Dokument: Beeinflussung der Immunantwort in der moderaten Sepsis durch die moderate Hyperkapnie und die Modulation des K+-ATP-Kanals

Titel:Beeinflussung der Immunantwort in der moderaten Sepsis durch die moderate Hyperkapnie und die Modulation des K+-ATP-Kanals
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=56975
URN (NBN):urn:nbn:de:hbz:061-20210728-104312-6
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Weiss, Sabrina [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]776,4 KB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 23.07.2021 / geändert 23.07.2021
Beitragende:Prof. Dr. Picker, Olaf [Gutachter]
PD Dr. Niegisch, Günter [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Einleitung: Eine moderate Hyperkapnie scheint neben vasoaktiven Effekten auch die Immunantwort möglicherweise über die Inhibition des ATP sensitiven Kaliumkanals (K+ATP-Kanal) zu beeinflussen. Dies könnte ein weiterer Erklärungsansatz für den protektiven Effekt der Hyperkapnie in der Sepsis sein. Ziel dieser Doktorarbeit war es daher zu untersuchen, welchen Einfluss eine moderate Hyperkapnie auf die systemische wie lokale Immunantwort in der Sepsis hat und ob diese durch die Inhibition des K+ATP-Kanals verändert werden.
Methoden: Dafür wurden 40 männliche Wistar-Ratten in 4 Gruppen randomisiert (n=10). Die Sepsis-Induktion erfolgte durch eine CASP Operation. Nach 24 Stunden wurden die septischen Tiere nach vorheriger Applikation von Glibenclamid (1mg/kg/KG in 1ml NaCl i.v.) bzw. Vehikel (1ml NaCl 0,9% i.v.) für 120 Minuten entweder normokapnisch (paCO¬2 35 - 45 mmHg) oder hyperkapnisch (paCO2 65 - 75 mmHg) ventiliert.
Am Ende des Experimentes erfolgte die Blutentnahme zur Messung der Zytokinplasmaspiegel (TNF-α, IL-6, IL-10) mittels ELISA. Des Weiteren wurde aus dem entnommenen Colon- und Lungengewebe eine Western Blot Analyse der Adhäsionsmoleküle ICAM-1 und E-Selectin durchgeführt und die MPO-Aktivität bestimmt.
Ergebnisse: Weder die moderate Hyperkapnie noch die Gabe von Glibenclamid sowie auch deren Kombination führten zu einer signifikanten Veränderung der Zytokinplasmaspiegel. Zudem konnte kein signifikanter Unterschied zwischen den Behandlungsgruppen in der Expression der Adhäsionsmoleküle ICAM-1 und E Selectin sowie der MPO Aktivität im Colon und in der Lunge festgestellt werden.
Schlussfolgerung: Die protektiven Effekte der Hyperkapnie in der Sepsis werden unabhängig von der Immunantwort und des K+ATP-Kanals vermittelt.

Introduction: In addition to vasoactive effects, moderate hypercapnia might influence the immune response due to the inhibition of ATP sensitive potassium channels (K+ATP channels). This could explain the protective effect of hypercapnia in sepsis. Thus this doctoral thesis aimed to investigate the influence of moderate hypercapnia on the systemic and local immune response in sepsis and how this is affected by the inhibition of K+ATP channels.
Methods: 40 male Wistar rats were randomized into 4 groups (n=10). Sepsis was induced by CASP surgery. After 24 hours septic animals were treated with glibenclamide (1mg/kg/KG) in 1ml NaCl i. v. or a vehicle (1ml NaCl 0.9% i.v.) and received either normocapnic (paCO2 35-45 mmHg) or hypercapnic (paCO2 65 75 mmHg) ventilation for 120 minutes. At the end of the intervention the cytokine plasma levels (TNF-α, IL-6, IL-10) were determined by ELISA. In addition, the adhesion molecules ICAM-1 and E-selectin in colon and lung tissue were determined by western blot analysis and MPO activity was determined by MPO Assay.
Results: Neither moderate hypercapnia, nor glibenclamide, nor the combination of both significantly altered cytokine plasma levels. In addition, there was no significant difference in ICAM-1 and E-Selectin expression and intestinal or pulmonary MPO activity within the treatment groups.
Conclusion: The protective effects of hypercapnia in sepsis are mediated independently of the immune response and K+ATP channels.

Quelle:1. Brunkhorst, F.M. et al. S3 Leitlinie: Sepsis – Prävention, Diagnose, Therapie und Nachsorge. AWMF-Registrierungsnummer: 079-001 (2018). Verfügbar unter https://www.awmf.org/uploads/tx_szleitlinien/079-001l_S3_Sepsis-Praevention-Diagnose-Therapie-Nachsorge_2020-03_01.pdf

2. Fleischmann-Struzek, C. et al. Challenges in assessing the burden of sepsis and understanding the inequalities of sepsis outcomes between National Health Systems: secular trends in sepsis and infection incidence and mortality in Germany. Intensive care medicine 44, (11) 1826-1835 (2018).

3. Weber, G. F. & Swirski, F. K. Immunopathogenesis of abdominal sepsis. Langenbecks Arch Surg 399, 1–9 (2014).

4. Chaudhry, H. et al. Role of Cytokines as a Double-edged Sword in Sepsis. In Vivo 27, 669–684 (2013).

5. Sumagin, R. & Sarelius, I. H. TNF-α activation of arterioles and venules alters distribution and levels of ICAM-1 and affects leukocyte-endothelial cell interactions. American Journal of Physiology - Heart and Circulatory Physiology 291, H2116–H2125 (2006).

6. Kim, I. et al. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM 1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J. Biol. Chem. 276, 7614–7620 (2001).



7. Zhao, Yan-jun et al. Blockade of ICAM-1 improves the outcome of polymicrobial sepsis via modulating neutrophil migration and reversing immunosuppression. Mediators of Inflammation. (2014), doi: 10.1155/2014/195290.

8. Klebanoff, J. et al. Myeloperoxidase: firend and foe. J Leukoc Biol. 77, 598-625 (2005).

9. Arnold, J. & Flemming, J. Human myeloperoxidase in innate and acquired immunity. Arch. Bioche. Biophys. 500, 92-106 (2010).

10. Schrijver, I. T. et al. Myeloperoxidase can differentiate between sepsis and non-infectious SIRS and predicts mortality in intensive care patients with SIRS. Intensive Care Med Exp. 5, 43 (2017).

11. Hörner, C. et al. Bedeutung der angeborenen Immunantwort in der Sepsis. Anaesthesist. 53, 10-28 (2004).

12. Gogos, C. A., Drosou, E., Bassaris, H. P. & Skoutelis, A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis. 181, 176–180 (2000).

13. Brouwer, W.P. et al. Hemoadsorption with CytoSorb shows a decreased observed versus expected 28-day all-cause mortality in ICU patients with septic shock: a propensity-score-weighted retrospective study. Crit Care. 23, 317-326 (2019).

14. Hemming et al. Immune Effects of Corticosteroids in Sepsis. Front. Immunol. 9, 1736 (2018).

15. Cortés, I., Peñuelas, O. & Esteban, A. Acute respiratory distress syndrome: evaluation and management. Minerva Anestesiol 78, 343–357 (2012).

16. Villar, J., Kacmarek, R. M., Pérez-Méndez, L. & Aguirre-Jaime, A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit. Care Med. 34, 1311–1318 (2006).

17. Schwartges, I., Schwarte, L. A., Fournell, A., Scheeren, T. W. L. & Picker, O. Hypercapnia induces a concentration-dependent increase in gastric mucosal oxygenation in dogs. Intensive Care Med 34, 1898–1906 (2008).

18. Stübs, C. C. M. et al. Acute, short-term hypercapnia improves microvascular oxygenation of the colon in an animal model of sepsis. Microvasc. Res. 90, 180–186 (2013).

19. Ismaiel, N. M. & Henzler, D. Effects of hypercapnia and hypercapnic acidosis on attenuation of ventilator-associated lung injury. Minerva Anestesiol 77, 723–733 (2011).

20. Laffey, J. G. et al. Hypercapnic acidosis attenuates endotoxin-induced acute lung injury. Am. J. Respir. Crit. Care Med. 169, 46–56 (2004).

21. Horie, S. et al. Hypercapnic acidosis attenuates pulmonary epithelial stretch-induced injury via inhibition of the canonical NF-κB pathway. Intensive Care Med Exp 4, (2016).

22. Norozian, F. M. et al. Therapeutic hypercapnia enhances the inflammatory response to endotoxin in the lung of spontaneously breathing rats*: Critical Care Medicine 39, 1400–1406 (2011).

23. Liu, Y. et al. Modulatory effects of hypercapnia on in vitro and in vivo pulmonary endothelial–neutrophil adhesive responses during inflammation. Cytokine 44, 108–117 (2008).

24. Wang, X. et al. Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circ. Res. 92, 1225–1232 (2003).

25. Nakahata, K. et al. Mild hypercapnia induces vasodilation via adenosine triphosphate-sensitive K+ channels in parenchymal microvessels of the rat cerebral cortex. Anesthesiology 99, 1333–1339 (2003).

26. Pompermayer, K. et al. Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury. Eur. J. Pharmacol. 556, 215–222 (2007).

27. Schmid, D. et al. Glibenclamide reduces proinflammatory cytokines in an ex vivo model of human endotoxinaemia under hypoxaemic conditions. Life Sciences 89, 725–734 (2011).

28. Spiller, F. et al. Hydrogen sulfide improves neutrophil migration and survival in sepsis via K+ATP channel activation. Am. J. Respir. Crit. Care Med. 182, 360–368 (2010).

29. Zhang, G. et al. A Protective Role of Glibenclamide in Inflammation-Associated Injury. Mediators Inflamm. (2017). doi:10.1155/2017/35787022017.

30. Dalaal, M. et al. Glibenclamide ameliorates ischemia-reperfusion injury via modulating oxidative stress and inflammatory mediators in the rat hippocampus. Brain Research 1358, 257-262 (2011).

31. Beck, C. et al. The beneficial effects of acute hypercapnia on microcirculatory oxygenation in an animal model of sepsis are independent of K(+)ATP channels. Microvas. Res. 99, 78-85 (2015).

32. Lustig, M. K. et al. Colon ascendens stent peritonitis--a model of sepsis adopted to the rat: physiological, microcirculatory and laboratory changes. Shock 28, 59–64 (2007).

33. Traeger, T. et al. Colon Ascendens Stent Peritonitis (CASP) - a Standardized Model for Polymicrobial Abdominal Sepsis. J Vis Exp (2010). doi:10.3791/2299

34. Rittirsch, D., Hoesel, L. M. & Ward, P. A. The disconnect between animal models of sepsis and human sepsis. J. Leukoc. Biol. 81, 137–143 (2007).

35. Maier, S. et al. Cecal ligation and puncture versus colon ascendens stent peritonitis: two distinct animal models for polymicrobial sepsis. Shock 21, 505–511 (2004).

36. Kimura, D., Totapally, B. R., Raszynski, A., Ramachandran, C. & Torbati, D. The effects of CO2 on cytokine concentrations in endotoxin-stimulated human whole blood. Crit. Care Med. 36, 2823–2827 (2008).

37. Xiao, Z. et al. Inflammatory mediators in intra-abdominal sepsis or injury – a scoping review. Crit Care. 19, 373 (2015).

38. Liu, Y. et al. Modulatory effects of hypercapnia on in vitro and in vivo pulmonary endothelial–neutrophil adhesive responses during inflammation. Cytokine 44, 108–117 (2008).

39. Nichol, A. D. et al. Hypercapnic Acidosis Reduces Oxidative Reactions in Endotoxin-induced Lung Injury. Anesthes. 113, 116–125 (2010).

40. De Backer, D. et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit. Care Med. 41, 791–799 (2013).

41. Aka, O. et al. Hypercapnia and surgical site infection: a randomized trial. British Journal of Anaesthesia 111, 759-67 (2013).

42. O’Croinin, D. F. et al. Sustained hypercapnic acidosis during pulmonary infection increases bacterial load and worsens lung injury. Crit. Care Med. 36, 2128–2135 (2008).

43. Tiruvoipati, R. et al. Effects of Hypercapnia and Hypercapnic Acidosis on Hospital Mortality in Mechanically Ventilated Patients Crit. Care Med 45, 649-656 (2017).
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:28.07.2021
Dateien geändert am:28.07.2021
Promotionsantrag am:25.01.2021
Datum der Promotion:08.06.2021
english
Benutzer
Status: Gast
Aktionen