 38, 751–755 (2014).
14. Baxter, E.J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet (London, England) 365, 1054–1061 (2005).
15. Bejar, R. Myelodysplastic Syndromes Diagnosis: What Is the Role of Molecular Testing? Current hematologic malignancy reports 10, 282–291 (2015).
16. Bejar, R. Advances in Personalized Therapeutic Approaches in Myelodysplastic Syndromes. Journal of the National Comprehensive Cancer Network : JNCCN 17, 1444–1447 (2019).
17. Bejar, R. et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 124, 2705–2712 (2014b).
18. Bejar, R. et al. Recent developments in myelodysplastic syndromes. Blood 124, 2793–2803 (2014a).
19. Bejar, R. et al. Clinical effect of point mutations in myelodysplastic syndromes. The New England journal of medicine 364, 2496–2506 (2011).
20. Bejar, R. et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 32, 2691–2698 (2014).
21. Bejar, R. et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 30, 3376–3382 (2012).
22. Bennett, J.M. et al. Proposals for the classification of the myelodysplastic syndromes. British journal of haematology 51, 189–199 (1982).
23. Bernard, E. et al. TP53 State Dictates Genome Stability, Clinical Presentation and Outcomes in Myelodysplastic Syndromes. In: Blood 134 (Supplement_1), S. 675. DOI: 10.1182/blood-2019-129392 (2019)
24. Bestor, T.H. The DNA methyltransferases of mammals. Human molecular genetics 9, 2395–2402 (2000).
25. Bos, J.L. ras oncogenes in human cancer: a review. Cancer research 49, 4682–4689 (1989).
26. Braun, T. et al. Myelodysplastic Syndromes (MDS) and autoimmune disorders (AD): cause or consequence? Best practice & research. Clinical haematology 26, 327–336 (2013).
27. Broséus, J. et al. Age, JAK2(V617F) and SF3B1 mutations are the main predicting factors for survival in refractory anaemia with ring sideroblasts and marked thrombocytosis. Leukemia 27, 1826–1831 (2013).
28. Brosius, F.C. et al. JAK inhibition and progressive kidney disease. Current opinion in nephrology and hypertension 24, 88–95 (2015).
29. Cazzola, M. et al. The genetic basis of myelodysplasia and its clinical relevance. Blood 122, 4021–4034 (2013).
30. Chen, C.-Y. et al. RUNX1 gene mutation in primary myelodysplastic syndrome--the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. British journal of haematology 139, 405–414 (2007).
31. Chen, W. et al. Expression of CDC5L is associated with tumor progression in gliomas. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 37, 4093–4103 (2016).
32. Chen, Y. et al. Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia. Stem cell investigation 4, 48 (2017).
33. Cheng, Y. et al. Liver-Specific Deletion of SRSF2 Caused Acute Liver Failure and Early Death in Mice. Molecular and cellular biology 36, 1628–1638 (2016).
34. Choi, S.M. et al. Partial tandem duplication of KMT2A (MLL) may predict a subset of myelodysplastic syndrome with unique characteristics and poor outcome. Haematologica 103, e131-e134 (2018).
35. Cimmino, L. et al. TET family proteins and their role in stem cell differentiation and transformation. Cell stem cell 9, 193–204 (2011).
36. Cordoba, I. et al. The degree of neutropenia has a prognostic impact in low risk myelodysplastic syndrome. Leukemia research 36, 287–292 (2012).
37. Dang, L. et al. IDH mutations in cancer and progress toward development of targeted therapeutics. Annals of oncology : official journal of the European Society for Medical Oncology 27, 599–608 (2016).
38. Daver, N. et al. FLT3 mutations in myelodysplastic syndrome and chronic myelomonocytic leukemia. American journal of hematology 88, 56–59 (2013).
39. Dawson, M.A. et al. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).
40. Delcuve, G.P. et al. Epigenetic control. Journal of cellular physiology 219, 243–250 (2009).
41. Delic, S. et al. Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera. British journal of haematology 175, 419–426 (2016).
42. Della Porta, M.G. et al. Risk stratification based on both disease status and extra-hematologic comorbidities in patients with myelodysplastic syndrome. Haematologica 96, 441–449 (2011).
43. Dhillon, S. Ivosidenib: First Global Approval. Drugs (2018).
44. Di Wu et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559, 637–641 (2018).
45. Dicker, F. et al. Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia 24, 1528–1532 (2010).
46. DiNardo, C.D. et al. IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression. Leukemia 30, 980–984 (2016).
47. Dolatshad, H. et al. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia 29, 1092–1103 (2015).
48. Edmond, V. et al. A new function of the splicing factor SRSF2 in the control of E2F1-mediated cell cycle progression in neuroendocrine lung tumors. Cell cycle (Georgetown, Tex.) 12, 1267–1278 (2013).
49. Elena, C. et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood 128, 1408–1417 (2016).
50. Federmann, B. et al. Generalized palisaded neutrophilic and granulomatous dermatitis-a cutaneous manifestation of chronic myelomonocytic leukemia? A clinical, histopathological, and molecular study of 3 cases. Human pathology 64, 198–206 (2017).
51. Feinberg, A.P. et al. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).
52. Fenaux, P. et al. A multicenter phase 2 study of the farnesyltransferase inhibitor tipifarnib in intermediate- to high-risk myelodysplastic syndrome. Blood 109, 4158–4163 (2007).
53. Feng, Y. et al. TET2 Function in Hematopoietic Malignancies, Immune Regulation, and DNA Repair. Frontiers in oncology 9, 210 (2019).
54. Fujii, T. et al. Targeting isocitrate dehydrogenase (IDH) in cancer. Discovery medicine 21, 373–380 (2016).
55. Gan, L. et al. Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomarker research 6, 10 (2018).
56. Ganten, D. et al. Molekularmedizinische Grundlagen von hereditären Tumorerkrankungen (Springer, Berlin, Heidelberg, 2001).
57. Gelsi-Boyer, V. et al. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. Journal of hematology & oncology 5, 12 (2012).
58. Germing, U. et al. Myelodysplastische Syndrome. Bilanz des aktuellen Wissens (dup düsseldorf university press, Düsseldorf, 2009).
59. Germing, U. et al. Myelodysplastic syndromes: diagnosis, prognosis, and treatment. Deutsches Arzteblatt international 110, 783–790 (2013).
60. Gill, H. et al. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy. International journal of molecular sciences 17, 440 (2016).
61. Grafone, T. et al. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncology reviews 6, e8 (2012).
62. Greenberg, P. et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89, 2079–2088 (1997).
63. Greenberg, P.L. et al. Myelodysplastic syndromes, version 2.2015. Journal of the National Comprehensive Cancer Network : JNCCN 13, 261–272 (2015).
64. Greenberg, P.L. et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood 120, 2454–2465 (2012).
65. Guo, Z. et al. Prognostic significance of TET2 mutations in myelodysplastic syndromes: A meta-analysis. Leukemia research 58, 102–107 (2017).
66. Haase, D. Untersuchungen zur Biologie von myelodysplastischen Syndromen und sekundären akuten myeloischen Leukämien. Bedeutung für Pathogenese und Erkrankungsverlauf. 1st ed. (Cuvillier Verlag, Göttingen, 2005).
67. Haase, D. et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110, 4385–4395 (2007).
68. Haase, D. et al. TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia 33, 1747–1758 (2019).
69. Haferlach, T. et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28, 241–247 (2014).
70. Haider, M. et al. New Insight Into the Biology, Risk Stratification, and Targeted Treatment of Myelodysplastic Syndromes. American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting 37, 480–494 (2017).
71. Harada, H. et al. Recent advances in myelodysplastic syndromes: Molecular pathogenesis and its implications for targeted therapies. Cancer science 106, 329–336 (2015).
72. Heuser, M. et al. Clonal Hematopoiesis of Indeterminate Potential. Deutsches Arzteblatt international 113, 317–322 (2016).
73. Heuser, M. et al. Epigenetics in myelodysplastic syndromes. Seminars in cancer biology 51, 170–179 (2018).
74. Hofman, W.-K. et al. Facharzt Hämatologie Onkologie (Elsevier2015), pp. 365–378.
75. Hong, M. et al. The 2016 Revision to the World Health Organization Classification of Myelodysplastic Syndromes. Journal of translational internal medicine 5, 139–143 (2017).
76. Hosono, N. Genetic abnormalities and pathophysiology of MDS. International journal of clinical oncology 24, 885–892 (2019).
77. Hou, H.-A. et al. Incorporation of mutations in five genes in the revised International Prognostic Scoring System can improve risk stratification in the patients with myelodysplastic syndrome. Blood cancer journal 8, 39 (2018).
78. Husni, R.E. et al. DNMT3a expression pattern and its prognostic value in lung adenocarcinoma. Lung cancer (Amsterdam, Netherlands) 97, 59–65 (2016).
79. Ichiyama, K. et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42, 613–626 (2015).
80. Jaiswal, S. et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. The New England journal of medicine 377, 111–121 (2017).
81. Jin, J. et al. Prognostic value of isocitrate dehydrogenase mutations in myelodysplastic syndromes: a retrospective cohort study and meta-analysis. PloS one 9, e100206 (2014).
82. Johnson, D.B. et al. Molecular pathways: targeting NRAS in melanoma and acute myelogenous leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 20, 4186–4192 (2014).
83. Kao, H.-W. et al. A high occurrence of acquisition and/or expansion of C-CBL mutant clones in the progression of high-risk myelodysplastic syndrome to acute myeloid leukemia. Neoplasia (New York, N.Y.) 13, 1035–1042 (2011).
84. Khemlina, G. et al. The biology of Hepatocellular carcinoma: implications for genomic and immune therapies. Molecular cancer 16, 149 (2017).
85. Khoury, M.P. et al. The isoforms of the p53 protein. Cold Spring Harbor perspectives in biology 2, a000927 (2010).
86. Kim, E.S. Enasidenib: First Global Approval. Drugs 77, 1705–1711 (2017).
87. Kim, S. New and emerging factors in tumorigenesis: an overview. Cancer management and research 7, 225–239 (2015).
88. Knudson, A.G. Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America 68, 820–823 (1971).
89. Knudson, A.G. Hereditary cancer: two hits revisited. Journal of cancer research and clinical oncology 122, 135–140 (1996).
90. Kobbe, G. et al. Molecular genetics in allogeneic blood stem cell transplantation for myelodysplastic syndromes. Expert review of hematology 12, 821–831 (2019).
91. Komrokji, R.S. et al. Autoimmune diseases and myelodysplastic syndromes. American journal of hematology 91, E280-3 (2016).
92. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).
93. Kuendgen, A. et al. Efficacy of azacitidine is independent of molecular and clinical characteristics - an analysis of 128 patients with myelodysplastic syndromes or acute myeloid leukemia and a review of the literature. Oncotarget 9, 27882–27894 (2018).
94. Kulasekararaj, A.G. et al. Recent advances in understanding the molecular pathogenesis of myelodysplastic syndromes. British journal of haematology 162, 587–605 (2013a).
95. Kulasekararaj, A.G. et al. TP53 mutations in myelodysplastic syndrome are strongly correlated with aberrations of chromosome 5, and correlate with adverse prognosis. British journal of haematology 160, 660–672 (2013b).
96. Kunkel-Razum, K. et al. Duden - die deutsche Rechtschreibung. Auf der Grundlage der aktuellen amtlichen Rechtschreibregeln (Dudenverlag, Berlin, 2017).
97. Lam, J.D. et al. Identification of RUNX1 as a Mediator of Aberrant Retinal Angiogenesis. Diabetes 66, 1950–1956 (2017).
98. Langemeijer, S.M.C. et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nature genetics 41, 838–842 (2009).
99. Larsson, C.A. et al. The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome. Molecular cancer research : MCR 11, 815–827 (2013).
100. Lee, J.H. et al. IDH1 R132C mutation is detected in clear cell hepatocellular carcinoma by pyrosequencing. World journal of surgical oncology 15, 82 (2017).
101. Levine, A.J. et al. The P53 pathway: what questions remain to be explored? Cell death and differentiation 13, 1027–1036 (2006).
102. Lim, D.H.K. et al. DNA methylation: a form of epigenetic control of gene expression. The Obstetrician & Gynaecologist 12, 37–42 (2010).
103. Lindsley, R.C. et al. Prognostic Mutations in Myelodysplastic Syndrome after Stem-Cell Transplantation. The New England journal of medicine 376, 536–547 (2017).
104. Liu, X. et al. Functional and therapeutic significance of EZH2 in urological cancers. Oncotarget 8, 38044–38055 (2017).
105. Löffler, G. Basiswissen Biochemie (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003).
106. Madan, V. et al. Distinct and convergent consequences of splice factor mutations in myelodysplastic syndromes. American journal of hematology (2019).
107. Maguire, S.L. et al. SF3B1 mutations constitute a novel therapeutic target in breast cancer. The Journal of pathology 235, 571–580 (2015).
108. Makishima, H. et al. Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27, 6109–6116 (2009).
109. Malcovati, L. et al. Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration into the WHO classification-based Prognostic Scoring System (WPSS). Haematologica 96, 1433–1440 (2011a).
110. Malcovati, L. et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood 126, 233–241 (2015).
111. Malcovati, L. et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 118, 6239–6246 (2011b).
112. Meggendorfer, M. et al. Karyotype evolution and acquisition of FLT3 or RAS pathway alterations drive progression of myelodysplastic syndrome to acute myeloid leukemia. Haematologica 100, e487-90 (2015).
113. Milara, J. et al. The JAK2 pathway is activated in idiopathic pulmonary fibrosis. Respiratory research 19, 24 (2018).
114. Mogi, A. et al. TP53 mutations in nonsmall cell lung cancer. Journal of biomedicine & biotechnology 2011, 583929 (2011).
115. Moulder, D.E. et al. The Roles of p53 in Mitochondrial Dynamics and Cancer Metabolism: The Pendulum between Survival and Death in Breast Cancer? Cancers 10 (2018).
116. Moulton, V.R. et al. Serine Arginine-Rich Splicing Factor 1 (SRSF1) Contributes to the Transcriptional Activation of CD3ζ in Human T Cells. PloS one 10, e0131073 (2015).
117. Moulton, V.R. et al. Splicing factor SF2/ASF rescues IL-2 production in T cells from systemic lupus erythematosus patients by activating IL-2 transcription. Proceedings of the National Academy of Sciences of the United States of America 110, 1845–1850 (2013).
118. Müller-Hermelink, H.K. et al. Pathologie. Knochenmark, Lymphatisches System, Milz, Thymus (Springer Berlin Heidelberg, Berlin, Heidelberg, 2019).
119. Nakajima, H. et al. TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. Cancer science 105, 1093–1099 (2014).
120. Naqvi, K. et al. Clonal hematopoiesis of indeterminate potential-associated mutations and risk of comorbidities in patients with myelodysplastic syndrome. Cancer (2019).
121. Naramura, M. et al. Mutant Cbl proteins as oncogenic drivers in myeloproliferative disorders. Oncotarget 2, 245–250 (2011).
122. Neukirchen, J. et al. Platelet counts and haemorrhagic diathesis in patients with myelodysplastic syndromes. European journal of haematology 83, 477–482 (2009).
123. Neukirchen, J. et al. Validation of the revised international prognostic scoring system (IPSS-R) in patients with myelodysplastic syndrome: a multicenter study. Leukemia research 38, 57–64 (2014).
124. Neukirchen, J. et al. Incidence and prevalence of myelodysplastic syndromes: data from the Düsseldorf MDS-registry. Leukemia research 35, 1591–1596 (2011).
125. Niemela, J.E. et al. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood 117, 2883–2886 (2011).
126. Oh, Y.-J. et al. Mutation of ten-eleven translocation-2 is associated with increased risk of autoimmune disease in patients with myelodysplastic syndrome. The Korean journal of internal medicine (2019).
127. Oren, M. Decision making by p53: life, death and cancer. Cell death and differentiation 10, 431–442 (2003).
128. Papaemmanuil, E. et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122, 3616-27; quiz 3699 (2013).
129. Páramo Fernández, J.A. Aterosclerosis y hematopoyesis clonal: un nuevo factor de riesgo. Clinica e investigacion en arteriosclerosis : publicacion oficial de la Sociedad Espanola de Arteriosclerosis 30, 133–136 (2018).
130. Patnaik, M.M. et al. Chronic myelomonocytic leukemia: 2018 update on diagnosis, risk stratification and management. American journal of hematology 93, 824–840 (2018).
131. Pellagatti, A. et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia 24, 756–764 (2010).
132. Pellagatti, A. et al. The molecular pathogenesis of the myelodysplastic syndromes. European journal of haematology 95, 3–15 (2015).
133. Pivovarcikova, K. et al. Primary renal well-differentiated neuroendocrine tumour (carcinoid): next-generation sequencing study of 11 cases. Histopathology 75, 104–117 (2019).
134. Pozdeyev, N. et al. Genetic Analysis of 779 Advanced Differentiated and Anaplastic Thyroid Cancers. Clinical cancer research : an official journal of the American Association for Cancer Research 24, 3059–3068 (2018).
135. Quentin, S. et al. 260 Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes RUNX1/AML1 lesions. Leukemia research 35, S102 (2011).
136. Quintás-Cardama, A. et al. Molecular pathways: Jak/STAT pathway: mutations, inhibitors, and resistance. Clinical cancer research : an official journal of the American Association for Cancer Research 19, 1933–1940 (2013).
137. Rassow, J. Biochemie. 50 Tabellen. 2nd ed. (Thieme, Stuttgart, 2008).
138. Regad, T. Targeting RTK Signaling Pathways in Cancer. Cancers 7, 1758–1784 (2015).
139. Reinhardt, D. Therapie der Krankheiten im Kindes- und Jugendalter. 8th ed. (Springer-Verlag, s.l., 2007).
140. Renzis, B. et al. Prognostic impact of JAK2V617F mutation in myelodysplatic syndromes: A matched case control study. Leukemia research reports 2, 64–66 (2013).
141. Rivlin, N. et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes & cancer 2, 466–474 (2011).
142. Román, M. et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Molecular cancer 17, 33 (2018).
143. Sakurai, H. et al. Overexpression of RUNX1 short isoform has an important role in the development of myelodysplastic/myeloproliferative neoplasms. Blood advances 1, 1382–1386 (2017).
144. Savola, P. et al. Clonal hematopoiesis in patients with rheumatoid arthritis. Blood cancer journal 8, 69 (2018).
145. Schaaf C.P. et al. Basiswissen Humangenetik (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013).
146. Schanz, J. et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 30, 820–829 (2012).
147. Schnittger, S. et al. Use of CBL exon 8 and 9 mutations in diagnosis of myeloproliferative neoplasms and myelodysplastic/myeloproliferative disorders: an analysis of 636 cases. Haematologica 97, 1890–1894 (2012).
148. Schwartz, J.R. et al. The genomic landscape of pediatric myelodysplastic syndromes. Nature communications 8, 1557 (2017).
149. Siraj, A.K. et al. Prognostic significance of DNMT3A alterations in Middle Eastern papillary thyroid carcinoma. European journal of cancer (Oxford, England : 1990) 117, 133–144 (2019).
150. Sood, R. et al. Role of RUNX1 in hematological malignancies. Blood 129, 2070–2082 (2017).
151. Sperr, W.R. et al. Comorbidity as prognostic variable in MDS: comparative evaluation of the HCT-CI and CCI in a core dataset of 419 patients of the Austrian MDS Study Group. Annals of oncology : official journal of the European Society for Medical Oncology 21, 114–119 (2010).
152. Steelman, L.S. et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18, 189–218 (2004).
153. Steensma, D.P. et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both "atypical" myeloproliferative disorders and myelodysplastic syndromes. Blood 106, 1207–1209 (2005).
154. Such, E. et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood 121, 3005–3015 (2013).
155. Suzuki, T. et al. RUNX1 regulates site specificity of DNA demethylation by recruitment of DNA demethylation machineries in hematopoietic cells. Blood advances 1, 1699–1711 (2017).
156. Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Molecular and cellular endocrinology 386, 2–15 (2014).
157. Thol, F. et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 29, 2499–2506 (2011).
158. Thol, F. et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 119, 3578–3584 (2012).
159. Tremblay, D. et al. Implications of Mutation Profiling in Myeloid Malignancies-PART 1: Myelodysplastic Syndromes and Acute Myeloid Leukemia. Oncology (Williston Park, N.Y.) 32, e38-e44 (2018).
160. Tsai, S.-C. et al. Biological Activities of RUNX1 Mutants Predict Secondary Acute Leukemia Transformation from Chronic Myelomonocytic Leukemia and Myelodysplastic Syndromes. Clinical cancer research: an official journal of the American Association for Cancer Research 21, 3541–3551 (2015).
161. Vannucchi, A.M. et al. Epigenetics and mutations in chronic myeloproliferative neoplasms. Haematologica 96, 1398–1402 (2011).
162. Visconte, V. et al. Mutations in Splicing Factor Genes in Myeloid Malignancies: Significance and Impact on Clinical Features. Cancers 11 (2019).
163. Visconte, V. et al. Pathogenesis of myelodysplastic syndromes: an overview of molecular and non-molecular aspects of the disease. Blood research 49, 216–227 (2014).
164. Vousden, K.H. et al. p53 in health and disease. Nature reviews. Molecular cell biology 8, 275–283 (2007).
165. Wagener, C. et al. Molekulare Onkologie. Entstehung, Progression, klinische Aspekte; 95 Tabellen. 3rd ed. (Thieme, s.l., 2010).
166. Walter, M.J. et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 25, 1153–1158 (2011).
167. Wan, Y. et al. SF3B1 mutations in chronic lymphocytic leukemia. Blood 121, 4627–4634 (2013).
168. Wang, F. et al. Gender disparity in the survival of patients with primary myelodysplastic syndrome. Journal of Cancer 10, 1325–1332 (2019).
169. Welch, J.S. et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. The New England journal of medicine 375, 2023–2036 (2016).
170. Wu, S.-J. et al. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood 120, 3106–3111 (2012).
171. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer cell 19, 17–30 (2011).
172. Xu, Y. et al. JAK2 variations and functions in lung adenocarcinoma. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 39, 1010428317711140 (2017a).
173. Xu, Y. et al. Implications of mutational spectrum in myelodysplastic syndromes based on targeted next-generation sequencing. Oncotarget 8, 82475–82490 (2017b).
174. Yamaoka, K. et al. The Janus kinases (Jaks). Genome biology 5, 253 (2004).
175. Yoshimi, A. et al. Splicing factor mutations in MDS RARS and MDS/MPN-RS-T. International journal of hematology 105, 720–731 (2017).
176. Zhao, C. et al. Insights into the Structural Features Essential for JAK2 Inhibition and Selectivity. Current medicinal chemistry 23, 1331–1355 (2016).
177. Zhong, X. et al. Increased RUNX1 expression in patients with immune thrombocytopenia. Human immunology 77, 687–691 (2016).
178. Zipperer, E. et al. MPL 515 and JAK2 mutation analysis in MDS presenting with a platelet count of more than 500 x 10(9)/l. Annals of hematology 87, 413–415 (2008).
179. Zipperer, E. et al. The myelodysplastic syndrome-comorbidity index provides additional prognostic information on patients stratified according to the revised international prognostic scoring system. Haematologica 99, e31-2 (2014).
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:23.03.2022
Dateien geändert am:23.03.2022
Promotionsantrag am:18.06.2020
Datum der Promotion:11.11.2021
english
Benutzer
Status: Gast
Aktionen