Dokument: Elektrophysiologische Charakteristika und arrhythmogenes remodeling im Mausmodell nach Myokardischämie und Reperfusion
Titel: | Elektrophysiologische Charakteristika und arrhythmogenes remodeling im Mausmodell nach Myokardischämie und Reperfusion | |||||||
Weiterer Titel: | Electrophysiological characteristics and arrhythmogenic remodeling in a murine model of myocardial ischemia and reperfusion | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=57206 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20210827-104427-5 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Bartsch, Benedikt [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Hisaki Makimoto [Gutachter] Prof. Dr. Grandoch, Maria [Gutachter] | |||||||
Stichwörter: | Myokardinfarkt, ventrikuläre Arrhythmie, EPU, ventrikuläre Tachykardie, | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Zusammenfassung
Ventrikuläre Arrhythmien (VA) als Folge einer kardialen Ischämie stellen eine der Haupttodesursachen weltweit dar und sind daher eine große Herausforderung im klinischen Alltag. Aufgrund ähnlicher kardiovaskulärer Eigenschaften ist die Maus vor dem Hintergrund der Fortschritte in der Gentechnik in den Fokus der kardiovaskulären Forschung geraten. Die Bestimmung der ventrikulären Vulnerabilität in der elektrophysiologischen Untersuchung (EPU) stellt sich in Mäusen als Herausforderung dar und bisherige an Menschen etablierte programmierte elektrische Stimulationsprotokolle (PES) zeigten sich nicht sensitiv genug in der Induktion VA in Mäusen. Kürzlich wurde ein modifiziertes Stimulationsprotokoll (Miniburst (MB)) vorgestellt, welches nun im myocardialen Ischämie-Reperfusions-Modell (IR) bei Wildtyp-Mäusen getestet werden sollte. Folgendes sollte dabei untersucht werden: Erstens, die ventrikuläre Vulnerabilität im Mausmodell 7d post IR, zweitens die Effektivität des neuen Stimulationsprotokolls im Vergleich zum herkömmlichen am Menschen etablierten PES. Nach Thoraxeröffnung betrug die Ischämiezeit der IR-Gruppe (n=7) 45 Minuten, in der Sham-Gruppe (n=8) fand nur die Thoraxeröffnung statt. 7d postoperativ erfolgte in leichter Isofluran-Narkose eine in vivo elektrophysiologische Untersuchung (EPU). Vor der Operation sowie zum Zeitpunkt 1d, 2d und 7d fand eine transthorakale Echokardiographie statt. Die Infarktgrößenbestimmung erfolgte planimetrisch nach Gomoris-Trichrome-Färbung ex vivo nach der EPU. In der IR-Gruppe zeigte sich eine eingeschränkte linksventrikuläre Funktion. In der histologischen Untersuchung zeigte sich eine durchschnittliche Infarktgröße von 32 ± 1.5% (SEM) (n=7) des linken Ventrikels 7d nach IR-Operation. In der IR-Gruppe zeigten sich mehr induzierte VA als in der Sham-Gruppe. Es zeigten sich mehr premature ventricular complex (PVC) und ventrikuläre Tachykardien (VT) (< 1 s) in der IR- als in der Sham-Gruppe. In der IR-Gruppe zeigte sich nach Gabe von Isoproterenol keine Erhöhung der ventrikulären Vulnerabilität und keine Herzfrequenzänderungen. Die Inzidenz von VT war mittels MB-Protokoll höher als im PES-Protokoll. Das MB-Stimulationsprotokoll, insbesondere ab vier Extrastimuli, induzierte mehr VA als das PES-Protokoll in IR-Tieren. Insgesamt zeigte sich anhand der Daten eine gesteigerte ventrikuläre Vulnerabilität der IR-Tiere 7d postoperativ. Das MB-Protokoll zeigte sich besser geeignet und effektiver die ventrikuläre Vulnerabilität in diesem Mausmodell zu untersuchen als die bisherigen Protokolle. Das hier angewandte Stimulationsprotokoll kann in Zukunft dazu dienen, die ventrikuläre Vulnerabilität von transgenen Mäusen nach IR-Operation zu untersuchen.Summary (Englisch) Ventricular arrhythmia (VA) due to cardiac ischemia is one of the major causes of death worldwide, thus treatment remains a challenge for physicians. Having grossly similar cardiac properties as humans and given the rise of genetic engineering mice have become a focus of cardiovascular research. Assessing ventricular vulnerability during electrophysiological studies (EPS) in mice remains non-unified and human based programmed electrical stimulation (PES) protocols seems to lack sensitivity for induction of VA in mice. We transferred a recently elaborated modified stimulation protocol (Miniburst (MB)) into an unrestrained mice model of myocardial ischemia and reperfusion (IR). The aim of this study was to investigate: 1) ventricular vulnerability of mice in 7d after IR, 2) efficacy of our stimulation protocol as compared to conventional approach adopted from human PES protocol. Open chest 45 min myocardial IR (n=7) or sham operation (n=8) was performed. At 7d after operation mildly isoflurane sedated mice underwent in vivo EPS to test ventricular vulnerability. Transthoracic echocardiography was conducted at baseline, 1d, 2d and 7d after operation. Myocardial infarction size was calculated by planimetry after gomoris-trichrome stainings ex vivo after EPS. Left ventricular function was reduced after IR compared to sham operation. Histologic analysis showed myocardial infarction size making up 32 ± 1.5% (SEM) (n=7) of the myocardial tissue 7d after IR-operation. IR mice showed significantly higher arrhythmia scores of induced ventricular arrhythmias compared to sham operated mice. The inducibility of premature ventricular complex and ventricular tachycardia (< 1 s) was significantly enhanced in IR mice as compared to sham operated mice. In IR mice, heart rate response under isoprenaline was blunted and Isoprenaline did not aggravate ventricular vulnerability during EPS. Incidence of VT induction among IR mice was considerably higher with MB protocol as compared to conventional PES protocol. MB protocol, particularly coupling of at least four extrastimuli, enhanced ventricular arrhythmia inducibility as compared to conventional PES protocol in IR mice. In conclusion, our data demonstrated that ventricular vulnerability during EPS is enhanced 7d after myocardial IR in mice. The MB protocol is more feasible and effective for the assessment of ventricular vulnerability in this mouse model as compared to the conventional stimulation protocol. This presented modified approach for programmed electrical stimulation may be useful to investigate ventricular arrhythmogenicity in transgenic mice with IR. | |||||||
Quelle: | ADABAG, A. S., LUEPKER, R. V., ROGER, V. L. & GERSH, B. J. (2010). Sudden cardiac death: epidemiology and risk factors. Nature Reviews Cardiology, 7, 216.
AKTORIES K., FÖRSTERMANN U., HOFMANN F. & K., S. (2013). Allgemeine und spezielle Pharmakologie und Toxikologie. Elsevier Urban & Fischer, 242-251; 157-158; 132-133; 227. AL-KHATIB, S. M., STEVENSON, W. G., ACKERMAN, M. J., BRYANT, W. J., CALLANS, D. J., CURTIS, A. B., DEAL, B. J., DICKFELD, T., FIELD, M. E., FONAROW, G. C., GILLIS, A. M., GRANGER, C. B., HAMMILL, S. C., HLATKY, M. A., JOGLAR, J. A., KAY, G. N., MATLOCK, D. D., MYERBURG, R. J. & PAGE, R. L. (2018). 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Journal of the American College of Cardiology, 72, e91-e220. ALVAREZ, C. K., CRONIN, E., BAKER, W. L. & KLUGER, J. (2019). Heart failure as a substrate and trigger for ventricular tachycardia. J Interv Card Electrophysiol, 56, 229-247. ANDRIE, R. P., BEIERT, T., KNAPPE, V., LINHART, M., STOCKIGT, F., KLEIN, A. M., GHANEM, A., LUBKEMEIER, I., ROLL, W., NICKENIG, G., FLEISCHMANN, B. K. & SCHRICKEL, J. W. (2019). Treatment with mononuclear cell populations improves post-infarction cardiac function but does not reduce arrhythmia susceptibility. PLoS One, 14, e0208301. ANTOONS, G., MUBAGWA, K., NEVELSTEEN, I. & SIPIDO, K. R. (2002). Mechanisms underlying the frequency dependence of contraction and [Ca(2+)](i) transients in mouse ventricular myocytes. J Physiol, 543, 889-98. ANTZELEVITCH, C. & BURASHNIKOV, A. (2011). Overview of Basic Mechanisms of Cardiac Arrhythmia. Card Electrophysiol Clin, 3, 23-45. ASIMAKIS, G. K., INNERS-MCBRIDE, K., CONTI, V. R. & YANG, C. J. (1994). Transient beta adrenergic stimulation can precondition the rat heart against postischaemic contractile dysfunction. Cardiovasc Res, 28, 1726-34. ATAKLTE, F., ERQOU, S., LAUKKANEN, J. & KAPTOGE, S. (2013). Meta-analysis of ventricular premature complexes and their relation to cardiac mortality in general populations. Am J Cardiol, 112, 1263-70. AUMÜLLER G., AUST G., DOLL A., ENGELE J., KIRSCH J., MENSE S., REIßIG D., SALVETTER J., SCHMIDT W., SCHMITZ F., SCHULTE E., SPANEL-BOROWSKI K., WOLFF W., WURZINGER L. & ZILCH H.-G. (2010). Anantomie. Stuttgart: Georg Thieme Verlag KG. BACHAROVA, L. (2019). Missing Link between Molecular Aspects of Ventricular Arrhythmias and QRS Complex Morphology in Left Ventricular Hypertrophy. Int J Mol Sci, 21. BAK, I., CZOMPA, A., JUHASZ, B., LEKLI, I. & TOSAKI, A. (2010). Reduction of reperfusion-induced ventricular fibrillation and infarct size via heme oxygenase-1 overexpression in isolated mouse hearts. J Cell Mol Med, 14, 2268-72. BARBER, M. J., MUELLER, T. M., HENRY, D. P., FELTEN, S. Y. & ZIPES, D. P. (1983). Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation, 67, 787-796. BARDY, G. H., LEE, K. L., MARK, D. B., POOLE, J. E., PACKER, D. L., BOINEAU, R., DOMANSKI, M., TROUTMAN, C., ANDERSON, J., JOHNSON, G., MCNULTY, S. E., CLAPP-CHANNING, N., DAVIDSON-RAY, L. D., FRAULO, E. S., FISHBEIN, D. P., LUCERI, R. M. & IP, J. H. (2005). Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med, 352, 225-37. BAUMGARDT, S. L., PATERSON, M., LEUCKER, T. M., FANG, J., ZHANG, D. X., BOSNJAK, Z. J., WARLTIER, D. C., KERSTEN, J. R. & GE, Z. D. (2016). Chronic Co-Administration of Sepiapterin and L-Citrulline Ameliorates Diabetic Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury in Obese Type 2 Diabetic Mice. Circ Heart Fail, 9, e002424. BERUL, C. I. (2003). Electrophysiological phenotyping in genetically engineered mice. Physiological genomics, 13, 207-216. BERUL, C. I., ARONOVITZ, M. J., WANG, P. J. & MENDELSOHN, M. E. (1996). In vivo cardiac electrophysiology studies in the mouse. Circulation, 94, 2641-2648. BERUL, C. I., CHRISTE, M. E., ARONOVITZ, M. J., SEIDMAN, C. E., SEIDMAN, J. G. & MENDELSOHN, M. E. (1997). Electrophysiological abnormalities and arrhythmias in alpha MHC mutant familial hypertrophic cardiomyopathy mice. J Clin Invest, 99, 570-6. BETSUYAKU, T., KANNO, S., LERNER, D. L., SCHUESSLER, R. B., SAFFITZ, J. E. & YAMADA, K. A. (2004). Spontaneous and inducible ventricular arrhythmias after myocardial infarction in mice. Cardiovasc Pathol, 13, 156-64. BEVILACQUA, L. M., SIMON, A. M., MAGUIRE, C. T., GEHRMANN, J., WAKIMOTO, H., PAUL, D. L. & BERUL, C. I. (2000). A targeted disruption in connexin40 leads to distinct atrioventricular conduction defects. Journal of interventional cardiac electrophysiology, 4, 459-567. BLOCK, M., BORGGREFE, M., GOEDEL-MEINEN, L., HOHNLOSER, S., KALUSCHE, D., KUCK, K., MEINERTZ, T., OEFF, M., PITSCHNER, J. & VOLKMANN, H. (1998). Richtlinien für die Durchführung invasiver elektrophysiologischer Untersuchungen. Z Kardiol, 87, 502-512. BOGEHOLZ, N., ECKARDT, L. & POTT, C. (2014). Advantages and limitations of transgenic mice: the role of the Na+/Ca2+ exchanger in cardiac electrophysiology and arrhythmia. Current medicinal chemistry, 21, 1330-1335. BOMPOTIS, G. C., PAPPAS, L. K., ANGELIDIS, C., KOSSYVAKIS, C., GIANNOPOULOS, G. & DEFTEREOS, S. (2016). Calcium Handling and Arrhythmogenesis. Med Chem, 12, 170-6. BONAVENTURA, A., MONTECUCCO, F. & DALLEGRI, F. (2016). Cellular recruitment in myocardial ischaemia/reperfusion injury. Eur J Clin Invest, 46, 590-601. BOUKENS, B. J., HOOGENDIJK, M. G., VERKERK, A. O., LINNENBANK, A., VAN DAM, P., REMME, C.-A., FIOLET, J. W., OPTHOF, T., CHRISTOFFELS, V. M. & CORONEL, R. (2012). Early repolarization in mice causes overestimation of ventricular activation time by the QRS duration. Cardiovascular research, 97, 182-191. BOUKENS, B. J., RIVAUD, M. R., RENTSCHLER, S. & CORONEL, R. (2014). Misinterpretation of the mouse ECG:‘musing the waves of Mus musculus’. The Journal of physiology, 592, 4613-4626. BREWSTER, D., HUMPHREY, M. J. & MCLEAVY, M. A. (1981). The systemic bioavailability of buprenorphine by various routes of administration. J Pharm Pharmacol, 33, 500-6. BRUNNER, M., GUO, W., MITCHELL, G. F., BUCKETT, P. D., NERBONNE, J. M. & KOREN, G. (2001). Characterization of mice with a combined suppression of I to and IK, slow. American Journal of Physiology-Heart and Circulatory Physiology, 281, H1201-H1209. BURGER, D. E., XIANG, F. L., HAMMOUD, L., JONES, D. L. & FENG, Q. (2009). Erythropoietin protects the heart from ventricular arrhythmia during ischemia and reperfusion via neuronal nitric-oxide synthase. J Pharmacol Exp Ther, 329, 900-7. BUXTON, A. E., CALKINS, H., CALLANS, D. J., DIMARCO, J. P., FISHER, J. D., GREENE, H. L., HAINES, D. E., HAYES, D. L., HEIDENREICH, P. A. & MILLER, J. M. (2006). ACC/AHA/HRS (2006) key data elements and definitions for electrophysiological studies and procedures: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (ACC/AHA/HRS Writing Committee to Develop Data Standards on Electrophysiology). Journal of the American College of Cardiology, 48, 2360-2396. CAO, J.-M., FISHBEIN, M. C., HAN, J. B., LAI, W. W., LAI, A. C., WU, T.-J., CZER, L., WOLF, P. L., DENTON, T. A. & SHINTAKU, I. P. (2000). Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation, 101, 1960-1969. CESAROVIC, N., NICHOLLS, F., RETTICH, A., KRONEN, P., HÄSSIG, M., JIRKOF, P. & ARRAS, M. (2010). Isoflurane and sevoflurane provide equally effective anaesthesia in laboratory mice. Laboratory animals, 44, 329-336. CHÁVEZ-GONZÁLEZ, E., RODRÍGUEZ JIMÉNEZ, A. E. & MORENO-MARTÍNEZ, F. L. (2017). QRS duration and dispersion for predicting ventricular arrhythmias in early stage of acute myocardial infraction. Med Intensiva, 41, 347-355. CHEN, Y., YIN, C., YANG, Y., FAN, Z., SHANG, J. & TAN, W. (2017). Inhibition of rapid delayed rectifier potassium current (IKr) by ischemia/reperfusion and its recovery by vitamin E in ventricular myocytes. J Electrocardiol, 50, 437-443. CHENG, J.-H. & KODAMA, I. (2004). Two components of delayed rectifier K+ current in heart: molecular basis, functional diversity, and contribution to repolarization. Acta Pharmacologica Sinica, 25, 137-145. CHUGH, S. S., REINIER, K., TEODORESCU, C., EVANADO, A., KEHR, E., AL SAMARA, M., MARIANI, R., GUNSON, K. & JUI, J. (2008). Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis, 51, 213-28. CLASEN, E., ANGENDOHR, JUNGEN, SHIN, DONNER, FÜRNKRANZ, KELM, KLÖCKER, MEYER, MAKIMOTO (2018). A modified approach for programmed electrical stimulation in mice: Inducibility of ventricular arrhythmias. PloS One. CLASEN, L. (2012). Elektrophysiologische Untersuchungen der TASK-1 „Knock-out”-Maus. Doktorarbeit. CLUSIN, W., BUCHBINDER, M. & HARRISON, D. (1983). Calcium overload," injury" current, and early ischaemic cardiac arrhythmias—a direct connection. The Lancet, 321, 272-274. COBB, L. A., FAHRENBRUCH, C. E., OLSUFKA, M. & COPASS, M. K. (2002). Changing incidence of out-of-hospital ventricular fibrillation, 1980-2000. Jama, 288, 3008-3013. CONNOLLY, A. J. & BISHOP, M. J. (2016). Computational Representations of Myocardial Infarct Scars and Implications for Arrhythmogenesis. Clin Med Insights Cardiol, 10, 27-40. CONTI, C. R. (2006). Inhibition of sodium-dependent calcium overload to treat myocardial ischemia. Clin Cardiol, 29, 141-3. COUNCIL, N. R. (2010). Guide for the care and use of laboratory animals. COWAN, A., DOXEY, J. C. & HARRY, E. J. (1977). The animal pharmacology of buprenorphine, an oripavine analgesic agent. Br J Pharmacol, 60, 547-54. CRANEFIELD, P. F. (1977). Action potentials, afterpotentials, and arrhythmias. Circulation Research, 41, 415-423. CRONIN, E. M., BOGUN, F. M., MAURY, P., PEICHL, P., CHEN, M., NAMBOODIRI, N., AGUINAGA, L., LEITE, L. R., AL-KHATIB, S. M., ANTER, E., BERRUEZO, A., CALLANS, D. J., CHUNG, M. K., CUCULICH, P., D’AVILA, A., DEAL, B. J., DELLA BELLA, P., DENEKE, T., DICKFELD, T.-M., HADID, C., HAQQANI, H. M., KAY, G. N., LATCHAMSETTY, R., MARCHLINSKI, F., MILLER, J. M., NOGAMI, A., PATEL, A. R., PATHAK, R. K., SÁENZ MORALES, L. C., SANTANGELI, P., SAPP, J. L., JR., SARKOZY, A., SOEJIMA, K., STEVENSON, W. G., TEDROW, U. B., TZOU, W. S., VARMA, N., ZEPPENFELD, K. & GROUP, E. S. D. (2019). 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. EP Europace, 21, 1143-1144. CUSTODIS, F., SCHIRMER, S. H., BAUMHAKEL, M., HEUSCH, G., BOHM, M. & LAUFS, U. (2010). Vascular pathophysiology in response to increased heart rate. J Am Coll Cardiol, 56, 1973-83. DAHAN, A., YASSEN, A., ROMBERG, R., SARTON, E., TEPPEMA, L., OLOFSEN, E. & DANHOF, M. (2006). Buprenorphine induces ceiling in respiratory depression but not in analgesia. Br J Anaesth, 96, 627-32. DENEKE, T., BOSCH, R., ECKARDT, L., NOWAK, B., SCHWAB, J., SOMMER, P., VELTMANN, C. & HELMS, T. (2019). Der tragbare Kardioverter/Defibrillator (WCD)–Indikationen und Einsatz. Der Kardiologe, 13, 292-304. DIBB, K., EISNER, D. & TRAFFORD, A. (2007). Regulation of systolic [Ca2+] i and cellular Ca2+ flux balance in rat ventricular myocytes by SR Ca2+, L‐type Ca2+ current and diastolic [Ca2+] i. The Journal of physiology, 585, 579-592. DIETRICHS, E. S., TVEITA, T. & SMITH, G. (2019). Hypothermia and cardiac electrophysiology: a systematic review of clinical and experimental data. Cardiovasc Res, 115, 501-509. DONOGHUE, M., WAKIMOTO, H., MAGUIRE, C. T., ACTON, S., HALES, P., STAGLIANO, N., FAIRCHILD-HUNTRESS, V., XU, J., LORENZ, J. N., KADAMBI, V., BERUL, C. I. & BREITBART, R. E. (2003). Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins. J Mol Cell Cardiol, 35, 1043-53. DURRER, D., VAN DAM, R. T., FREUD, G., JANSE, M., MEIJLER, F. & ARZBAECHER, R. (1970). Total excitation of the isolated human heart. Circulation, 41, 899-912. ECHT, D. S., LIEBSON, P. R., MITCHELL, L. B., PETERS, R. W., OBIAS-MANNO, D., BARKER, A. H., ARENSBERG, D., BAKER, A., FRIEDMAN, L., GREENE, H. L. & ET AL. (1991). Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med, 324, 781-8. ENRIQUEZ, A., FRANKEL, D. S. & BARANCHUK, A. (2017). Pathophysiology of ventricular tachyarrhythmias : From automaticity to reentry. Herzschrittmacherther Elektrophysiol, 28, 149-156. FAGGIONI, M., HWANG, H. S., VAN DER WERF, C., NEDEREND, I., KANNANKERIL, P. J., WILDE, A. A. & KNOLLMANN, B. C. (2013). Accelerated sinus rhythm prevents catecholaminergic polymorphic ventricular tachycardia in mice and in patients. Circulation research, 112, 689-697. FENTON, R. A., GALECKAS, K. J. & DOBSON, J. G., JR. (1995). Endogenous adenosine reduces depression of cardiac function induced by beta-adrenergic stimulation during low flow perfusion. J Mol Cell Cardiol, 27, 2373-83. FERRARI, G. M., SHULL JR, S., DFOREMAN, R. & JSCHWARTZ, P. (1991). Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circulation research. FISCH, C. (1973). Relation of electrolyte disturbances to cardiac arrhythmias. Circulation, 47, 408-419. FORTUIN, N. J. & WEISS, J. L. (1977). Exercise stress testing. Circulation, 56, 699-712. FOZZARD, H. A. 1992. Afterdepolarizations and triggered activity. Cardiac Adaptation in Heart Failure, 105-113. FRANCIOSI, S., PERRY, F. K. G., ROSTON, T. M., ARMSTRONG, K. R., CLAYDON, V. E. & SANATANI, S. (2017). The role of the autonomic nervous system in arrhythmias and sudden cardiac death. Auton Neurosci, 205, 1-11. GADSBY, D. C. & CRANEFIELD, P. F. (1979). Electrogenic sodium extrusion in cardiac Purkinje fibers. J Gen Physiol, 73, 819-37. GARDIWAL, A., REISSMANN, L. M., KOTLARZ, D., OSWALD, H., KORTE, T., LANDMESSER, U., KLEIN, G. & TEMPLIN, C. (2009). Arrhythmia susceptibility in mice after therapy with beta-catenin-transduced hematopoietic progenitor cells after myocardial ischemia/reperfusion. Cardiology, 114, 199-207. GEHRMANN, J., FRANTZ, S., MAGUIRE, C. T., VARGAS, M., DUCHARME, A., WAKIMOTO, H., LEE, R. T. & BERUL, C. I. (2001). Electrophysiological characterization of murine myocardial ischemia and infarction. Basic Research in Cardiology, 96, 237-250. GIOTTI, A., LEDDA, F. & MANNAIONI, P. (1973). Effects of noradrenaline and isoprenaline, in combination with α‐and β‐receptor blocking substances, on the action potential of cardiac Purkinje fibres. The Journal of physiology, 229, 99-113. GOMORI, G. (1950). A rapid one-step trichrome stain. Am J Clin Pathol, 20, 661-4. GUO, J., MI, S., LI, J., LIU, W., YIN, Y. & WEI, Q. (2012). Calcineurin B subunit acts as a potential agent for preventing cardiac ischemia/reperfusion injury. Mol Cell Biochem, 370, 163-71. GUSSAK, I., BRUGADA, P., BRUGADA, J., WRIGHT, R. S., KOPECKY, S. L., CHAITMAN, B. R. & BJERREGAARD, P. (2000). Idiopathic short QT interval: a new clinical syndrome? Cardiology, 94, 99-102. HAN, X. & FERRIER, G. (1992). Ionic mechanisms of transient inward current in the absence of Na (+)‐Ca2+ exchange in rabbit cardiac Purkinje fibres. The Journal of physiology, 456, 19-38. HAVERKAMP, W., BREITHARDT, G., CAMM, A. J., JANSE, M. J., ROSEN, M. R., ANTZELEVITCH, C., ESCANDE, D., FRANZ, M., MALIK, M. & MOSS, A. (2000). The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: clinical and regulatory implications: report on a Policy Conference of the European Society of Cardiology. Cardiovascular Research, 47, 219-233. HEARSE, D. J. & SUTHERLAND, F. J. (2000). Experimental models for the study of cardiovascular function and disease. Pharmacol Res, 41, 597-603. HEUSCH, G. & KLEINBONGARD, P. (2016). Ivabradine: Cardioprotection By and Beyond Heart Rate Reduction. Drugs, 76, 733-740. HIRSCH, J. A. & BISHOP, B. (1981). Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. American Journal of Physiology-Heart and Circulatory Physiology, 241, H620-H629. HOLTER, N. J. (1961). New method for heart studies: continuous electrocardiography of active subjects over long periods is now practical. Science, 134, 1214-1220. HOTHI, S. S., GURUNG, I. S., HEATHCOTE, J. C., ZHANG, Y., BOOTH, S. W., SKEPPER, J. N., GRACE, A. A. & HUANG, C. L. (2008). Epac activation, altered calcium homeostasis and ventricular arrhythmogenesis in the murine heart. Pflugers Arch, 457, 253-70. IBANEZ, B., JAMES, S., AGEWALL, S., ANTUNES, M. J., BUCCIARELLI-DUCCI, C., BUENO, H., CAFORIO, A. L. P., CREA, F., GOUDEVENOS, J. A., HALVORSEN, S., HINDRICKS, G., KASTRATI, A., LENZEN, M. J., PRESCOTT, E., ROFFI, M., VALGIMIGLI, M., VARENHORST, C., VRANCKX, P., WIDIMSKÝ, P. & GROUP, E. S. D. (2017). 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal, 39, 119-177. ISSA, MILLER & ZIPES (2019). Clinical Arrhythmology and Electrophysiology. Elsevier. JANSE, M. J., VAN CAPELLE, F. J., MORSINK, H., KLÉBER, A. G., WILMS-SCHOPMAN, F., CARDINAL, R., D'ALNONCOURT, C. N. & DURRER, D. (1980). Flow of" injury" current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circulation Research, 47, 151-165. JIANG, X., KONG, B., SHUAI, W., SHEN, C., YANG, F., FU, H. & HUANG, H. (2019). Loss of MD1 exacerbates myocardial ischemia/reperfusion injury and susceptibility to ventricular arrhythmia. Eur J Pharmacol, 844, 79-86. JOSEPHSON, M. E. & ANTER, E. (2015). Substrate Mapping for Ventricular Tachycardia: Assumptions and Misconceptions. JACC Clin Electrophysiol, 1, 341-352. JOSEPHSON, M. E., HOROWITZ, L. N., FARSHIDI, A. & KASTOR, J. A. (1978). Recurrent sustained ventricular tachycardia. 1. Mechanisms. Circulation, 57, 431-440. KAESE, S. & VERHEULE, S. (2012). Cardiac electrophysiology in mice: a matter of size. Frontiers in physiology, 3, 345. KARAGUEUZIAN, H. S. & KATZUNG, B. G. (1982). Voltage‐clamp studies of transient inward current and mechanical oscillations induced by ouabain in ferret papillary muscle. The Journal of physiology, 327, 255-271. KASS, R., LEDERER, W., TSIEN, R. & WEINGART, R. (1978). Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibres. The Journal of physiology, 281, 187-208. KLEINDIENST, A., BATTAULT, S., BELAIDI, E., TANGUY, S., ROSSELIN, M., BOULGHOBRA, D., MEYER, G., GAYRARD, S., WALTHER, G., GENY, B., DURAND, G., CAZORLA, O. & REBOUL, C. (2016). Exercise does not activate the beta3 adrenergic receptor-eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice. Basic Res Cardiol, 111, 40. KOHN, D. F., MARTIN, T. E., FOLEY, P. L., MORRIS, T. H., SWINDLE, M. M., VOGLER, G. A. & WIXSON, S. K. (2007). Guidelines for the assessment and management of pain in rodents and rabbits. Journal of the American Association for Laboratory Animal Science, 46, 97-108. KOLLER, B. S., KARASIK, P. E., SOLOMON, A. J. & FRANZ, M. R. (1995). Relation between repolarization and refractoriness during programmed electrical stimulation in the human right ventricle. Implications for ventricular tachycardia induction. Circulation, 91, 2378-84. KORTE, T., FUCHS, M., GUENER, Z., V BONIN, J., DE SOUSA, M., NIEHAUS, M., TEBBENJOHANNS, J. & DREXLER, H. (2002). In-vivo electrophysiological study in mice with chronic anterior myocardial infarction. J Interv Card Electrophysiol, 6, 121-32. KUMMER, W. (1987). Galanin- and neuropeptide Y-like immunoreactivities coexist in paravertebral sympathetic neurones of the cat. Neurosci Lett, 78, 127-31. LANCET, T. (1985). ISOFLURANE. The Lancet. LAWRIE, D., HIGGINS, M., GODMAN, M., OLIVER, M., JULIAN, D. & DONALD, K. (1968). Ventricular fibrillation complicating acute myocardial infarction. The Lancet, 292, 523-528. LAZARENKO, R. M., WILLCOX, S. C., SHU, S., BERG, A. P., JEVTOVIC-TODOROVIC, V., TALLEY, E. M., CHEN, X. & BAYLISS, D. A. (2010). Motoneuronal TASK channels contribute to immobilizing effects of inhalational general anesthetics. J Neurosci, 30, 7691-704. LEDERER, W. & TSIEN, R. (1976). Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibres. The Journal of physiology, 263, 73-100. LEE, P., QUINTANILLA, J. G., ALFONSO-ALMAZÁN, J. M., GALÁN-ARRIOLA, C., YAN, P., SÁNCHEZ-GONZÁLEZ, J., PÉREZ-CASTELLANO, N., PÉREZ-VILLACASTÍN, J., IBAÑEZ, B., LOEW, L. M. & FILGUEIRAS-RAMA, D. (2019). In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models. Cardiovasc Res, 115, 1659-1671. LI, H., GUO, W., YAMADA, K. A. & NERBONNE, J. M. (2004). Selective elimination of IK, slow1 in mouse ventricular myocytes expressing a dominant negative Kv1. 5α subunit. American Journal of Physiology-Heart and Circulatory Physiology, 286, H319-H328. LIAO, S. Y., LIU, Y., SIU, C. W., ZHANG, Y., LAI, W. H., AU, K. W., LEE, Y. K., CHAN, Y. C., YIP, P. M., WU, E. X., WU, Y., LAU, C. P., LI, R. A. & TSE, H. F. (2010). Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm, 7, 1852-9. LINDSEY, M. L., BOLLI, R., CANTY, J. M., JR., DU, X. J., FRANGOGIANNIS, N. G., FRANTZ, S., GOURDIE, R. G., HOLMES, J. W., JONES, S. P., KLONER, R. A., LEFER, D. J., LIAO, R., MURPHY, E., PING, P., PRZYKLENK, K., RECCHIA, F. A., SCHWARTZ LONGACRE, L., RIPPLINGER, C. M., VAN EYK, J. E. & HEUSCH, G. (2018). Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol, 314, H812-h838. LONDON, B. (2001a). Cardiac arrhythmias: from (transgenic) mice to men. Journal of cardiovascular electrophysiology, 12, 1089-1091. LONDON, B. (2001b). Use of transgenic and gene-targeted mice to study K+ channel function in the cardiovascular system. Potassium Channels in Cardiovascular Biology, 177-191. LOPATIN, A. & NICHOLS, C. (2001). Inward rectifiers in the heart: an update on IK1. Journal of molecular and cellular cardiology, 33, 625-638. LUNGKAPHIN, A., PONGCHAIDECHA, A., PALEE, S., ARJINAJARN, P., POMPIMON, W. & CHATTIPAKORN, N. (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl Physiol Nutr Metab, 40, 1031-7. MAGUIRE, C. T., WAKIMOTO, H., PATEL, V. V., HAMMER, P. E., GAUVREAU, K. & BERUL, C. I. (2003). Implications of ventricular arrhythmia vulnerability during murine electrophysiology studies. Physiol Genomics, 15, 84-91. MAKIMOTO, H., ZIELKE, S., CLASEN, L., LIN, T., GERGURI, S., MÜLLER, P., SCHMIDT, J., BEJINARIU, A., KURT, M. & BRINKMEYER, C. (2020). Clinical significance of precedent asymptomatic non-sustained ventricular tachycardias on subsequent ICD interventions and heart failure hospitalization in primary prevention ICD patients. European journal of medical research, 25, 1-9. MARTIN, C. A., MATTHEWS, G. D. K. & HUANG, C. L.-H. (2012). Sudden cardiac death and inherited channelopathy: the basic electrophysiology of the myocyte and myocardium in ion channel disease. Heart, 98, 536-543. MEIJERS, W. C., VAN DER VELDE, A. R., PASCUAL-FIGAL, D. A. & DE BOER, R. A. (2015). Galectin-3 and post-myocardial infarction cardiac remodeling. Eur J Pharmacol, 763, 115-21. MERENTIE, M., LIPPONEN, J. A., HEDMAN, M., HEDMAN, A., HARTIKAINEN, J., HUUSKO, J., LOTTONEN-RAIKASLEHTO, L., PARVIAINEN, V., LAIDINEN, S., KARJALAINEN, P. A. & YLÄ-HERTTUALA, S. (2015). Mouse ECG findings in aging, with conduction system affecting drugs and in cardiac pathologies: Development and validation of ECG analysis algorithm in mice. Physiol Rep, 3. MERX, M. W., GORRESSEN, S., VAN DE SANDT, A. M., CORTESE-KROTT, M. M., OHLIG, J., STERN, M., RASSAF, T., GÖDECKE, A., GLADWIN, M. T. & KELM, M. (2013). Depletion of circulating blood NOS3 increases severity of myocardial infarction and left ventricular dysfunction. Basic Research in Cardiology, 109, 398. MÉRY, P.-F., ABI-GERGES, N., VANDECASTEELE, G., JUREVICIUS, J., ESCHENHAGEN, T. & FISCHMEISTER, R. (1997). Muscarinic regulation of the L-type calcium current in isolated cardiac myocytes. Life sciences, 60, 1113-1120. MICHAEL, L. H., ENTMAN, M. L., HARTLEY, C. J., YOUKER, K. A., ZHU, J., HALL, S. R., HAWKINS, H. K., BERENS, K. & BALLANTYNE, C. M. (1995). Myocardial ischemia and reperfusion: a murine model. Am J Physiol, 269, H2147-54. MITCHELL, G. F., JERON, A. & KOREN, G. (1998). Measurement of heart rate and QT interval in the conscious mouse. American Journal of Physiology-Heart and Circulatory Physiology, 274, H747-H751. MOHAMED, U., NAPOLITANO, C. & PRIORI, S. G. (2007). Molecular and electrophysiological bases of catecholaminergic polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol, 18, 791-7. MORADY, F., KADISH, A., DE BUITLEIR, M., KOU, W. H., CALKINS, H., SCHMALTZ, S., ROSENHECK, S. & SOUSA, J. (1991). Prospective comparison of a conventional and an accelerated protocol for programmed ventricular stimulation in patients with coronary artery disease. Circulation, 83, 764-773. MORITA, H., ZIPES, D. P., MORITA, S. T. & WU, J. (2007). Differences in arrhythmogenicity between the canine right ventricular outflow tract and anteroinferior right ventricle in a model of Brugada syndrome. Heart Rhythm, 4, 66-74. MUGELLI, A., CERBAI, E., AMERINI, S. & VISENTIN, S. (1986). The role of temperature on the development of oscillatory afterpotentials and triggered activity. J Mol Cell Cardiol, 18, 1313-6. MURESAN, L., CISMARU, G., MARTINS, R. P., BATAGLIA, A., ROSU, R., PUIU, M., GUSETU, G., MADA, R. O., MURESAN, C., ISPAS, D. R., LE BOUAR, R., DIENE, L. L., RUGINA, E., LEVY, J., KLEIN, C., SELLAL, J. M., POULL, I. M., LAURENT, G. & DE CHILLOU, C. (2019). Recommendations for the use of electrophysiological study: Update 2018. Hellenic J Cardiol, 60, 82-100. NIERMANN, C., GORRESSEN, S., KLIER, M., GOWERT, N. S., BILLUART, P., KELM, M., MERX, M. W. & ELVERS, M. (2016). Oligophrenin1 protects mice against myocardial ischemia and reperfusion injury by modulating inflammation and myocardial apoptosis. Cell Signal, 28, 967-78. OLDE NORDKAMP, L. R., WILDE, A. A., TIJSSEN, J. G., KNOPS, R. E., VAN DESSEL, P. F. & DE GROOT, J. R. (2013). The ICD for primary prevention in patients with inherited cardiac diseases: indications, use, and outcome: a comparison with secondary prevention. Circ Arrhythm Electrophysiol, 6, 91-100. PAPE H-C., KLINKE R., KURTZ A. & S., S. (2014). Physiologie. Physiologie. Stuttgart: Georg Thieme Verlag KG. PATEL, V. V., ARAD, M., MOSKOWITZ, I. P., MAGUIRE, C. T., BRANCO, D., SEIDMAN, J. G., SEIDMAN, C. E. & BERUL, C. I. (2003). Electrophysiologic characterization and postnatal development of ventricular pre-excitation in a mouse model of cardiac hypertrophy and Wolff-Parkinson-White syndrome. J Am Coll Cardiol, 42, 942-51. PERALTA, E. G., WINSLOW, J. W., PETERSON, G. L., SMITH, D. H., ASHKENAZI, A., RAMACHANDRAN, J., SCHIMERLIK, M. I. & CAPON, D. J. (1987). Primary structure and biochemical properties of an M2 muscarinic receptor. Science, 236, 600-605. PETRIC, S., CLASEN, L., VAN WEßEL, C., GEDULDIG, N., DING, Z., SCHULLENBERG, M., MERSMANN, J., ZACHAROWSKI, K., ALLER, M. I. & SCHMIDT, K. G. (2012). In vivo electrophysiological characterization of TASK-1 deficient mice. Cellular physiology and biochemistry, 30, 523-537. PETZ, A., GRANDOCH, M., GORSKI, D. J., ABRAMS, M., PIROTH, M., SCHNECKMANN, R., HOMANN, S., MULLER, J., HARTWIG, S., LEHR, S., YAMAGUCHI, Y., WIGHT, T. N., GORRESSEN, S., DING, Z., KOTTER, S., KRUGER, M., HEINEN, A., KELM, M., GODECKE, A., FLOGEL, U. & FISCHER, J. W. (2019). Cardiac Hyaluronan Synthesis Is Critically Involved in the Cardiac Macrophage Response and Promotes Healing After Ischemia Reperfusion Injury. Circ Res, 124, 1433-1447. PICCINI, J. P., BERGER, J. S. & O’CONNOR, C. M. (2009). Amiodarone for the prevention of sudden cardiac death: a meta-analysis of randomized controlled trials. European heart journal, 30, 1245-1253. PODRID, P. J., FUCHS, T. & CANDINAS, R. (1990). Role of the sympathetic nervous system in the genesis of ventricular arrhythmia. Circulation, 82, I103-13. POTTER, E. K. & SMITH-WHITE, M. A. (2005). Galanin modulates cholinergic neurotransmission in the heart. Neuropeptides, 39, 345-8. PRIORI, S. G., BLOMSTROM-LUNDQVIST, C., MAZZANTI, A., BLOM, N., BORGGREFE, M., CAMM, J., ELLIOTT, P. M., FITZSIMONS, D., HATALA, R., HINDRICKS, G., KIRCHHOF, P., KJELDSEN, K., KUCK, K. H., HERNANDEZ-MADRID, A., NIKOLAOU, N., NOREKVAL, T. M., SPAULDING, C. & VAN VELDHUISEN, D. J. (2015). 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Europace, 17, 1601-87. PRIORI, S. G. & CORR, P. B. (1990). Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. American Journal of Physiology-Heart and Circulatory Physiology, 258, H1796-H1805. QU, Z. & WEISS, J. N. (2015). Mechanisms of ventricular arrhythmias: from molecular fluctuations to electrical turbulence. Annual review of physiology, 77, 29-55. SABIR, I. N., KILLEEN, M. J., GRACE, A. A. & HUANG, C. L.-H. (2008). Ventricular arrhythmogenesis: insights from murine models. Progress in biophysics and molecular biology, 98, 208-218. SANCHEZ, J. A., RODRIGUEZ-SINOVAS, A., FERNANDEZ-SANZ, C., RUIZ-MEANA, M. & GARCIA-DORADO, D. (2011). Effects of a reduction in the number of gap junction channels or in their conductance on ischemia-reperfusion arrhythmias in isolated mouse hearts. Am J Physiol Heart Circ Physiol, 301, H2442-53. SANKARANARAYANAN, R., KISTAMÁS, K., GREENSMITH, D. J., VENETUCCI, L. A. & EISNER, D. A. (2017). Systolic [Ca2+] i regulates diastolic levels in rat ventricular myocytes. The Journal of physiology, 595, 5545-5555. SCHMITT, F. O. & ERLANGER, J. (1928). Directional differences in the conduction of the impulse through heart muscle and their possible relation to extrasystolic and fibrillary contractions. American Journal of Physiology-Legacy Content, 87, 326-347. SCHONBERGER, T., JURGENS, T., MULLER, J., ARMBRUSTER, N., NIERMANN, C., GORRESSEN, S., SOMMER, J., TIAN, H., DI PAOLO, G., SCHELLER, J., FISCHER, J. W., GAWAZ, M. & ELVERS, M. (2014). Pivotal role of phospholipase D1 in tumor necrosis factor-alpha-mediated inflammation and scar formation after myocardial ischemia and reperfusion in mice. Am J Pathol, 184, 2450-64. SCHRICKEL, J. W., BIELIK, H., YANG, A., SCHIMPF, R., SHLEVKOV, N., BURKHARDT, D., MEYER, R., GROHÉ, C., FINK, K. & TIEMANN, K. (2002). Induction of atrial fibrillation in mice by rapid transesophageal atrial pacing. Basic research in cardiology, 97, 452-460. SCHRICKEL, J. W., BRIXIUS, K., HERR, C., CLEMEN, C. S., SASSE, P., REETZ, K., GROHÉ, C., MEYER, R., TIEMANN, K. & SCHRÖDER, R. (2007). Enhanced heterogeneity of myocardial conduction and severe cardiac electrical instability in annexin A7-deficient mice. Cardiovascular research, 76, 257-268. SCHWARTZ, P. J., LA, M. R. & VANOLI, E. (1992). Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation, 85, I77-91. SHEN, M. J. & ZIPES, D. P. (2014). Role of the autonomic nervous system in modulating cardiac arrhythmias. Circulation research, 114, 1004-1021. SHIMIZU, W., NODA, T., TAKAKI, H., KURITA, T., NAGAYA, N., SATOMI, K., SUYAMA, K., AIHARA, N., KAMAKURA, S. & SUNAGAWA, K. (2003). Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. Journal of the American College of Cardiology, 41, 633-642. SHIVKUMAR, K., AJIJOLA, O. A., ANAND, I., ARMOUR, J. A., CHEN, P. S., ESLER, M., FERRARI, G. M., FISHBEIN, M. C., GOLDBERGER, J. J. & HARPER, R. M. (2016). Clinical neurocardiology defining the value of neuroscience‐based cardiovascular therapeutics. The Journal of physiology, 594, 3911-3954. SONG, L., ALCALAI, R., ARAD, M., WOLF, C. M., TOKA, O., CONNER, D. A., BERUL, C. I., ELDAR, M., SEIDMAN, C. E. & SEIDMAN, J. G. (2007). Calsequestrin 2 (CASQ2) mutations increase expression of calreticulin and ryanodine receptors, causing catecholaminergic polymorphic ventricular tachycardia. J Clin Invest, 117, 1814-23. SONG, Y., SHAN, J. G., XUE, Z., WANG, S. Y., XU, H., LIU, Y., GUO, Y. S. & REN, X. (2016). Remote Postconditioning Induced by Trauma Protects the Mouse Heart against Ischemia Reperfusion Injury. Involvement of the Neural Pathway and Molecular Mechanisms. Cardiovascular Drugs and Therapy, 30, 271-280. SPANNBAUER, A., TRAXLER, D., LUKOVIC, D., ZLABINGER, K., WINKLER, J., GUGERELL, A., FERDINANDY, P., HAUSENLOY, D. J., PAVO, N., EMMERT, M. Y., HOERSTRUP, S. P., JAKAB, A., GYÖNGYÖSI, M. & RIESENHUBER, M. (2019). Effect of Ischemic Preconditioning and Postconditioning on Exosome-Rich Fraction microRNA Levels, in Relation with Electrophysiological Parameters and Ventricular Arrhythmia in Experimental Closed-Chest Reperfused Myocardial Infarction. Int J Mol Sci, 20. SPEERSCHNEIDER, T. & THOMSEN, M. B. (2013). Physiology and analysis of the electrocardiographic T wave in mice. Acta Physiologica, 209, 262-271. SPINALE, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiological reviews, 87, 1285-1342. SRINIVASAN, N. T., SCHILLING, RICHARD J (2018). Sudden cardiac death and arrhythmias. Arrhythmia & electrophysiology review, 7, 111. STABLES, C. L. & CURTIS, M. J. (2009). Development and characterization of a mouse in vitro model of ischaemia-induced ventricular fibrillation. Cardiovascular Research, 83, 397-404. TAMAOKI, N. (2001). The rasH2 transgenic mouse: nature of the model and mechanistic studies on tumorigenesis. Toxicol Pathol, 29 Suppl, 81-9. THYGESEN, K., ALPERT, J. S., JAFFE, A. S., CHAITMAN, B. R., BAX, J. J., MORROW, D. A., WHITE, H. D., MICKLEY, H., CREA, F., VAN DE WERF, F., BUCCIARELLI-DUCCI, C., KATUS, H. A., PINTO, F. J., ANTMAN, E. M., HAMM, C. W., DE CATERINA, R., JANUZZI, J. L., JR., APPLE, F. S., ALONSO GARCIA, M. A., UNDERWOOD, S. R., CANTY, J. M., JR., LYON, A. R., DEVEREAUX, P. J., ZAMORANO, J. L., LINDAHL, B., WEINTRAUB, W. S., NEWBY, L. K., VIRMANI, R., VRANCKX, P., CUTLIP, D., GIBBONS, R. J., SMITH, S. C., ATAR, D., LUEPKER, R. V., ROBERTSON, R. M., BONOW, R. O., STEG, P. G., O'GARA, P. T. & FOX, K. A. A. (2018). [Fourth universal definition of myocardial infarction (2018)]. Kardiol Pol, 76, 1383-1415. TOMASELLI, G. F. & ZIPES, D. P. (2004). What causes sudden death in heart failure? Circulation research, 95, 754-763. TSE, G. & YAN, B. P. (2017). Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. Europace, 19, 712-721. UEDA, N., ZIPES, D. P. & WU, J. (2006). Coronary occlusion and reperfusion promote early afterdepolarizations and ventricular tachycardia in a canine tissue model of type 3 long QT syndrome. Am J Physiol Heart Circ Physiol, 290, H607-12. VAN DER WERF, C., KANNANKERIL, P. J., SACHER, F., KRAHN, A. D., VISKIN, S., LEENHARDT, A., SHIMIZU, W., SUMITOMO, N., FISH, F. A. & BHUIYAN, Z. A. (2011). Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. Journal of the American College of Cardiology, 57, 2244-2254. VAN RIJEN, H. V., VAN VEEN, T. A., VAN KEMPEN, M. J., WILMS-SCHOPMAN, F. J., POTSE, M., KRUEGER, O., WILLECKE, K., OPTHOF, T., JONGSMA, H. J. & DE BAKKER, J. M. (2001). Impaired conduction in the bundle branches of mouse hearts lacking the gap junction protein connexin40. Circulation, 103, 1591-1598. VASEGHI, M., BARWAD, P., MALAVASSI CORRALES, F. J., TANDRI, H., MATHURIA, N., SHAH, R., SORG, J. M., GIMA, J., MANDAL, K., SAENZ MORALES, L. C., LOKHANDWALA, Y. & SHIVKUMAR, K. (2017). Cardiac Sympathetic Denervation for Refractory Ventricular Arrhythmias. J Am Coll Cardiol, 69, 3070-3080. VON MERING, C., KRAUSE, R., SNEL, B., CORNELL, M., OLIVER, S. G., FIELDS, S. & BORK, P. (2002). Comparative assessment of large-scale data sets of protein–protein interactions. Nature, 417, 399. VRACKO, R., THORNING, D. & FREDERICKSON, R. G. (1991). Nerve fibers in human myocardial scars. Human pathology, 22, 138-146. WALKER, M., CURTIS, M., HEARSE, D., CAMPBELL, R., JANSE, M., YELLON, D., COBBE, S., COKER, S., HARNESS, J. & HARRON, D. (1988). The Lambeth Conventions: guidelines for the study of arrhythmias in ischaemia, infarction, and reperfusion. Cardiovascular research, 22, 447-455. WANG, X., WANG, J., TU, T., IYAN, Z., MUNGUN, D., YANG, Z. & GUO, Y. (2018). Remote Ischemic Postconditioning Protects against Myocardial Ischemia-Reperfusion Injury by Inhibition of the RAGE-HMGB1 Pathway. Biomed Res Int, 2018, 4565630. WEISS, J. N., GARFINKEL, A., KARAGUEUZIAN, H. S., CHEN, P.-S. & QU, Z. (2010). Early afterdepolarizations and cardiac arrhythmias. Heart rhythm, 7, 1891-1899. WILLIAMSON, A. J., SOARES, J. H., HENAO-GUERRERO, N., COUNCIL-TROCHE, R. M. & PAVLISKO, N. D. (2018). Cardiovascular and respiratory effects of two doses of fentanyl in the presence or absence of bradycardia in isoflurane-anesthetized dogs. Vet Anaesth Analg, 45, 423-431. WIT, A. L. & BOYDEN, P. A. (2007). Triggered activity and atrial fibrillation. Heart Rhythm, 4, S17-23. WORLD HEALTH ORGANIZATION (2017). Cardiovascular Diseases. WORLD HEALTH ORGANIZATION. (2018). Metrics: Disability-Adjusted Life Year (DALY) [Online]. http://www.who.int/healthinfo/global_burden_disease/metrics_daly/en/: World Health Organizations. [Accessed 21.08.2018 2018]. YAMAMOTO, S., MATSUI, K., SASABE, M. & OHASHI, N. (2002). Effect of an orally active Na+/H+ exchange inhibitor, SMP-300, on experimental angina and myocardial infarction models in rats. J Cardiovasc Pharmacol, 39, 234-41. YAMAUCHI, S., YAMAKI, M., WATANABE, T., YUUKI, K., KUBOTA, I. & TOMOIKE, H. (2002). Restitution properties and occurrence of ventricular arrhythmia in LQT2 type of long QT syndrome. J Cardiovasc Electrophysiol, 13, 910-4. YANG, X. P., LIU, Y. H., RHALEB, N. E., KURIHARA, N., KIM, H. E. & CARRETERO, O. A. (1999). Echocardiographic assessment of cardiac function in conscious and anesthetized mice. Am J Physiol, 277, H1967-74. YANOWITZ, F., PRESTON, J. B. & ABILDSKOV, J. (1966). Functional distribution of right and left stellate innervation to the ventricles. Circ Res, 18, 416-428. YU, Y., YE, L., LI, Y. G., BURKIN, D. J. & DUAN, D. D. (2016). Heart-specific overexpression of the human short CLC-3 chloride channel isoform limits myocardial ischemia-induced ERP and QT prolongation. Int J Cardiol, 214, 218-24. ZHANG, Y., POST, W. S., DALAL, D., BLASCO-COLMENARES, E., TOMASELLI, G. F. & GUALLAR, E. (2011). QT-interval duration and mortality rate: results from the Third National Health and Nutrition Examination Survey. Archives of internal medicine, 171, 1727-1733. ZHANG, Y., TAKAGAWA, J., SIEVERS, R. E., KHAN, M. F., VISWANATHAN, M. N., SPRINGER, M. L., FOSTER, E. & YEGHIAZARIANS, Y. (2007). Validation of the wall motion score and myocardial performance indexes as novel techniques to assess cardiac function in mice after myocardial infarction. Am J Physiol Heart Circ Physiol, 292, H1187-92. ZIPES, D. P. & WELLENS, H. J. (1998). Sudden cardiac death. Circulation, 98, 2334-51. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Bezug: | 2017-2021 | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 27.08.2021 | |||||||
Dateien geändert am: | 27.08.2021 | |||||||
Promotionsantrag am: | 31.03.2021 | |||||||
Datum der Promotion: | 26.08.2021 |