Dokument: Energiestoffwechsel des humanen Myokards bei Herzinsuffizienz und Diabetes Mellitus Typ 2

Titel:Energiestoffwechsel des humanen Myokards bei Herzinsuffizienz und Diabetes Mellitus Typ 2
Weiterer Titel:Myocardial Energy Metabolism in Heart Failure and Type 2 Diabetes Mellitus
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=57876
URN (NBN):urn:nbn:de:hbz:061-20211102-082905-0
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Zweck, Elric [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]2,64 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 27.10.2021 / geändert 27.10.2021
Beitragende:PD. Dr. PhD Szendrödi, Julia [Gutachter]
Prof. Dr. med. Boege, Fritz [Gutachter]
Prof. Dr. med. Backs, Johannes [Gutachter]
Stichwörter:Metabolismus, Diabetes, Mitochondrien, Herzinsuffizienz, Diabetische Kardiomyopathie
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Typ 2 Diabetes Mellitus (T2DM) kann unabhängig von anderen Risikofaktoren zu einer Herzinsuffizienz führen. Jüngere Studien geben Hinweise darauf, dass bei Menschen mit koronarer Herzkrankheit bei Vorliegen eines T2DM eine reduzierte myokardiale mitochondriale Funktion vorliegt. Es bleibt jedoch unklar, welchen Einfluss T2DM auf Mitochondrien im humanen Myokard unabhängig von vaskulären Erkrankungen hat.
Es wurden die Hypothesen überprüft, dass (1) die myokardiale Mitochondrienfunktion des linken Ventrikels von jener in den Vorhöfen abweicht, (2) eine fortgeschrittene Herzinsuffizienz mit einer eingeschränkten mitochondrialen oxidativen Kapazität im humanen Ventrikelmyokard assoziiert ist und (3) T2DM zu metabolischen Veränderungen des ventrikulären Myokards führt. Konkret wurde postuliert, dass (i) T2DM, Hyperglykämie und Insulinresistenz eine reduzierte ventrikuläre myokardiale oxidative Kapazität induzieren, (ii) zugleich eine subklinische Einschränkung kardialer Funktion in vivo besteht und (iii) die T2DM-induzierten Veränderungen mit erhöhtem systemischen oxidativen Stress und myokardialer Inflammation assoziiert sind.
Hierzu wurde in myokardialen Gewebeproben verschiedener Kohorten die mitochondriale oxidative Kapazität mittels hochauflösender Respirometrie untersucht. Bei 11 Probanden wurden Mitochondrienfunktion und Citrat-Synthase-Aktivität von Myokard aus rechtem und linkem Atrium, rechtem Ventrikel und interventrikulärem Septum mit linksventrikulärem Myokard verglichen. Weiterhin wurde ventrikuläres Myokard von 85 herzinsuffizienten Probanden mit jenem von 60 kardial asymptomatischen Herztransplantierten verglichen. Schließlich wurde der Einfluss des T2DM entsprechend Hypothesen 1 und 2 an ventrikulärem nicht-insuffizienten Myokard untersucht. Hierzu wurden 17 Herztransplantierte mit T2DM und 32 Herztransplantierte ohne Diabetes (Non-DM) verglichen. Alle Probanden beider Gruppen hatten Herzen von Spendern ohne Diabetes erhalten, welches in der Folge dem Empfänger-Stoffwechsel ausgesetzt war. Es wurden Mitochondrienfunktion, Glukosetoleranz und Insulinresistenz (über orale Glukosetoleranztests), ventrikuläre Pumpfunktion, T2-Relaxationszeiten, die myokardiale Expression von nuclear factor 'kappa-light-chain-enhancer' of activated B-cells Subunit 1 (Nf-κB1) als zellulärer Stress-Marker und zirkulierender oxidativer Stress erfasst.
Die myokardiale mitochondriale oxidative Kapazität, Kopplungseffizienz und Citrat-Synthase-Aktivität waren in linken und rechtem Atrium niedriger als im linken Ventrikel. Innerhalb des ventrikulären Myokards bestand hinsichtlich dieser Parameter kein Unterschied. Bei Herzinsuffizienten war die ventrikuläre myokardiale oxidative Kapazität niedriger als in Menschen nach Transplantation. Zudem korrelierte die myokardiale mitochondriale oxidative Kapazität mit dem Herzindex als Parameter der kardialen Funktion. Bei Herztransplantierten mit T2DM war die mitochondriale oxidative Kapazität des ventrikulären Myokards gegenüber Non-DM für alle Substrate reduziert. T2DM wies zudem eine eingeschränkte diastolische Funktion (Strainrate) bei erhaltener systolischer Funktion und eine höhere myokardiale T2-Relaxationszeit als Hinweis myokardialer Inflammation auf. Die myokardiale Nf-κB1-Expression und der systemische oxidative Stress waren in T2DM ebenfalls höher. Über beide Gruppen korrelierte nüchtern-Plasmaglukose invers mit der mitochondrialen Respiration (R²=0.12; p<0,05) und der diastolischen Funktion (R²=0.33; p<0.001), jedoch positiv mit der Expression von Nf-κB1 (R²=0.09; p<0,05). Die Orale Glukose-Insulinsensitivität korrelierte positiv mit der myokardialen oxidativen Kapazität (R2=0.24; p<0,05), jedoch invers mit myokardialen T2-Relaxationszeiten (R²=0.25; p<0,05).
Dies zeigt, dass T2DM die respiratorische Funktion des humanen Ventrikelmyokards unabhängig von strukturellen oder vaskulären Erkrankungen beeinträchtigt. Diese Veränderungen werden von myokardialem Stress und Inflammation begleitet und sind mit Hyperglykämie und Insulinresistenz assoziiert. Somit könnte der myokardiale Energiestoffwechsel zukünftig einen diagnostischen und therapeutischen Ansatzpunkt bei diabetes-assoziierter Herzinsuffizienz darstellen.

Type 2 Diabetes Mellitus (T2DM) can lead to heart failure independent of other risk factors. Recent studies suggest that in humans with coronary artery disease, myocardial mitochondrial function is reduced in presence of T2DM. However, the direct impact of T2DM on mitochondria in the human myocardium independent of vascular disease remains unclear.
It was hypothesized that (1) human left ventricular and atrial myocardium differ in mitochondrial function, (2) advanced heart failure is associated with an impairment of ventricular myocardial oxidative capacity, and (3) T2DM directly induces specific metabolic alterations in the ventricular myocardium. Concretely, it was postulated that (i) T2DM, hyperglycemia and insulin resistance lead to a reduction of ventricular myocardial oxidative capacity, (ii) concurrently, there is a subclinical cardiac functional impairment in vivo, and (iii) these T2DM-related alterations are accompanied by increased systemic oxidative stress and myocardial inflammation.
For this purpose, myocardial mitochondrial oxidative capacity was assessed in myocardial tissue specimens of participants from different cohorts using high-resolution respirometry. In 11 of these patients, myocardium was examined for regional differences. Mitochondrial function and citrate synthase activity in the right atrium, left atrium, right ventricle, and interventricular septum was compared to the respective values in the left ventricular free wall. Furthermore, ventricular myocardium from 85 patients undergoing cardiac surgery was compared to ventricular myocardium from 60 heart transplant recipients without apparent heart failure which was collected percutaneously. Finally, in accordance with hypotheses 1 and 2, the impact of T2DM on human ventricular myocardium was then scrutinized in apparently non-failing ventricular myocardium. We compared 32 heart transplant recipients without diabetes (Non-DM group) with 17 heart transplant recipients with T2DM (T2DM group). All participants in both groups had received hearts of donors without diabetes, which were exposed to the recipient’s metabolism after transplantation. Beyond mitochondrial function, we assessed glucose tolerance and insulin resistance using oral glucose tolerance tests (OGTT), ventricular function and T2 relaxation times using cardiac magnetic resonance imaging (cMRI), myocardial expression of nuclear factor 'kappa-light-chain-enhancer' of activated B-cells Subunit 1 (Nf-κB1) as a stress marker, as well as circulating markers of oxidative stress.
Myocardial mitochondrial oxidative capacity, coupling efficiency and citrate synthase activity were lower in the left and right atrium compared to the left ventricle. Within ventricular myocardium, there were no differences regarding these parameters. Heart failure patients exhibited lower myocardial oxidative capacity, albeit similar mitochondrial coupling efficiency, compared to patients after heart transplantation. Across both groups, cardiac index as a marker of cardiac function related positively to myocardial oxidative capacity. The T2DM group exhibited lower ventricular myocardial mitochondrial oxidative capacity and higher proton leak for all substrates used compared to Non-DM. Moreover, cMRI revealed preserved systolic but impaired diastolic function (diastolic strain rate) in T2DM, accompanied by increased T2 relaxation times, indicating myocardial inflammation. Myocardial expression of Nf-κB1 and systemic oxidative stress were higher in T2DM. Across both groups, fasting plasma glucose correlated inversely with mitochondrial oxidative capacity (R²=0.12; p<0,05) and diastolic function (R²=0.33; p<0.001), but positively with Nf-κB1 expression (R²=0.09; p<0,05). Oral glucose insulin sensitivity related to myocardial mitochondrial oxidative capacity (R²= 0.24; p<0,05), but inversely to myocardial T2 relaxation times (R²=0.25; p<0,05).
The reported data reveal that T2DM impairs mitochondrial respiratory function in human ventricular myocardium independent of structural or vascular disease. These alterations are accompanied by myocardial stress and inflammation and are related to both, hyperglycemia, and insulin resistance. These findings point towards myocardial energy metabolism as a promising diagnostic and therapeutic target in diabetes-related heart failure.
Quelle:[1] Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129–2200. doi:10.1093/eurheartj/ehw128
[2] Jessup M, Brozena S. Heart failure. N Engl J Med 2003; 348: 2007–2018. doi:10.1056/NEJMra021498
[3] New York Heart Association. Criteria Committee. Nomenclature and criteria for diagnosis of diseases of the heart and great vessels. Boston: Little, Brown and Company; 1994
[4] Roger VL. Epidemiology of heart failure. Circ Res 2013; 113: 646–659. doi:10.1161/CIRCRESAHA.113.300268
[5] Raphael C, Briscoe C, Davies J, et al. Limitations of the New York Heart Association functional classification system and self-reported walking distances in chronic heart failure. Heart 2007; 93: 476–482. doi:10.1136/hrt.2006.089656
[6] Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013; 62: e147-239. doi:10.1016/j.jacc.2013.05.019
[7] Störk S, Handrock R, Jacob J, et al. Epidemiology of heart failure in Germany: a retrospective database study: A retrospective database study. Clin Res Cardiol 2017; 106: 913–922. doi:10.1007/s00392-017-1137-7
[8] Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol 2011; 8: 30–41. doi:10.1038/nrcardio.2010.165
[9] Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community-based population. JAMA 2004; 292: 344–350. doi:10.1001/jama.292.3.344
[10] Djoussé L, Driver JA, Gaziano JM. Relation between modifiable lifestyle factors and lifetime risk of heart failure. JAMA 2009; 302: 394–400. doi:10.1001/jama.2009.1062
[11] Bleumink GS, Knetsch AM, Sturkenboom MCJM, et al. Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. Eur Heart J 2004; 25: 1614–1619. doi:10.1016/j.ehj.2004.06.038
[12] Lippi G, Sanchis-Gomar F. Global epidemiology and future trends of heart failure. AME Med J 2020; 5: 15. doi:10.21037/amj.2020.03.03
[13] Ohlmeier C, Mikolajczyk R, Frick J, et al. Incidence, prevalence and 1-year all-cause mortality of heart failure in Germany: a study based on electronic healthcare data of more than six million persons. Clin Res Cardiol 2015; 104: 688–696. doi:10.1007/s00392-015-0841-4
[14] Owan TE, Redfield MM. Epidemiology of diastolic heart failure. Prog Cardiovasc Dis 2005; 47: 320–332. doi:10.1016/j.pcad.2005.02.010
[15] Lloyd-Jones D, Adams RJ, Brown TM, et al. Executive summary: heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation 2010; 121: 948–954. doi:10.1161/CIRCULATIONAHA.109.192666
[16] Agency for Healthcare Research and Quality. HCUP Fast Stats. Healthcare Cost and Utilization Project (HCUP).
[17] Shah AM, Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. The Lancet 2011; 378: 704–712. doi:10.1016/S0140-6736(11)60894-5
[18] Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res 2011; 108: 1122–1132. doi:10.1161/CIRCRESAHA.110.226928
[19] Mariappan N, Elks CM, Sriramula S, et al. NF-kappaB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovasc Res 2010; 85: 473–483. doi:10.1093/cvr/cvp305
[20] Chen L-F, Greene WC. Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 2004; 5: 392–401. doi:10.1038/nrm1368
[21] González A, Ravassa S, Beaumont J, et al. New targets to treat the structural remodeling of the myocardium. J Am Coll Cardiol 2011; 58: 1833–1843. doi:10.1016/j.jacc.2011.06.058
[22] Brasier AR. The NF-κB Regulatory Network. Cardiovasc Toxicol 2006; 6: 111–130. doi:10.1385/CT:6:2:111
[23] Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007; 8: 49–62. doi:10.1038/nrm2083
[24] Fuentes-Antrás J, Ioan AM, Tuñón J, et al. Activation of toll-like receptors and inflammasome complexes in the diabetic cardiomyopathy-associated inflammation. Int J Endocrinol 2014; 2014: 847827. doi:10.1155/2014/847827
[25] Oka T, Hikoso S, Yamaguchi O, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012; 485: 251–255. doi:10.1038/nature10992
[26] Nakayama H, Otsu K. Translation of hemodynamic stress to sterile inflammation in the heart. Trends Endocrinol Metab 2013; 24: 546–553. doi:10.1016/j.tem.2013.06.004
[27] Neubauer S. The failing heart--an engine out of fuel. N Engl J Med 2007; 356: 1140–1151. doi:10.1056/NEJMra063052
[28] HERRMANN G, DECHERD GM JR. THE CHEMICAL NATURE OF HEART FAILURE. Ann Intern Med 1939; 12: 1233. doi:10.7326/0003-4819-12-8-1233
[29] Ashrafian H, Neubauer S. Metabolomic profiling of cardiac substrate utilization: fanning the flames of systems biology? Circulation 2009; 119: 1700–1702. doi:10.1161/CIRCULATIONAHA.109.849919
[30] Taegtmeyer H. Cardiac metabolism as a target for the treatment of heart failure. Circulation 2004; 110: 894–896. doi:10.1161/01.CIR.0000139340.88769.D5
[31] Glatz JFC, Bonen A, Ouwens DM, et al. Regulation of sarcolemmal transport of substrates in the healthy and diseased heart. Cardiovasc Drugs Ther 2006; 20: 471–476. doi:10.1007/s10557-006-0582-8
[32] Goodwin GW, Taylor CS, Taegtmeyer H. Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem 1998; 273: 29530–29539. doi:10.1074/jbc.273.45.29530
[33] Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85: 1093–1129. doi:10.1152/physrev.00006.2004
[34] Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation 2007; 116: 434–448. doi:10.1161/CIRCULATIONAHA.107.702795
[35] Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ Res 2018; 122: 624–638. doi:10.1161/CIRCRESAHA.117.311586
[36] Gnaiger E, Aasander Frostner E, Abdul Karim N, Abdel-Rahman EA, Abumrad NA, Acuna-Castroviejo D, Adiele RC, Ahn B, Alencar MB, Ali SS, Alton L, Alves MG, Amati F, Amoedo ND, Amorim R, Anderson EJ, Andreadou I, Antunes D, Arago M, Aral C, Arandarcikaite O, Arias-Reyes C, Armand A-S, Arnould T, Avram VF, Axelrod CL, Bairam A, Bailey DM, Bajpeyi S, Bajzikova M, Bakker BM, Barlow J, Bardal T, Banni A, Bastos Sant'Anna Silva, Ana Carolina, Batterson P, Battino M, Bazil J, Beard DA, Beleza J, Bednarczyk P, Bello F, Ben-Shachar D, Bergdahl A, Berge RK, Bergmeister L, Bernardi P, Berridge MV, Bettinazzi S, Bishop D, Blier PU, Blindheim DF, Boardman NT, Boetker HE, Borchard S, Boros M, Borsheim E, Borras C, Borutaite V, Botella J, Bouillaud F, Bouitbir J, Boushel RC, Bovard J, Bravo-Sagua R, Breton S, Brown DA, Brown GC, Brown RA, Brozinick JT, Buettner GR, Burtscher J, Bustos M, Calabria E, Calbet JA, Calzia E, Cannon DT, Cano Sanchez M, Canto Alvarez C, Cardinale D, Cardoso LHD, Carvalho E, Casado Pinna M, Cassar S, Castelo MP, Castilho RF, Cavalcanti-de-Albuquerque JP, Cecatto C, Celen MC, Cervinkova Z, Chabi B, Chakrabarti L, Chakrabarti S, Chaurasia B, Chen Q, Chicco AJ, Chinopoulos C, Chowdhury SK, Cizmarova B, Clementi E, Coen PM, Cohen BH, Coker RH, Collin-Chenot A, Coughlan MT, Coxito P, Crisostomo L, Crispim M, Crossland H, Dahdah N, Dalgaard LT, Dambrova M, Danhelovska T, Darveau CA, Darwin PM, Das AM, Dash RK, Davidova E, Davis MS, Dayanidhi S, Bem AF de, Goede P de, Palma C de, Pinto V de, Dela F, Dembinska-Kiec A, Detraux D, Devaux Y, Di Marcello M, Di Paola FJ, Dias C, Dias TR, Distefano G, Djafarzadeh S, Doermann N, Doerrier C, Dong L-F, Donnelly C, Drahota Z, Duarte FV, Dubouchaud H, Duchen MR, Dumas J-F, Durham WJ, Dymkowska D, Dyrstad SE, Dyson A, Dzialowski EM, Eaton S, Ehinger J, Elmer E, Endlicher R, Engin AB, Escames G, Evinova A, Ezrova Z, Falk MJ, Fell DA, Ferdinandy P, Ferko M, Fernandez-Ortiz M, Fernandez-Vizarra E, Ferreira JCB, Ferreira R, Ferri A, Festuccia WT, Fessel JP, Filipovska A, Fisar Z, Fischer C, Fischer M, Fisher G, Fisher JJ, Fontanesi F, Forbes-Hernandez TY, Ford E, Fornaro M, Fuertes Agudo M, Fulton M, Galina A, Galkin A, Gallee L, Galli GL, Gama Perez P, Gan Z, Ganetzky R, Gao Y, Garcia GS, Garcia-Rivas G, Garcia-Roves PM, Garcia-Souza LF, Garlid KD, Garrabou G, Garten A, Gastaldelli A, Gayen J, Genders AJ, Genova ML, Giampieri F, Giovarelli M, Glatz JFC, Goikoetxea Usandizaga N, Goncalo Teixeira da Silva, Rui, Goncalves DF, Gonzalez-Armenta JL, Gonzalez-Francesqua A, Gonzalez-Freire M, Gonzalo H, Goodpaster BH, Gorr TA, Gourlay CW, Grams B, Granata C, Grefte S, Grilo L, Guarch ME, Gueguen N, Gumeni S, Haas CB, Haavik J, Hachmo Y, Haendeler J, Haider M, Hajrulahovic A, Hamann A, Han J, Han WH, Hancock CR, Hand SC, Handl J, Hansikova H, Hardee JP, Hargreaves IP, Harper ME, Harrison DK, Hassan H, Hatokova Z, Hausenloy DJ, Heales S JR, Heiestad C, Hellgren KT, Henrique A, Hepple RT, Hernansanz-Agustin P, Hewakapuge S, Hickey AJ, Ho DH, Hoehn KL, Hoel F, Holland OJ, Holloway GP, Holzner L, Hoppel CL, Hoppeler H, Hoppel F, Houstek J, Huete-Ortega M, Hyrossova P, Iglesias-Gonzalez J, Indiveri C, Irving BA, Isola R, Iyer S, Jackson CB, Jadiya P, Jana PF, Jandeleit-Dahm K, Jang DH, Jang YC, Janowska J, Jansen K, Jansen-Duerr P, Jansone B, Jarmuszkiewicz W, Jaskiewicz A, Jaspers RT, Jedlicka J, Jerome E, Jespersen NR, Jha RK, Joseph V, Juhasz L, Jurczak MJ, Jurk D, Kaambre T, Kaczor JJ, Kainulainen H, Kampa RP, Kandel SM, Kane DA, Kapferer W, Kapnick S, Kappler L, Karabatsiakis A, Karavaeva I, Karkucinska-Wieckowska A, Kaur S, Keijer J, Keller MA, Keppner G, Khamoui AV, Kidere D, Kilbaugh T, Kim HK, Kim JKS, Kimoloi S, Klepinin A, Klepinina L, Klingenspor M, Klocker H, Komlódi T, Kolasa I, Koopman WJH, Kopitar-Jerala N, Kowaltowski AJ, Kozlov AV, Krajcova A, Krako Jakovljevic N, Kristal BS, Krycer JR, Kuang J, Kucera O, Kuka J, Kwak HB, Kwast K, Kwon OS, Laasmaa M, Labieniec-Watala M, Lai N, Lalic NM, Land JM, Lane N, Laner V, Lanza IR, Laouafa S, Larsen S, Larsen TS, Lavery GG, Lazou A, Ledo AM, Lee HK, Leeuwenburgh C, Lehti M, Lemieux H, Lenaz G, Lerfall J, Li PA, Liang L, Li Puma L, Liepins E, Lin C-T, Liu J, Lopez LC, Lucchinetti E, Ma T, Macedo MP, Machado IF, Maciej S, MacMillan-Crow LA, Magalhaes J, Magri A, Majtnerova P, Makarova E, Makrecka-Kuka M, Malik AN, Marcouiller F, Marechal A, Markova M, Markovic I, Martin DS, Martins AD, Martins JD, Maseko TE, Maull F, Mazat JP, McKenna HT, McKenzie M, McMillan DGG, McStay GP, Menze MA, Mercer JR, Menndham A, Merz T, Messina A, Meszaros AT, Methner A, Michalak S, Mila Guasch M, Minuzzi LM, Misirkic Marjanovic M, Moellering DR, Moisoi N, Molina AJA, Montaigne D, Moore AL, Moore C, Moreau K, Moreira BP, Moreno-Sanchez R, Mracek T, Muccini AM, Muntane J, Muntean DM, Murray AJ, Musiol E, Nabben M, Nair KS, Nehlin JO, Nemec M, Nesci S, Neufer PD, Neuzil J, Neviere R, Newsom SA, Norman J, Nozickova K, Nunes S, Nuoffer J-M, O'Brien K, O'Brien KA, O'Gorman D, Olgar Y, Oliveira B, Oliveira J, Oliveira MF, Oliveira MT, Oliveira PF, Oliveira PJ, Olsen RE, Orynbayeva Z, Osiewacz HD, Paez H, Pak YK, Pallotta ML, Palmeira CM, Parajuli N, Passos JF, Passrugger M, Patel HH, Pavlova N, Pavlovic K, Pecina P, Pedersen TM, Perales JC, Pereira da Silva Grilo da Silva, Filomena, Pereira R, Perez Valencia JA, Perks KL, Pesta D, Petit PX, Pettersen IKN, Pichaud N, Pichler I, Piel S, Pinho SA, Pietka TA, Pino MF, Pirkmajer S, Place N, Plangger M, Porter C, Porter RK, Preguica I, Procaccio V, Prochownik EV, Prola A, Pulinilkunnil T, Puskarich MA, Puurand M, Radenkovic F, Ramzan R, Rattan SIS, Reano S, Reboredo-Rodriguez P, Rees BB, Renner-Sattler K, Rial E, Robinson MM, Roden M, Rodrigues AS, Rodriguez E, Rodriguez-Enriquez S, Roesland GV, Rohlena J, Rolo AP, Ropelle ER, Roshanravan B, Rossignol R, Rossiter HB, Rousar T, Rubelj I, Rybacka-Mossakowska J, Saada A, Safaei Z, Saharnaz S, Salin K, Salvadego D, Sandi C, Saner N, Sanz A, Sazanov LA, Scatena R, Schartner M, Scheibye-Knudsen M, Schilling JM, Schlattner U, Schoenfeld P, Schots PC, Schulz R, Schwarzer C, Scott GR, Selman C, Shabalina IG, Sharma P, Sharma V, Shevchuk I, Shirazi R, Shiroma JG, Siewiera K, Silber AM, Silva AM, Sims CA, Singer D, Singh BK, Skolik RA, Smenes BT, Smith J, Soares FAA, Sobotka O, Sokolova I, Solesio ME, Sonkar VK, Sowton AP, Sparagna GC, Sparks LM, Spinazzi M, Stankova P, Starr J, Stary C, Stelfa G, Stepto NK, Stiban J, Stier A, Stocker R, Storder J, Sumbalova Z, Suomalainen WA, Suravajhala P, Svalbe B, Swerdlow RH, Swiniuch D, Szabo I, Szewczyk A, Szibor M, Tanaka M, Tandler B, Tarnopolsky MA, Tausan D, Tavernarakis N, Tepp K, Teodoro J, Thakkar H, Thapa M, Thyfault JP, Tomar D, Ton R, Torp M-K, Towheed A, Tretter L, Trewin AJ, Trifunovic A, Trivigno C, Tronstad KJ, Trougakos IP, Truu L, Tuncay E, Turan B, Tyrrell DJ, Urban T, Urner S, Valentine JM, van Bergen NJ, Varricchio F, Vella J, Vendelin M, Verdaguer IB, Vernerova A, Vercesi AE, Victor VM, Vieira Ligo Teixeira C, Vidimce J, Viel C, Vieyra A, Vilks K, Villena JA, Vincent V, Vinogradov AD, Viscomi C, Vitorino RMP, Vogt S, Volani C, Volska K, Votion D-M, Vujacic-Mirski K, Wagner BA, Ward ML, Warnsmann V, Wasserman DH, Watala C, Wei Y-H, Whitfield J, Wickert A, Wieckowski MR, Wiesner RJ, Williams CM, Winwood-Smith H, Wohlgemuth SE, Wohlwend M, Wolff JN, Wrutniak-Cabello C, Wuest RCI, Yokota T, Zablocki K, Zanon A, Zanou N, Zaugg K, Zaugg M, Zdrazilova L, Zhang Y, Zhang YZ, Zikova A, Zischka H, Zorzano A, Zvejniece L, Lagarrigue S, Munro D, Pereira S, Laranjinha J, Almeida A, Diederich M, Hecker M, Jusic A, Prigione A, Sommer N, Weissig V, Guida, Bento, G, John G, Jones, JG. Mitochondrial physiology. Bioenergetics Communications; 2020. doi:10.26124/BEC:2020-0001.V1
[37] Rassow J. Biochemie. Duale Reihe. 3. Aufl. Stuttgart: Thieme; 2012
[38] Gnaiger E. Mitochondrial Pathways and Respiratory Control: An Introduction to OXPHOS Analysis. Innsbruck: Mitochondr Physiol Network 17.18; 2012
[39] Pesta D, Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 2012; 810: 25–58. doi:10.1007/978-1-61779-382-0_3
[40] Lemieux H, Semsroth S, Antretter H, et al. Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 2011; 43: 1729–1738. doi:10.1016/j.biocel.2011.08.008
[41] CHANCE B, WILLIAMS GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 1955; 217: 409–427
[42] Gnaiger E. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol 2009; 41: 1837–1845. doi:10.1016/j.biocel.2009.03.013
[43] Gnaiger E. Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis ; mitochondr physiol network 19.12. 4. Aufl. Mitochondrial physiology network. Innsbruck: Oroboros Instruments; 2012
[44] American Diabetes A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018; 41: S13-S27. doi:10.2337/dc18-S002
[45] Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019; 157: 107843. doi:10.1016/j.diabres.2019.107843
[46] Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014; 103: 137–149. doi:10.1016/j.diabres.2013.11.002
[47] Heidemann C, Scheidt-Nave C. Prevalence, incidence and mortality of diabetes mellitus in adults in Germany – A review in the framework of the Diabetes Surveillanc. In: Journal of Health Monitoring. Robert Koch-Institut, Epidemiologie und Gesundheitsberichterstattung; 2017. doi:10.17886/RKI-GBE-2017-062
[48] Tamayo T, Brinks R, Hoyer A, et al. The Prevalence and Incidence of Diabetes in Germany. Dtsch Arztebl Int 2016; 113: 177–182. doi:10.3238/arztebl.2016.0177
[49] Mahajan A, Wessel J, Willems SM, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics 2018; 50: 559–571. doi:10.1038/s41588-018-0084-1
[50] Saxena R, Elbers CC, Guo Y, et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am J Hum Genet 2012; 90: 410–425. doi:10.1016/j.ajhg.2011.12.022
[51] Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. The Lancet 2017; 389: 2239–2251. doi:10.1016/S0140-6736(17)30058-2
[52] Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature 2019; 576: 51–60. doi:10.1038/s41586-019-1797-8
[53] Murray CJL, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 2020; 396: 1223–1249. doi:10.1016/S0140-6736(20)30752-2
[54] Rawshani A, Rawshani A, Franzén S, et al. Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes. N Engl J Med 2017; 376: 1407–1418. doi:10.1056/NEJMoa1608664
[55] Tönnies T, Hoyer A, Brinks R. Excess mortality for people diagnosed with type 2 diabetes in 2012 - Estimates based on claims data from 70 million Germans. Nutr Metab Cardiovasc Dis 2018; 28: 887–891. doi:10.1016/j.numecd.2018.05.008
[56] Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015. A systematic analysis for the Global Burden of Disease Study 2015. The Lancet 2016; 388: 1459–1544. doi:10.1016/S0140-6736(16)31012-1
[57] Jacobs E, Hoyer A, Brinks R, et al. Burden of Mortality Attributable to Diagnosed Diabetes: A Nationwide Analysis Based on Claims Data From 65 Million People in Germany. Diabetes Care 2017; 40: 1703–1709. doi:10.2337/dc17-0954
[58] Herold G, Hrsg. Innere Medizin 2015. Köln: Selbstverl.; 2015
[59] Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol 2020; 16: 349–362. doi:10.1038/s41574-020-0355-7
[60] Tabák AG, Jokela M, Akbaraly TN, et al. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. The Lancet 2009; 373: 2215–2221. doi:10.1016/s0140-6736(09)60619-x
[61] Moller DE, Flier JS. Insulin resistance--mechanisms, syndromes, and implications. N Engl J Med 1991; 325: 938–948. doi:10.1056/NEJM199109263251307
[62] Gancheva S, Jelenik T, Álvarez-Hernández E, et al. Interorgan Metabolic Crosstalk in Human Insulin Resistance. Physiol Rev 2018; 98: 1371–1415. doi:10.1152/physrev.00015.2017
[63] Szendroedi J, Roden M. Ectopic lipids and organ function. Curr Opin Lipidol 2009; 20: 50–56. doi:10.1097/mol.0b013e328321b3a8
[64] Preuss C, Jelenik T, Bódis K, et al. A New Targeted Lipidomics Approach Reveals Lipid Droplets in Liver, Muscle and Heart as a Repository for Diacylglycerol and Ceramide Species in Non-Alcoholic Fatty Liver. Cells 2019; 8. doi:10.3390/cells8030277
[65] Szendroedi J, Frossard M, Klein N, et al. Lipid-induced insulin resistance is not mediated by impaired transcapillary transport of insulin and glucose in humans. Diabetes 2012; 61: 3176–3180. doi:10.2337/db12-0108
[66] Roden M, Ludwig C, Nowotny P, et al. Relative hypoleptinemia in patients with type 1 and type 2 diabetes mellitus. Int J Obes Relat Metab Disord 2000; 24: 976–981. doi:10.1038/sj.ijo.0801266
[67] Martin-Gronert MS, Ozanne SE. Programming of appetite and type 2 diabetes. Early Hum Dev 2005; 81: 981–988. doi:10.1016/j.earlhumdev.2005.10.006
[68] Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? The Journal of nutritional biochemistry 2019; 63: 101–108. doi:10.1016/j.jnutbio.2018.10.003
[69] Canfora EE, Meex RCR, Venema K, et al. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol 2019; 15: 261–273. doi:10.1038/s41574-019-0156-z
[70] Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25: 1822–1832. doi:10.1038/s41591-019-0675-0
[71] Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2003; 52: 1799–1805. doi:10.2337/diabetes.52.7.1799
[72] Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007; 356: 1517–1526. doi:10.1056/NEJMoa065213
[73] Folli F, Corradi D, Fanti P, et al. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev 2011; 7: 313–324. doi:10.2174/157339911797415585
[74] Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107: 1058–1070. doi:10.1161/CIRCRESAHA.110.223545
[75] Sies H. Oxidative stress: From basic research to clinical application. The American Journal of Medicine 1991; 91: S31-S38. doi:10.1016/0002-9343(91)90281-2
[76] Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur Cardiol 2019; 14: 50–59. doi:10.15420/ecr.2018.33.1
[77] Ziegler D, Strom A, Brüggemann J, et al. Overexpression of cutaneous mitochondrial superoxide dismutase in recent-onset type 2 diabetes. Diabetologia 2015; 58: 1621–1625. doi:10.1007/s00125-015-3609-5
[78] Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 2010; 12: 537–577. doi:10.1089/ars.2009.2531
[79] Trumpower BL. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J Biol Chem 1990; 265: 11409–11412
[80] Zweck E, Szendrödi J, Kelm M, et al. Das diabetische Herz und Herzinsuffizienz – Aktuelles zu Entstehung und Therapie. Dtsch Med Wochenschr 2019; 144: 175–179. doi:10.1055/a-0646-7871
[81] Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 1999; 341: 1127–1133. doi:10.1056/NEJM199910073411506
[82] Seferović PM, Petrie MC, Filippatos GS, et al. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2018; 20: 853–872. doi:10.1002/ejhf.1170
[83] Miller L. Heart transplantation in patients with diabetes. Circulation 2006; 114: 2206–2207. doi:10.1161/CIRCULATIONAHA.106.660902
[84] Aguilar D, Deswal A, Ramasubbu K, et al. Comparison of patients with heart failure and preserved left ventricular ejection fraction among those with versus without diabetes mellitus. Am J Cardiol 2010; 105: 373–377. doi:10.1016/j.amjcard.2009.09.041
[85] Maack C, Lehrke M, Backs J, et al. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J 2018; 39: 4243–4254. doi:10.1093/eurheartj/ehy596
[86] Giri S, Shaw LJ, Murthy DR, et al. Impact of diabetes on the risk stratification using stress single-photon emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. Circulation 2002; 105: 32–40. doi:10.1161/hc5001.100528
[87] Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation 2007; 115: 3213–3223. doi:10.1161/CIRCULATIONAHA.106.679597
[88] Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease: A hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia 2018; 61: 21–28. doi:10.1007/s00125-017-4390-4
[89] Kenny HC, Abel ED. Heart Failure in Type 2 Diabetes Mellitus. Circ Res 2019; 124: 121–141. doi:10.1161/CIRCRESAHA.118.311371
[90] Bugger H, Abel ED. Rodent models of diabetic cardiomyopathy. Dis Model Mech 2009; 2: 454–466. doi:10.1242/dmm.001941
[91] Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 2011; 8: 92–103. doi:10.1038/nrendo.2011.138
[92] Boudina S, Sena S, Theobald H, et al. Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 2007; 56: 2457–2466. doi:10.2337/db07-0481
[93] Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 2010; 11: 31–39. doi:10.1007/s11154-010-9131-7
[94] Riehle C, Bauersachs J. Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res Cardiol 2018; 114: 2. doi:10.1007/s00395-018-0711-0
[95] Ritchie RH, Abel ED. Basic Mechanisms of Diabetic Heart Disease. Circ Res 2020; 126: 1501–1525. doi:10.1161/CIRCRESAHA.120.315913
[96] Rabøl R, Larsen S, Højberg PMV, et al. Regional anatomic differences in skeletal muscle mitochondrial respiration in type 2 diabetes and obesity. J Clin Endocrinol Metab 2010; 95: 857–863. doi:10.1210/jc.2009-1844
[97] Phielix E, Schrauwen-Hinderling VB, Mensink M, et al. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 2008; 57: 2943–2949. doi:10.2337/db08-0391
[98] Mogensen M, Sahlin K, Fernström M, et al. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 2007; 56: 1592–1599. doi:10.2337/db06-0981
[99] Boushel R, Gnaiger E, Schjerling P, et al. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 2007; 50: 790–796. doi:10.1007/s00125-007-0594-3
[100] Anderson EJ, Kypson AP, Rodriguez E, et al. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol 2009; 54: 1891–1898. doi:10.1016/j.jacc.2009.07.031
[101] Montaigne D, Marechal X, Coisne A, et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 2014; 130: 554–564. doi:10.1161/CIRCULATIONAHA.113.008476
[102] Duicu OM, Lighezan R, Sturza A, et al. Assessment of Mitochondrial Dysfunction and Monoamine Oxidase Contribution to Oxidative Stress in Human Diabetic Hearts. Oxid Med Cell Longev 2016; 2016: 8470394. doi:10.1155/2016/8470394
[103] Ljubkovic M, Gressette M, Bulat C, et al. Disturbed Fatty Acid Oxidation, Endoplasmic Reticulum Stress, and Apoptosis in Left Ventricle of Patients With Type 2 Diabetes. Diabetes 2019; 68: 1924–1933. doi:10.2337/db19-0423
[104] Croston TL, Thapa D, Holden AA, et al. Functional deficiencies of subsarcolemmal mitochondria in the type 2 diabetic human heart. Am J Physiol Heart Circ Physiol 2014; 307: H54-65. doi:10.1152/ajpheart.00845.2013
[105] Barth AS, Merk S, Arnoldi E, et al. Functional profiling of human atrial and ventricular gene expression. Pflugers Arch 2005; 450: 201–208. doi:10.1007/s00424-005-1404-8
[106] Scheiber D, Jelenik T, Zweck E, et al. High-resolution respirometry in human endomyocardial biopsies shows reduced ventricular oxidative capacity related to heart failure. Exp Mol Med 2019; 51: 1–10. doi:10.1038/s12276-019-0214-6
[107] Duicu O, Juşcă C, Falniţă L, et al. Substrate-specific impairment of mitochondrial respiration in permeabilized fibers from patients with coronary heart disease versus valvular disease. Mol Cell Biochem 2013; 379: 229–234. doi:10.1007/s11010-013-1644-4
[108] Lopaschuk GD, Ussher JR, Folmes CDL, et al. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90: 207–258. doi:10.1152/physrev.00015.2009
[109] Rosca MG, Vazquez EJ, Kerner J, et al. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 2008; 80: 30–39. doi:10.1093/cvr/cvn184
[110] Tura A, Chemello G, Szendroedi J, et al. Prediction of clamp-derived insulin sensitivity from the oral glucose insulin sensitivity index. Diabetologia 2018; 61: 1135–1141. doi:10.1007/s00125-018-4568-4
[111] Mari A, Pacini G, Brazzale AR, et al. Comparative evaluation of simple insulin sensitivity methods based on the oral glucose tolerance test. Diabetologia 2005; 48: 748–751. doi:10.1007/s00125-005-1683-9
[112] Mari A, Pacini G, Murphy E, et al. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care 2001; 24: 539–548. doi:10.2337/diacare.24.3.539
[113] Wallace TM, Levy JC, Matthews DR. Use and Abuse of HOMA Modeling. Diabetes Care 2004; 27: 1487–1495. doi:10.2337/diacare.27.6.1487
[114] Messroghli DR, Radjenovic A, Kozerke S, et al. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004; 52: 141–146. doi:10.1002/mrm.20110
[115] Fernández-Jiménez R, Sánchez-González J, Aguero J, et al. Fast T2 gradient-spin-echo (T2-GraSE) mapping for myocardial edema quantification: first in vivo validation in a porcine model of ischemia/reperfusion: First in vivo validation in a porcine model of ischemia/reperfusion. J Cardiovasc Magn Reson 2015; 17: 92. doi:10.1186/s12968-015-0199-9
[116] Spieker M, Katsianos E, Gastl M, et al. T2 mapping cardiovascular magnetic resonance identifies the presence of myocardial inflammation in patients with dilated cardiomyopathy as compared to endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 2018; 19: 574–582. doi:10.1093/ehjci/jex230
[117] Thomas D, Luetkens J, Faron A, et al. Feature-tracking-based strain analysis - a comparison of tracking algorithms. Pol J Radiol 2020; 85: e97-e103. doi:10.5114/pjr.2020.93610
[118] Bönner F, Janzarik N, Jacoby C, et al. Myocardial T2 mapping reveals age- and sex-related differences in volunteers. J Cardiovasc Magn Reson 2015; 17: 9. doi:10.1186/s12968-015-0118-0
[119] Gastl M, Lachmann V, Christidi A, et al. Cardiac magnetic resonance T2 mapping and feature tracking in athlete's heart and HCM. Eur Radiol 2020. doi:10.1007/s00330-020-07289-4
[120] Veksler VI, Kuznetsov AV, Sharov VG, et al. Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers: A novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 1987; 892: 191–196. doi:10.1016/0005-2728(87)90174-5
[121] Kunz WS, Kuznetsov AV, Schulze W, et al. Functional characterization of mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers. Biochim Biophys Acta 1993; 1144: 46–53. doi:10.1016/0005-2728(93)90029-f
[122] Kuznetsov AV, Veksler V, Gellerich FN, et al. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 2008; 3: 965–976. doi:10.1038/nprot.2008.61
[123] Salabei JK, Gibb AA, Hill BG. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc 2014; 9: 421–438. doi:10.1038/nprot.2014.018
[124] Salin K, Villasevil EM, Anderson GJ, et al. The RCR and ATP/O Indices Can Give Contradictory Messages about Mitochondrial Efficiency. Integr Comp Biol 2018; 58: 486–494. doi:10.1093/icb/icy085
[125] O'Brien LC, Chen Q, Savas J, et al. Skeletal muscle mitochondrial mass is linked to lipid and metabolic profile in individuals with spinal cord injury. Eur J Appl Physiol 2017; 117: 2137–2147. doi:10.1007/s00421-017-3687-9
[126] Fleckenstein-Elsen M, Dinnies D, Jelenik T, et al. Eicosapentaenoic acid and arachidonic acid differentially regulate adipogenesis, acquisition of a brite phenotype and mitochondrial function in primary human adipocytes. Mol Nutr Food Res 2016; 60: 2065–2075. doi:10.1002/mnfr.201500892
[127] Lassner D, Kuhl U, Siegismund CS, et al. Improved diagnosis of idiopathic giant cell myocarditis and cardiac sarcoidosis by myocardial gene expression profiling. European Heart Journal 2014; 35: 2186–2195. doi:10.1093/eurheartj/ehu101
[128] Schmidt-Lucke C, Zobel T, Escher F, et al. Human Parvovirus B19 (B19V) Up-regulates CXCR4 Surface Expression of Circulating Angiogenic Cells: Implications for Cardiac Ischemia in B19V Cardiomyopathy. J Infect Dis 2018; 217: 456–465. doi:10.1093/infdis/jix309
[129] Noutsias M, Rohde M, Block A, et al. Preamplification techniques for real-time RT-PCR analyses of endomyocardial biopsies. BMC Mol Biol 2008; 9: 3. doi:10.1186/1471-2199-9-3
[130] Zweck E, Scheiber D, Jelenik T, et al. P4220Mild cellular heart transplant rejection is associated with decreased myocardial mitochondrial respiration and coupling efficiency. European Heart Journal 2018; 39: Supplement 1. doi:10.1093/eurheartj/ehy563.P4220
[131] Kerner W, Brückel J. Definition, Klassifikation und Diagnostik des Diabetes mellitus. Diabetologie und Stoffwechsel 2011; 6: 107–110. doi:10.1055/s-0031-1283764
[132] McGill R, Tukey JW, Larsen WA. Variations of Box Plots. The American Statistician 1978; 32: 12. doi:10.2307/2683468
[133] Bloomekatz J, Galvez-Santisteban M, Chi NC. Myocardial plasticity: cardiac development, regeneration and disease. Curr Opin Genet Dev 2016; 40: 120–130. doi:10.1016/j.gde.2016.05.029
[134] Bass A, Stejskalová M, Ostádal B, et al. Differences between atrial and ventricular energy-supplying enzymes in five mammalian species. Physiol Res 1993; 42: 1–6
[135] Krajčová A, Urban T, Megvinet D, et al. High resolution respirometry to assess function of mitochondria in native homogenates of human heart muscle. PLoS One 2020; 15: e0226142. doi:10.1371/journal.pone.0226142
[136] Larsen S, Nielsen J, Hansen CN, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol (Lond ) 2012; 590: 3349–3360. doi:10.1113/jphysiol.2012.230185
[137] Scheiber D, Zweck E, Jelenik T, et al. Reduced Myocardial Mitochondrial ROS Production in Mechanically Unloaded Hearts. J Cardiovasc Transl Res 2019; 12: 107–115. doi:10.1007/s12265-018-9803-3
[138] Sharov VG, Todor AV, Silverman N, et al. Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol 2000; 32: 2361–2367. doi:10.1006/jmcc.2000.1266
[139] Lee SH, Doliba N, Osbakken M, et al. Improvement of myocardial mitochondrial function after hemodynamic support with left ventricular assist devices in patients with heart failure. The Journal of Thoracic and Cardiovascular Surgery 1998; 116: 344–349. doi:10.1016/S0022-5223(98)70136-9
[140] Nascimben L, Ingwall JS, Pauletto P, et al. Creatine kinase system in failing and nonfailing human myocardium. Circulation 1996; 94: 1894–1901. doi:10.1161/01.cir.94.8.1894
[141] Quigley AF, Kapsa RM, Esmore D, et al. Mitochondrial respiratory chain activity in idiopathic dilated cardiomyopathy. Journal of Cardiac Failure 2000; 6: 47–55. doi:10.1016/S1071-9164(00)00011-7
[142] Chatfield KC, Sparagna GC, Chau S, et al. Elamipretide Improves Mitochondrial Function in the Failing Human Heart. JACC Basic Transl Sci 2019; 4: 147–157. doi:10.1016/j.jacbts.2018.12.005
[143] Jarreta D. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc Res 2000; 45: 860–865. doi:10.1016/S0008-6363(99)00388-0
[144] Cooper LT, Baughman KL, Feldman AM, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. Eur Heart J 2007; 28: 3076–3093. doi:10.1093/eurheartj/ehm456
[145] Hubbard WB, Harwood CL, Prajapati P, et al. Fractionated mitochondrial magnetic separation for isolation of synaptic mitochondria from brain tissue. Sci Rep 2019; 9: 9656. doi:10.1038/s41598-019-45568-3
[146] Sholter DE, Armstrong PW. Adverse effects of corticosteroids on the cardiovascular system. The Canadian journal of cardiology 2000; 16: 505–511
[147] Ng MKC, Celermajer DS. Glucocorticoid treatment and cardiovascular disease. Heart 2004; 90: 829–830. doi:10.1136/hrt.2003.031492
[148] Stride N, Larsen S, Hey-Mogensen M, et al. Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction. Eur J Heart Fail 2013; 15: 150–157. doi:10.1093/eurjhf/hfs172
[149] Doerrier C, Garcia-Souza LF, Krumschnabel G, et al. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria. Methods Mol Biol 2018; 1782: 31–70. doi:10.1007/978-1-4939-7831-1_3
[150] Marfella R, Amarelli C, Cacciatore F, et al. Lipid Accumulation in Hearts Transplanted From Nondiabetic Donors to Diabetic Recipients. J Am Coll Cardiol 2020; 75: 1249–1262. doi:10.1016/j.jacc.2020.01.018
[151] Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444: 840–846. doi:10.1038/nature05482
[152] Potter E, Marwick TH. Assessment of Left Ventricular Function by Echocardiography: The Case for Routinely Adding Global Longitudinal Strain to Ejection Fraction. JACC Cardiovasc Imaging 2018; 11: 260–274. doi:10.1016/j.jcmg.2017.11.017
[153] Romano S, Judd RM, Kim RJ, et al. Association of Feature-Tracking Cardiac Magnetic Resonance Imaging Left Ventricular Global Longitudinal Strain With All-Cause Mortality in Patients With Reduced Left Ventricular Ejection Fraction. Circulation 2017; 135: 2313–2315. doi:10.1161/CIRCULATIONAHA.117.027740
[154] Mangion K, McComb C, Auger DA, et al. Magnetic Resonance Imaging of Myocardial Strain After Acute ST-Segment-Elevation Myocardial Infarction: A Systematic Review. Circ Cardiovasc Imaging 2017; 10. doi:10.1161/CIRCIMAGING.117.006498
[155] Ernande L, Bergerot C, Girerd N, et al. Longitudinal myocardial strain alteration is associated with left ventricular remodeling in asymptomatic patients with type 2 diabetes mellitus. J Am Soc Echocardiogr 2014; 27: 479–488. doi:10.1016/j.echo.2014.01.001
[156] Ng ACT, Delgado V, Bertini M, et al. Findings from left ventricular strain and strain rate imaging in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol 2009; 104: 1398–1401. doi:10.1016/j.amjcard.2009.06.063
[157] Fang ZY, Yuda S, Anderson V, et al. Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol 2003; 41: 611–617. doi:10.1016/s0735-1097(02)02869-3
[158] Ng ACT, Delgado V, Bertini M, et al. Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 2010; 122: 2538–2544. doi:10.1161/CIRCULATIONAHA.110.955542
[159] Liu X, Yang Z-G, Gao Y, et al. Left ventricular subclinical myocardial dysfunction in uncomplicated type 2 diabetes mellitus is associated with impaired myocardial perfusion: a contrast-enhanced cardiovascular magnetic resonance study. Cardiovasc Diabetol 2018; 17: 139. doi:10.1186/s12933-018-0782-0
[160] Paiman EHM, van Eyk HJ, Bizino MB, et al. Phenotyping diabetic cardiomyopathy in Europeans and South Asians. Cardiovasc Diabetol 2019; 18: 133. doi:10.1186/s12933-019-0940-z
[161] Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016; 12: 144–153. doi:10.1038/nrendo.2015.216
[162] Shang Y, Zhang X, Leng W, et al. Increased fractal dimension of left ventricular trabeculations is associated with subclinical diastolic dysfunction in patients with type-2 diabetes mellitus. Int J Cardiovasc Imaging 2019; 35: 665–673. doi:10.1007/s10554-018-1492-0
[163] Korosoglou G, Humpert PM, Ahrens J, et al. Left ventricular diastolic function in type 2 diabetes mellitus is associated with myocardial triglyceride content but not with impaired myocardial perfusion reserve. J Magn Reson Imaging 2012; 35: 804–811. doi:10.1002/jmri.22879
[164] Levelt E, Pavlides M, Banerjee R, et al. Ectopic and Visceral Fat Deposition in Lean and Obese Patients With Type 2 Diabetes. J Am Coll Cardiol 2016; 68: 53–63. doi:10.1016/j.jacc.2016.03.597
[165] Zabalgoitia M, Ismaeil MF, Anderson L, et al. Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am J Cardiol 2001; 87: 320–323. doi:10.1016/S0002-9149(00)01366-7
[166] Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res 2010; 88: 229–240. doi:10.1093/cvr/cvq239
[167] Verma SK, Garikipati VNS, Kishore R. Mitochondrial dysfunction and its impact on diabetic heart. Biochim Biophys Acta Mol Basis Dis 2017; 1863: 1098–1105. doi:10.1016/j.bbadis.2016.08.021
[168] Anderson EJ, Rodriguez E, Anderson CA, et al. Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. Am J Physiol Heart Circ Physiol 2011; 300: H118-24. doi:10.1152/ajpheart.00932.2010
[169] Borger J, Scheiber D, Horn P, et al. Aetiology-dependent impairment of mitochondrial function in the failing human heart. European Heart Journal 2020; 41. doi:10.1093/ehjci/ehaa946.3606
[170] Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol 2013; 61: 599–610. doi:10.1016/j.jacc.2012.08.1021
[171] Doesch AO, Celik S, Ehlermann P, et al. Heart rate reduction after heart transplantation with beta-blocker versus the selective If channel antagonist ivabradine. Transplantation 2007; 84: 988–996. doi:10.1097/01.tp.0000285265.86954.80
[172] Fragasso G, Cobelli F de, Spoladore R, et al. Resting cardiac energy metabolism is inversely associated with heart rate in healthy young adult men. Am Heart J 2011; 162: 136–141. doi:10.1016/j.ahj.2011.04.012
[173] Casadei B, Meyer TE, Coats AJ, et al. Baroreflex control of stroke volume in man: an effect mediated by the vagus. J Physiol (Lond ) 1992; 448: 539–550. doi:10.1113/jphysiol.1992.sp019056
[174] Bernardi L, Radaelli A, Passino C, et al. Effects of physical training on cardiovascular control after heart transplantation. Int J Cardiol 2007; 118: 356–362. doi:10.1016/j.ijcard.2006.07.032
[175] Niemann B, Chen Y, Teschner M, et al. Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria: The role of mitochondria. J Am Coll Cardiol 2011; 57: 577–585. doi:10.1016/j.jacc.2010.09.040
[176] Niemann B, Pan R, Teschner M, et al. Age and obesity-associated changes in the expression and activation of components of the AMPK signaling pathway in human right atrial tissue. Exp Gerontol 2013; 48: 55–63. doi:10.1016/j.exger.2012.04.005
[177] Wright LA-C, Hirsch IB. Metrics Beyond Hemoglobin A1C in Diabetes Management: Time in Range, Hypoglycemia, and Other Parameters. Diabetes Technol Ther 2017; 19: S16-S26. doi:10.1089/dia.2017.0029
[178] Jelenik T, Flögel U, Álvarez-Hernández E, et al. Insulin Resistance and Vulnerability to Cardiac Ischemia. Diabetes 2018; 67: 2695–2702. doi:10.2337/db18-0449
[179] Okita K, Iwahashi H, Kozawa J, et al. Homeostasis model assessment of insulin resistance for evaluating insulin sensitivity in patients with type 2 diabetes on insulin therapy. Endocr J 2013; 60: 283–290. doi:10.1507/endocrj.ej12-0320
[180] Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003; 300: 1140–1142. doi:10.1126/science.1082889
[181] Szendroedi J, Schmid AI, Chmelik M, et al. Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med 2007; 4: e154. doi:10.1371/journal.pmed.0040154
[182] Dela F, Helge JW. Insulin resistance and mitochondrial function in skeletal muscle. Int J Biochem Cell Biol 2013; 45: 11–15. doi:10.1016/j.biocel.2012.09.019
[183] Jiang L, Wang J, Liu X, et al. The combined effects of cardiac geometry, microcirculation, and tissue characteristics on cardiac systolic and diastolic function in subclinical diabetes mellitus-related cardiomyopathy. Int J Cardiol 2020; 320: 112–118. doi:10.1016/j.ijcard.2020.07.013
[184] Zia MI, Ghugre NR, Roifman I, et al. Comparison of the frequencies of myocardial edema determined by cardiac magnetic resonance in diabetic versus nondiabetic patients having percutaneous coronary intervention for ST elevation myocardial infarction. Am J Cardiol 2014; 113: 607–612. doi:10.1016/j.amjcard.2013.10.040
[185] Madonna R, Wu H, Shelat H, et al. CD1d-associated expression of NF-kB and cardiac dysfunction in diabetic and obese mice. Int J Immunopathol Pharmacol 2013; 26: 59–73. doi:10.1177/039463201302600106
[186] Thomas CM, Yong QC, Rosa RM, et al. Cardiac-specific suppression of NF-κB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system. Am J Physiol Heart Circ Physiol 2014; 307: H1036-45. doi:10.1152/ajpheart.00340.2014
[187] Nigro C, Leone A, Longo M, et al. Methylglyoxal accumulation de-regulates HoxA5 expression, thereby impairing angiogenesis in glyoxalase 1 knock-down mouse aortic endothelial cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865: 73–85. doi:10.1016/j.bbadis.2018.10.014
[188] Zweck E, Roden M. GLP-1 receptor agonists and cardiovascular disease: drug-specific or class effects? The Lancet Diabetes & Endocrinology 2019; 7: 89–90. doi:10.1016/s2213-8587(18)30351-6
[189] Zweck E, Westenfeld R, Szendroedi J. Oral Semaglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019; 381: 2075–2076. doi:10.1056/NEJMc1913157
[190] Herrera Comoglio R, Vidal Guitart X. Cardiovascular outcomes, heart failure and mortality in type 2 diabetic patients treated with glucagon-like peptide 1 receptor agonists (GLP-1 RAs): A systematic review and meta-analysis of observational cohort studies. Int J Clin Pract 2020; 74: e13553. doi:10.1111/ijcp.13553
[191] Zheng SL, Roddick AJ, Aghar-Jaffar R, et al. Association Between Use of Sodium-Glucose Cotransporter 2 Inhibitors, Glucagon-like Peptide 1 Agonists, and Dipeptidyl Peptidase 4 Inhibitors With All-Cause Mortality in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA 2018; 319: 1580–1591. doi:10.1001/jama.2018.3024
[192] Pels K, Schwimmbeck PL, Rosenthal P, et al. Long-term clopidogrel administration following severe coronary injury reduces proliferation and inflammation via inhibition of nuclear factor-kappaB and activator protein 1 activation in pigs. Eur J Clin Invest 2009; 39: 174–182. doi:10.1111/j.1365-2362.2009.02089.x
[193] Anderson EJ, Katunga LA, Willis MS. Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin Exp Pharmacol Physiol 2012; 39: 179–193. doi:10.1111/j.1440-1681.2011.05641.x
[194] Kanazawa A, Nishio Y, Kashiwagi A, et al. Reduced activity of mtTFA decreases the transcription in mitochondria isolated from diabetic rat heart. Am J Physiol Endocrinol Metab 2002; 282: E778-85. doi:10.1152/ajpendo.00255.2001
[195] Ghosh S, Pulinilkunnil T, Yuen G, et al. Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am J Physiol Heart Circ Physiol 2005; 289: H768-76. doi:10.1152/ajpheart.00038.2005
[196] Cai L, Kang YJ. Cell death and diabetic cardiomyopathy. Cardiovasc Toxicol 2003; 3: 219–228. doi:10.1385/ct:3:3:219
[197] Dal S, Sigrist S. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications. Diseases 2016; 4. doi:10.3390/diseases4030024
[198] Cai L, Wang Y, Zhou G, et al. Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 2006; 48: 1688–1697. doi:10.1016/j.jacc.2006.07.022
[199] Mortensen SA, Rosenfeldt F, Kumar A, et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial: Results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2014; 2: 641–649. doi:10.1016/j.jchf.2014.06.008
[200] Gottlieb RA, Stotland A. MitoTimer: a novel protein for monitoring mitochondrial turnover in the heart: A novel protein for monitoring mitochondrial turnover in the heart. J Mol Med 2015; 93: 271–278. doi:10.1007/s00109-014-1230-6
[201] Lund LH, Khush KK, Cherikh WS, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Heart Transplantation Report-2017; Focus Theme: Allograft ischemic time. J Heart Lung Transplant 2017; 36: 1037–1046. doi:10.1016/j.healun.2017.07.019
[202] Russo MJ, Chen JM, Hong KN, et al. Survival after heart transplantation is not diminished among recipients with uncomplicated diabetes mellitus: an analysis of the United Network of Organ Sharing database. Circulation 2006; 114: 2280–2287. doi:10.1161/CIRCULATIONAHA.106.615708
[203] Saraiva J, Sola E, Prieto D, et al. Diabetes as an outcome predictor after heart transplantation. Interact Cardiovasc Thorac Surg 2011; 13: 499-504; discussion 504. doi:10.1510/icvts.2010.256321
[204] Kobashigawa JA, Starling RC, Mehra MR, et al. Multicenter retrospective analysis of cardiovascular risk factors affecting long-term outcome of de novo cardiac transplant recipients. J Heart Lung Transplant 2006; 25: 1063–1069. doi:10.1016/j.healun.2006.05.001
[205] Doumouras BS, Fan C-PS, Mueller B, et al. The effect of pre-heart transplant body mass index on posttransplant outcomes: An analysis of the ISHLT Registry Data. Clin Transplant 2019; 33: e13621. doi:10.1111/ctr.13621
[206] Stoica SC, Satchithananda DK, Atkinson C, et al. The energy metabolism in the right and left ventricles of human donor hearts across transplantation. European Journal of Cardio-Thoracic Surgery 2003; 23: 503–512. doi:10.1016/S1010-7940(03)00019-8
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:02.11.2021
Dateien geändert am:02.11.2021
Promotionsantrag am:05.02.2021
Datum der Promotion:26.10.2021
english
Benutzer
Status: Gast
Aktionen