Dokument: Der Einfluss von Gemfibrozil und Pravastatin auf die mitochondriale Funktion im Colon und in der Leber in vitro - Ein Therapieansatz bei Sepsis?
Titel: | Der Einfluss von Gemfibrozil und Pravastatin auf die mitochondriale Funktion im Colon und in der Leber in vitro - Ein Therapieansatz bei Sepsis? | |||||||
Weiterer Titel: | Effect of Gemfibrozil and Pravastatin on hepatic and colonic mitochondrial function in vitro - A therapeutic option in sepsis? | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=55781 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20210325-081847-6 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Laser, Eric [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Picker, Olaf [Gutachter] Dr. Flügen, Georg [Gutachter] | |||||||
Stichwörter: | Mitochondrien, Sepsis, Colon, Leber, Gemfibrozil, Pravastatin | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Trotz großer Fortschritte in der Intensivmedizin stellen die Sepsis und der septische Schock, mit daraus resultierendem Multiorganversagen (MOF), weiterhin ein großes Problem mit enorm hoher Letalität der Patienten dar. Als eine wichtige Ursache des septischen Multiorganversagens werden eine Störung, sowohl der mitochondrialen Funktionen als auch der Mikrozirkulation, insbesondere im Gastrointestinaltrakt und der Leber, vermutet. In diesem Zusammenhang könnte der Einsatz von Statinen und Fibraten vielversprechend sein.
Um zu untersuchen, ob Gemfibrozil und Pravastatin die mitochondriale Funktion im Colon und in der Leber beeinflussen, wurden Gewebehomogenate aus Colon und Leber von gesunden Ratten mit verschiedenen Dosierungen dieser Medikamente inkubiert. Die mitochondriale Funktion wurde anschließend mittels Respirometrie beurteilt. In diesen Experimenten störte Gemfibrozil die hepatische ATP-Synthese durch Entkoppelung der Atmungskette. Pravastatin zeigte einen ähnlichen Effekt auf die ATP-Synthese, bewirkte aber keine Entkoppelung. Gemfibrozil senkte außerdem die Effizienz der oxidativen Phosphorylierung. Im Colon dagegen bewirkten beide Medikamente eher positive Effekte. Trotz Hemmung der Atmungskette kam es zu einer Stabilisierung des mitochondrialen Membranpotenzials. Zudem steigerten Gemfibrozil und Pravastatin die Effizienz der oxidativen Phosphorylierung. Diesen Ergebnissen zufolge beeinflussen Gemfibrozil und Pravastatin die mitochondriale Funktion im Colon und in der Leber auf unterschiedliche Weise. Ob dies tatsächlich einen positiven Einfluss auf das Outcome einer Sepsis haben könnte, muss durch Folgeversuche geklärt werden.Despite of many improvements in intensive care medicine sepsis, septic shock and septic multiorgan failure (MOF) remain a critical problem with high letality. Mitochondrial dysfunction and a impaired microcirculation, especially in the liver and the digestive system, are considered as important key factors in the developement of septic multi organ failure. In this context Statins and Fibrates might be an therapeutic option. In order to investigate the impact of Gemfibrozil and Pravastatin on hepatic and colonic mitochondrial function we incubated tissue homogenates from healthy rats with different dosages of these drugs. The mitochondrial function was measured via respirometry afterwards. Our study shows that hepatic ATP-synthesis is impaired by Gemfibrozil due to uncoupling. Pravastatin has an similiar effect but does not uncouple mitochondrial respiration from ATP-synthesis. The effects of both drugs on colonic mitochondria were rather positive. Despite of inhibiting mitochondrial respiration both drugs stabilized mitochondrial membrane potential. Furthermore both drugs improved the efficacy of oxidative phosphorylation. Our study shows that Gemfibrozil and Pravastatin impact hepatic and colonic mitochondrial function in different ways. It has to be investigated in future studies if this has a positive impact on sepsis. | |||||||
Quelle: | Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent J-L, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801.
2. Flynn A, Chokkalingam Mani B, Mather PJ. Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart Fail Rev. 2010;15:605–611. 3. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003;101:3765–3777. 4. Fink MP. Bench-to-bedside review: Cytopathic hypoxia. Crit Care. 2002;6:491–499. 5. Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, Moldawer LL, Moore FA. Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72:1491–1501. 6. Fleischmann C, Thomas-Rueddel DO, Hartmann M, Hartog CS, Welte T, Heublein S, Dennler U, Reinhart K. Fallzahlen und Sterblichkeitsraten von Sepsis-Patienten im Krankenhaus. Dtsch Arztebl Int. 2016;113:159–166. 7. Sepsis-Stiftung. Sepsis_inDeutschland.pdf. http://www.sepsis-stiftung.eu/wp-content/uploads/1/2016/10/Sepsis_inDeutschland.pdf. Available at http://www.sepsis-stiftung.eu/wp-content/uploads/1/2016/10/Sepsis_inDeutschland.pdf. 8. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. Jama. 2010;304:1787–1794. 9. Hagel S, Brunkhorst F. Sepsis. Intensivmed Notfallmedizin. 2011;48:57–73. 10. Angus DC, Pires Pereira CA, Silva E. Epidemiology of severe sepsis around the world. Endocr Metab Immune Disord-Drug Targets Former Curr Drug Targets-Immune Endocr Metab Disord. 2006;6:207–212. 11. Rhee C, Gohil S, Klompas M. Regulatory mandates for sepsis care—reasons for caution. N Engl J Med. 2014;370:1673–1676. 12. Grip J, Jakobsson T, Tardif N, Rooyackers O. The effect of plasma from septic ICU patients on healthy rat muscle mitochondria. Intensive Care Med Exp. 2016;4. doi:10.1186/s40635-016-0093-2. 13. Balestra GM, Legrand M, Ince C. Microcirculation and mitochondria in sepsis: getting out of breath: Curr Opin Anaesthesiol. 2009;22:184–190. 14. Jeger V, Djafarzadeh S, Jakob SM, Takala J. Mitochondrial function in sepsis. Eur J Clin Invest. 2013;43:532–542. 15. Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9:S13. 6 Anhang II 16. Boekstegers P, Pilz G, Werdan K, others. Peripheral oxygen availability within skeletal muscle in sepsis and septic shock: comparison to limited infection and cardiogenic shock. Infection. 1991;19:317–323. 17. Sair M, Etherington PJ, Winlove CP, Evans TW. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med. 2001;29:1343–1349. 18. Takeyama N, Itoh Y, Kitazawa Y, Tanaka T. Altered hepatic mitochondrial fatty acid oxidation and ketogenesis in endotoxic rats. Am J Physiol-Endocrinol Metab. 1990;259:E498–E505. 19. Kantrow SP, Taylor DE, Carraway MS, Piantadosi CA. Oxidative Metabolism in Rat Hepatocytes and Mitochondria during Sepsis. 1997;ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS:278–288,. 20. Brealey D. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. AJP Regul Integr Comp Physiol. 2004;286:491R – 497. 21. Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, Chopin C, Neviere R. Inhibition of Mitochondrial Permeability Transition Prevents Sepsis-Induced Myocardial Dysfunction and Mortality. J Am Coll Cardiol. 2006;48:377–385. 22. Nin N, Cassina A, Boggia J, Alfonso E, Botti H, Peluffo G, Trostchansky A, Batthyany C, Radi R, Rubbo H, Hurtado FJ. Septic diaphragmatic dysfunction is prevented by Mn(III)porphyrin therapy and inducible nitric oxide synthase inhibition. Intensive Care Med. 2004;30:2271–2278. 23. Llesuy S, Evelson P, González-Flecha B, Peralta J, Carreras MC, Poderoso JJ, Boveris A. Oxidative stress in muscle and liver of rats with septic syndrome. Free Radic Biol Med. 1994;16:445–451. 24. Corrêa TD, Vuda M, Blaser AR, Takala J, Djafarzadeh S, Dünser MW, Silva E, Lensch M, Wilkens L, Jakob SM. Effect of treatment delay on disease severity and need for resuscitation in porcine fecal peritonitis: Crit Care Med. 2012;40:2841–2849. 25. Regueira T, Djafarzadeh S, Brandt S, Gorrasi J, Borotto E, Porta F, Takala J, Bracht H, Shaw S, Lepper PM, Jakob SM. Oxygen transport and mitochondrial function in porcine septic shock, cardiogenic shock, and hypoxaemia: Comparison of septic, cardiogenic, and hypoxic shock. Acta Anaesthesiol Scand. 2012;56:846–859. 26. Japiassú AM, Santiago APSA, dʼAvila J da CP, Garcia-Souza LF, Galina A, Castro Faria-Neto HC, Bozza FA, Oliveira MF. Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5′-triphosphate synthase activity*: Crit Care Med. 2011;39:1056–1063. 27. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. The Lancet. 2002;360:219–223. 28. Fredriksson K, Tjäder I, Keller P, Petrovic N, Ahlman B, Schéele C, Wernerman J, Timmons JA, Rooyackers O. Dysregulation of Mitochondrial Dynamics and the Muscle Transcriptome in ICU Patients Suffering from Sepsis Induced Multiple Organ Failure. PLoS ONE. 2008;3:e3686. 29. Fredriksson K, Hammarqvist F, Strigard K, Hultenby K, Ljungqvist O, Wernerman J, Rooyackers O. Derangements in mitochondrial metabolism in intercostal and leg muscle of critically ill patients with sepsis-induced multiple organ failure. AJP Endocrinol Metab. 2006;291:E1044–E1050. 30. Zeng X-M, Liu D-H, Han Y, Huang Z-Q, Zhang J-W, Huang Q. Assessment of inflammatory markers and mitochondrial factors in a rat model of sepsis-induced myocardial dysfunction. ;:11. 6 Anhang III 31. Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. The Lancet. 2004;364:545–548. 32. Herminghaus A, Papenbrock H, Eberhardt R, Vollmer C, Truse R, Schulz J, Bauer I, Weidinger A, Kozlov AV, Stiban J, Picker O. Time-related changes in hepatic and colonic mitochondrial oxygen consumption after abdominal infection in rats. Intensive Care Med Exp. 2019;7:4. 33. Tappy L, Chioléro R. Substrate utilization in sepsis and multiple organ failure: Crit Care Med. 2007;35:S531–S534. 34. Merx MW. HMG-CoA Reductase Inhibitor Simvastatin Profoundly Improves Survival in a Murine Model of Sepsis. Circulation. 2004;109:2560–2565. 35. Daniel G Hackam, Muhammad Mamdani, Ping Li, Donald A Redelmeier. Statins and sepsis in patients with cardiovascular disease: a population-based cohort analysis. Lancet. 2006;367:413–18. 36. Almog Y. Prior Statin Therapy Is Associated With a Decreased Rate of Severe Sepsis. Circulation. 2004;110:880–885. 37. Dobesh PP, Klepser DG, McGuire TR, Morgan CW, Olsen KM. Reduction in mortality associated with statin therapy in patients with severe sepsis. Pharmacother J Hum Pharmacol Drug Ther. 2009;29:621–630. 38. Morel J, Hargreaves I, Brealey D, Neergheen V, Backman JT, Lindig S, Bläss M, Bauer M, McAuley DF, Singer M. Simvastatin pre-treatment improves survival and mitochondrial function in a 3-day fluid-resuscitated rat model of sepsis. Clin Sci Lond Engl 1979. 2017;131:747–758. 39. Paricahua LI. Sepsis Mortality in Critical Care and Prior Statin Therapy: A Retrospective Cohort Study in Central Argentina. J Clin Diagn Res. 2017. doi:10.7860/JCDR/2017/25810.9992. 40. Budd A, Alleva L, Alsharifi M, Koskinen A, Smythe V, Mullbacher A, Wood J, Clark I. Increased Survival after Gemfibrozil Treatment of Severe Mouse Influenza. Antimicrob Agents Chemother. 2007;51:2965–2968. 41. Cámara-Lemarroy CR, Guzman-De La Garza FJ, Cordero-Perez P, Ibarra-Hernandez JM, Munoz-Espinosa LE, Fernandez-Garza NE. Gemfibrozil attenuates the inflammatory response and protects rats from abdominal sepsis. 2015. 42. Mullen PJ, Zahno A, Lindinger P, Maseneni S, Felser A, Krähenbühl S, Brecht K. Susceptibility to simvastatin-induced toxicity is partly determined by mitochondrial respiration and phosphorylation state of Akt. Biochim Biophys Acta BBA - Mol Cell Res. 2011;1813:2079–2087. 43. Kaufmann P, Török M, Zahno A, Waldhauser KM, Brecht K, Krähenbühl S. Toxicity of statins on rat skeletal muscle mitochondria. Cell Mol Life Sci. 2006;63:2415–2425. 44. Godoy JC, Niesman IR, Busija AR, Kassan A, Schilling JM, Schwarz A, Alvarez EA, Dalton ND, Drummond JC, Roth DM, Kararigas G, Patel HH, Zemljic-Harpf AE. Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes. FASEB J. 2019;33:1209–1225. 45. Bouitbir J, Charles A-L, Echaniz-Laguna A, Kindo M, Daussin F, Auwerx J, Piquard F, Geny B, Zoll J. Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a ‘mitohormesis’ mechanism involving reactive oxygen species and PGC-1. Eur Heart J. 2012;33:1397–1407. 6 Anhang IV 46. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose Restriction Extends Caenorhabditis elegans Life Span by Inducing Mitochondrial Respiration and Increasing Oxidative Stress. Cell Metab. 2007;6:280–293. 47. Sano M, Fukuda K. Activation of Mitochondrial Biogenesis by Hormesis. Circ Res. 2008;103:1191–1193. 48. Gems D, Partridge L. Stress-Response Hormesis and Aging: “That which Does Not Kill Us Makes Us Stronger.” Cell Metab. 2008;7:200–203. 49. Brunmair B. Fenofibrate Impairs Rat Mitochondrial Function by Inhibition of Respiratory Complex I. J Pharmacol Exp Ther. 2004;311:109–114. 50. Zhou S, Wallace KB. The effect of peroxisome proliferators on mitochondrial bioenergetics.pdf. 1999. 51. Zungu M, Young ME, Stanley WC, Essop MF. Chronic treatment with the peroxisome proliferator-activated receptor α agonist Wy-14,643 attenuates myocardial respiratory capacity and contractile function. Mol Cell Biochem. 2009;330:55–62. 52. Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova N, Calingasan NY, Yang L, Tampellini D, Starkov AA, Chan RB, Di Paolo G, Pujol A, Beal MF. Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Hum Mol Genet. 2012;21:5091–5105. 53. Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys. 1996;328:85–92. 54. Borutaité V, Brown GC. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide. Biochem J. 1996;315:295–299. 55. Radi R, Rodriguez M, Castro L, Telleri R. Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys. 1994;308:89–95. 56. Borutaite V, Budriunaite A, Brown GC. Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochim Biophys Acta BBA - Bioenerg. 2000;1459:405–412. 57. Fink MP. Intestinal epithelial hyperpermeability: update on the pathogenesis of gut mucosal barrier dysfunction in critical illness: Curr Opin Crit Care. 2003;9:143–151. 58. Fredenburgh LE, Suárez Velandia MM, Ma J, Olszak T, Cernadas M, Englert JA, Chung SW, Liu X, Begay C, Padera RF, Blumberg RS, Walsh SR, Baron RM, Perrella MA. Cyclooxygenase-2 Deficiency Leads to Intestinal Barrier Dysfunction and Increased Mortality during Polymicrobial Sepsis. J Immunol. 2011;187:5255–5267. 59. Klingensmith NJ, Coopersmith CM. The Gut as the Motor of Multiple Organ Dysfunction in Critical Illness. Crit Care Clin. 2016;32:203–212. 60. Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis. Lancet Gastroenterol Hepatol. 2017;2:135–143. 61. Nagpal R, Yadav H. Bacterial Translocation from the Gut to the Distant Organs: An Overview. Ann Nutr Metab. 2017;71:11–16. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Bezug: | 2017 - 2021 | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 25.03.2021 | |||||||
Dateien geändert am: | 25.03.2021 | |||||||
Promotionsantrag am: | 19.10.2020 | |||||||
Datum der Promotion: | 11.03.2021 |