Dokument: Kurz- und Langzeitergebnisse des gecoverten Stents nach vaskulärer Leistenkomplikation bei der Transkatheter Aortenklappenimplantation

Titel:Kurz- und Langzeitergebnisse des gecoverten Stents nach vaskulärer Leistenkomplikation bei der Transkatheter Aortenklappenimplantation
Weiterer Titel:Stent fractures after common femoral artery bail-out stenting due to suture device failure in TAVR
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=55655
URN (NBN):urn:nbn:de:hbz:061-20210316-110212-2
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Ledwig, Paul Maria [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]8,75 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 05.03.2021 / geändert 05.03.2021
Beitragende:Prof. Dr. Kelm, Malte [Betreuer/Doktorvater]
Prof. Dr. Korbmacher, Bernhard [Gutachter]
Stichwörter:TAVI / TAVR / Stent / gecoverter Stent / stent fracture / Stentfraktur / vaskuläre Komplikation / VASRC / Aortenklappenstenose / Aortenklappenersatz / Transkatheter Aortenklappenersatz / interventionelle Kardiologie / transfemoral
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Kurz- und Langzeitergebnisse des gecoverten Stents nach vaskulärer Leistenkomplikation bei der Transkatheter Aortenklappenimplantation
Abstract von Paul Maria Ledwig

Hintergrund
Durch die weltweite Etablierung und drastische Expansion der Transkatheter Aortenklappenimplantation (TAVI) bietet sich heutzutage auch multimorbiden, inoperablen Patienten mit kalzifizierender Aortenklappenstenose (AS) die Möglichkeit eines Aortenklappenersatzes im Gegensatz zu rein konservativen Methoden.
Doch trotz des technischen Fortschrittes und der steigenden Erfahrung in der Durchführung der TAVI sind vaskuläre Komplikationen in Abhängigkeit des Zugangsweges und der Zugangsart (VASRC) in diesem Zusammenhang immer noch häufig und beeinflussen das Outcome der Patienten erheblich.

Patientenkollektiv und Methodik
Von 389 zwischen 2013 und 2015 im Herzzentrum Düsseldorf durchgeführten transfemoralen TAVIs kam es bei 51 Patienten zu einer VASRC (13%), von denen 40 Patienten (78%) mit einem gecoverten Stent (CSG) (Fluency ®, C. R. Bard Inc., Murray Hill, NJ, 40-80 x 7-12 mm) und 11 Patienten (22%) konservativ auf andere Weise behandelt wurden. Um potentielle Stentfrakturen (StF) und deren hämodynamische Auswirkungen zu detektieren, führten wir bei 29 Patienten ein komplettes Follow-Up (FU) mit konsequenter fluoroskopischer Visualisierung sowie weiteren klinischen und funktionsdiagnostischen Untersuchungen der Stents durch.

Ergebnisse
Unsere Analysen konzentrierten sich dabei kurzfristig auf den sofortigen Erfolg der Blutungskontrolle und mittel- bis langfristig auf funktionelle sowie strukturelle Parameter der Stents mit einem FU von 6 bis 12 Monaten (im Mittel 334±188 Tage). In unserer Studie konnten wir zeigen, dass die Implantation eines CSG in die beschädigte Arterie zu einer sofortigen und vollständigen Blutungskontrolle führte (100%) und weder eine Nachdilatation des Stents noch eine blutkontrollierende Ballondilatation nötig waren. Wir konnten demonstrieren, dass StF in 14% (n=4) der implantierten CSG gefunden werden können und dass diese mit einer uneingeschränkten Funktionalität und ohne flusslimitierende Stenosen einhergehen.

Schlussfolgerung
Vor allem in Bezug auf die Indikationserweiterung des interventionellen Aortenklappenersatzes in niedrigere Risikokollektive und somit der Erwartung eines jüngeren und mobileren TAVI-Kollektivs muss geklärt werden, ob eine routinemäßige Implantation eines CSG als bail-out Prozedur bei Blutungskomplikationen über den unbestreitbaren Vorteil der unmittelbaren Blutungskontrolle hinaus zusätzliche langfristige Nachteile (z.B. Fraktur-bedingte (Re-) Stenosen / Instent-Thrombosen) mit sich bringt.
Daher sollten auch zukünftig funktionelle sowie strukturelle Parameter der CSG auf Grundlage unserer Daten in prospektiven, randomisierten Studien beurteilt werden.

Stent fractures after common femoral artery bail-out stenting due to suture device failure in TAVR*
Abstract from Paul Maria Ledwig


Background
Vascular access site-related complications are frequent in the context of transfemoral transcatheter aortic valve replacement (TAVR). The implantation of a covered stent graft is an effective treatment option for bleeding control. However, the external iliac and common femoral arteries are exposed to flexion of the hip joint. Therefore, stent compression and stent/strut fractures may occur, facilitating stent occlusion.

Patients and methods
In all 389 patients who received transfemoral TAVR from 2013–2015 at the Duesseldorf Heart Centre, we monitored the management of vascular access site-related complications. Our analyses focused on immediate technical success and bleeding control, primary patency, and the occurrence of stent/strut fractures after six to 12 months of follow-up.

Results
Vascular access site-related complications occurred in 13% (n=51), whereof in 11 patients, the bleeding was successfully managed by prolonged compression or balloon catheter. In 40 out of 51 patients, a covered stent graft was implanted in the common femoral artery, leading to 100% immediate bleeding control. After a mean follow-up of 334±188 days, 28 stents out of 29 patients with completed follow-up (excluding e. g. death) were without flow-limiting stenosis (primary patency 97%) or relevant stent compression (diameter pre/ post 8.6/8.1 mm, p=0.048, late lumen loss 1.1±0.2 mm, mean flow velocity 92±34 cm/s). In four asymptomatic patients, stent/strut fractures were detected (14%) without flow-limiting stenosis.

Conclusions
The implantation of a covered stent graft is highly effective and safe to control vascular access site-related complications after TAVR. Stent/strut fractures in the flexible segment of the common femoral artery may occur, as consequently verified by X-ray visualization, but show no impairment on flow or clinical parameters after six to 12 months.


* Veulemans V, Afzal S, Ledwig P, et al. Stent fractures after common femoral artery bail-out stenting due to suture device failure in TAVR. Vasa. 2018;47(5):393-401. doi:10.1024/0301-1526/a000712 © Hogrefe
Quelle:1. Bosse, Y., P. Mathieu, and P. Pibarot, Genomics: the next step to elucidate the etiology of calcific aortic valve stenosis. J Am Coll Cardiol, 2008. 51(14): p. 1327-36.
2. Michelena, H.I., et al., Incidence of aortic complications in patients with bicuspid aortic valves. Jama, 2011. 306(10): p. 1104-12.
3. Michelena, H.I., et al., Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the International Bicuspid Aortic Valve Consortium (BAVCon). Circulation, 2014. 129(25): p. 2691-704.
4. Roberts, W.C. and J.M. Ko, Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation, 2005. 111(7): p. 920-5.
5. Freeman, R.V. and C.M. Otto, Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation, 2005. 111(24): p. 3316-26.
6. Rajamannan, N.M., R.O. Bonow, and S.H. Rahimtoola, Calcific aortic stenosis: an update. Nat Clin Pract Cardiovasc Med, 2007. 4(5): p. 254-62.
7. Baumgartner, H., et al., 2017 ESC/EACTS Guidelines for the management of valvular heart disease: The Task Force for the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J, 2017.
8. Nkomo, V.T., et al., Burden of valvular heart diseases: a population-based study. Lancet, 2006. 368(9540): p. 1005-11.
9. Iung, B. and A. Vahanian, Epidemiology of valvular heart disease in the adult. Nat Rev Cardiol, 2011. 8(3): p. 162-72.
10. Nishimura, R.A., et al., 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol, 2014. 63(22): p. e57-185.
11. Coffey, S., B. Cox, and M.J. Williams, The prevalence, incidence, progression, and risks of aortic valve sclerosis: a systematic review and meta-analysis. J Am Coll Cardiol, 2014. 63(25 Pt A): p. 2852-61.
12. Cosmi, J.E., et al., The risk of the development of aortic stenosis in patients with "benign" aortic valve thickening. Arch Intern Med, 2002. 162(20): p. 2345-7.
13. Stewart, B.F., et al., Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol, 1997. 29(3): p. 630-4.
14. Osnabrugge, R.L., et al., Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J Am Coll Cardiol, 2013. 62(11): p. 1002-12.
15. Iung, B., et al., A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J, 2003. 24(13): p. 1231-43.
16. Danielsen, R., et al., The prevalence of aortic stenosis in the elderly in Iceland and predictions for the coming decades: the AGES-Reykjavik study. Int J Cardiol, 2014. 176(3): p. 916-22.
17. Iung, B. and A. Vahanian, Degenerative calcific aortic stenosis: a natural history. Heart, 2012. 98 Suppl 4: p. iv7-13.
18. Lindroos, M., et al., Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol, 1993. 21(5): p. 1220-5.
19. Roberts, W.C., The senile cardiac calcification syndrome. Am J Cardiol, 1986. 58(6): p. 572-4.
20. Mohler, E.R., et al., Development and progression of aortic valve stenosis: atherosclerosis risk factors--a causal relationship? A clinical morphologic study. Clin Cardiol, 1991. 14(12): p. 995-9.
21. Deutscher, S., H.E. Rockette, and V. Krishnaswami, Diabetes and hypercholesterolemia among patients with calcific aortic stenosis. J Chronic Dis, 1984. 37(5): p. 407-15.
22. Aronow, W.S., K.S. Schwartz, and M. Koenigsberg, Correlation of serum lipids, calcium, and phosphorus, diabetes mellitus and history of systemic hypertension with presence or absence of calcified or thickened aortic cusps or root in elderly patients. Am J Cardiol, 1987. 59(9): p. 998-9.
23. Fox, C.S., et al., Mitral annular calcification predicts cardiovascular morbidity and mortality: the Framingham Heart Study. Circulation, 2003. 107(11): p. 1492-6.
24. Farzaneh-Far, A., et al., Vascular and valvar calcification: recent advances. Heart, 2001. 85(1): p. 13-7.
25. Aronow, W.S., C. Ahn, and I. Kronzon, Association of mitral annular calcium and of aortic cuspal calcium with coronary artery disease in older patients. Am J Cardiol, 1999. 84(9): p. 1084-5, a9.
26. Otto, C.M., et al., Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med, 1999. 341(3): p. 142-7.
27. Boon, A., et al., Cardiac valve calcification: characteristics of patients with calcification of the mitral annulus or aortic valve. Heart, 1997. 78(5): p. 472-4.
28. Pressman, G.S., et al., Can total cardiac calcium predict the coronary calcium score? Int J Cardiol, 2011. 146(2): p. 202-6.
29. Takasu, J., et al., Relationships of thoracic aortic wall calcification to cardiovascular risk factors: the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J, 2008. 155(4): p. 765-71.
30. Jeon, D.S., et al., Association of mitral annulus calcification, aortic valve sclerosis and aortic root calcification with abnormal myocardial perfusion single photon emission tomography in subjects age < or =65 years old. J Am Coll Cardiol, 2001. 38(7): p. 1988-93.
31. Soydinc, S., et al., Relationship between aortic valve sclerosis and the extent of coronary artery disease in patients undergoing diagnostic coronary angiography. Cardiology, 2006. 106(4): p. 277-82.
32. Nucifora, G., et al., Usefulness of echocardiographic assessment of cardiac and ascending aorta calcific deposits to predict coronary artery calcium and presence and severity of obstructive coronary artery disease. Am J Cardiol, 2009. 103(8): p. 1045-50.
33. Corciu, A.I., et al., Cardiac calcification by transthoracic echocardiography in patients with known or suspected coronary artery disease. Int J Cardiol, 2010. 142(3): p. 288-95.
34. Lacalzada, J., et al., Prognostic value of echocardiographic-derived calcium index in coronary artery disease diagnosed by 64-multidetector computed tomography. Echocardiography, 2012. 29(9): p. 1120-7.
35. Cowell, S.J., et al., Calcific aortic stenosis: same old story? Age Ageing, 2004. 33(6): p. 538-44.
36. Izquierdo-Gomez, M.M., et al., Valve Calcification in Aortic Stenosis: Etiology and Diagnostic Imaging Techniques. Biomed Res Int, 2017. 2017: p. 5178631.
37. Lindman, B.R., et al., Calcific aortic stenosis. Nat Rev Dis Primers, 2016. 2: p. 16006.
38. Wallby, L., et al., Inflammatory Characteristics of Stenotic Aortic Valves: A Comparison between Rheumatic and Nonrheumatic Aortic Stenosis. Cardiol Res Pract, 2013. 2013: p. 895215.
39. Sliwa, K., et al., Incidence and characteristics of newly diagnosed rheumatic heart disease in urban African adults: insights from the heart of Soweto study. Eur Heart J, 2010. 31(6): p. 719-27.
40. Lorell, B.H. and B.A. Carabello, Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation, 2000. 102(4): p. 470-9.
41. Rajappan, K., et al., Mechanisms of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation, 2002. 105(4): p. 470-6.
42. Rajappan, K., et al., Functional changes in coronary microcirculation after valve replacement in patients with aortic stenosis. Circulation, 2003. 107(25): p. 3170-5.
43. Vahanian, A., et al., Guidelines on the management of valvular heart disease (version 2012). Eur Heart J, 2012. 33(19): p. 2451-96.
44. Nishimura, R.A. and B.A. Carabello, Hemodynamics in the cardiac catheterization laboratory of the 21st century. Circulation, 2012. 125(17): p. 2138-50.
45. Omran, H., et al., Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: a prospective, randomised study. Lancet, 2003. 361(9365): p. 1241-6.
46. Cueff, C., et al., Measurement of aortic valve calcification using multislice computed tomography: correlation with haemodynamic severity of aortic stenosis and clinical implication for patients with low ejection fraction. Heart, 2011. 97(9): p. 721-6.
47. Clavel, M.A., et al., The complex nature of discordant severe calcified aortic valve disease grading: new insights from combined Doppler echocardiographic and computed tomographic study. J Am Coll Cardiol, 2013. 62(24): p. 2329-38.
48. Clavel, M.A., et al., Impact of aortic valve calcification, as measured by MDCT, on survival in patients with aortic stenosis: results of an international registry study. J Am Coll Cardiol, 2014. 64(12): p. 1202-13.
49. Monin, J.L., et al., Low-gradient aortic stenosis: operative risk stratification and predictors for long-term outcome: a multicenter study using dobutamine stress hemodynamics. Circulation, 2003. 108(3): p. 319-24.
50. Levy, F., et al., Aortic valve replacement for low-flow/low-gradient aortic stenosis operative risk stratification and long-term outcome: a European multicenter study. J Am Coll Cardiol, 2008. 51(15): p. 1466-72.
51. Rosenhek, R., et al., Predictors of outcome in severe, asymptomatic aortic stenosis. N Engl J Med, 2000. 343(9): p. 611-7.
52. Genereux, P., et al., Natural History, Diagnostic Approaches, and Therapeutic Strategies for Patients With Asymptomatic Severe Aortic Stenosis. J Am Coll Cardiol, 2016. 67(19): p. 2263-88.
53. Rafique, A.M., et al., Meta-analysis of prognostic value of stress testing in patients with asymptomatic severe aortic stenosis. Am J Cardiol, 2009. 104(7): p. 972-7.
54. Das, P., H. Rimington, and J. Chambers, Exercise testing to stratify risk in aortic stenosis. Eur Heart J, 2005. 26(13): p. 1309-13.
55. Rossebo, A.B., et al., Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med, 2008. 359(13): p. 1343-56.
56. Cribier, A., et al., Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 2002. 106(24): p. 3006-8.
57. Reardon, M.J., et al., Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N Engl J Med, 2017. 376(14): p. 1321-1331.
58. Daubert, M.A., et al., Long-Term Valve Performance of TAVR and SAVR: A Report From the PARTNER I Trial. JACC Cardiovasc Imaging, 2016.
59. Lieberman, E.B., et al., Balloon aortic valvuloplasty in adults: failure of procedure to improve long-term survival. J Am Coll Cardiol, 1995. 26(6): p. 1522-8.
60. Moreno, P.R., et al., The role of percutaneous aortic balloon valvuloplasty in patients with cardiogenic shock and critical aortic stenosis. J Am Coll Cardiol, 1994. 23(5): p. 1071-5.
61. Otto, C.M., et al., Three-year outcome after balloon aortic valvuloplasty. Insights into prognosis of valvular aortic stenosis. Circulation, 1994. 89(2): p. 642-50.
62. Kapadia, S., et al., Outcomes of inoperable symptomatic aortic stenosis patients not undergoing aortic valve replacement: insight into the impact of balloon aortic valvuloplasty from the PARTNER trial (Placement of AoRtic TraNscathetER Valve trial). JACC Cardiovasc Interv, 2015. 8(2): p. 324-333.
63. Iung, B., et al., Decision-making in elderly patients with severe aortic stenosis: why are so many denied surgery? Eur Heart J, 2005. 26(24): p. 2714-20.
64. Leon, M.B., et al., Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med, 2010. 363(17): p. 1597-607.
65. Lindman, B.R., R.O. Bonow, and C.M. Otto, Current management of calcific aortic stenosis. Circ Res, 2013. 113(2): p. 223-37.
66. Lindman, B.R., et al., Futility, benefit, and transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2014. 7(7): p. 707-16.
67. Chambers, J.B., et al., Standards defining a 'Heart Valve Centre': ESC Working Group on Valvular Heart Disease and European Association for Cardiothoracic Surgery Viewpoint. Eur Heart J, 2017. 38(28): p. 2177-2183.
68. Chambers, J.B., et al., Specialist valve clinics: recommendations from the British Heart Valve Society working group on improving quality in the delivery of care for patients with heart valve disease. Heart, 2013. 99(23): p. 1714-6.
69. Lancellotti, P., et al., ESC Working Group on Valvular Heart Disease position paper--heart valve clinics: organization, structure, and experiences. Eur Heart J, 2013. 34(21): p. 1597-606.
70. Rimington, H., J. Weinman, and J.B. Chambers, Predicting outcome after valve replacement. Heart, 2010. 96(2): p. 118-23.
71. Korteland, N.M., et al., Prosthetic aortic valve selection: current patient experience, preferences and knowledge. Open Heart, 2015. 2(1): p. e000237.
72. Leon, M.B., et al., Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium. Eur Heart J, 2011. 32(2): p. 205-17.
73. Genereux, P., et al., Clinical outcomes after transcatheter aortic valve replacement using valve academic research consortium definitions: a weighted meta-analysis of 3,519 patients from 16 studies. J Am Coll Cardiol, 2012. 59(25): p. 2317-26.
74. Kappetein, A.P., et al., Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document (VARC-2). Eur J Cardiothorac Surg, 2012. 42(5): p. S45-60.
75. Rudski, L.G., et al., Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr, 2010. 23(7): p. 685-713; quiz 786-8.
76. Rosenhek, R., et al., ESC Working Group on Valvular Heart Disease Position Paper: assessing the risk of interventions in patients with valvular heart disease. Eur Heart J, 2012. 33(7): p. 822-8, 828a, 828b.
77. Hamm, C.W., et al., The German Aortic Valve Registry (GARY): in-hospital outcome. Eur Heart J, 2014. 35(24): p. 1588-98.
78. Van Mieghem, N.M., et al., Incidence, predictors, and implications of access site complications with transfemoral transcatheter aortic valve implantation. Am J Cardiol, 2012. 110(9): p. 1361-7.
79. Walther, T., et al., Perioperative Results and Complications in 15,964 Transcatheter Aortic Valve Replacements: Prospective Data From the GARY Registry. J Am Coll Cardiol, 2015. 65(20): p. 2173-80.
80. Holmes, D.R., Jr., et al., Annual Outcomes With Transcatheter Valve Therapy: From the STS/ACC TVT Registry. J Am Coll Cardiol, 2015. 66(25): p. 2813-2823.
81. D'Onofrio, A., et al., Clinical and hemodynamic outcomes of "all-comers" undergoing transapical aortic valve implantation: results from the Italian Registry of Trans-Apical Aortic Valve Implantation (I-TA). J Thorac Cardiovasc Surg, 2011. 142(4): p. 768-75.
82. Osten, M.D., et al., Transcatheter aortic valve implantation for high risk patients with severe aortic stenosis using the Edwards Sapien balloon-expandable bioprosthesis: a single centre study with immediate and medium-term outcomes. Catheter Cardiovasc Interv, 2010. 75(4): p. 475-85.
83. Rahnavardi, M., et al., A systematic review of transapical aortic valve implantation. Ann Cardiothorac Surg, 2012. 1(2): p. 116-28.
84. Dimitriadis, Z., et al., Impact of closure devices on vascular complication and mortality rates in TAVI procedures. Int J Cardiol, 2017. 241: p. 133-137.
85. Gerckens, U., et al., Management of arterial puncture site after catheterization procedures: evaluating a suture-mediated closure device. Am J Cardiol, 1999. 83(12): p. 1658-63.
86. Rickli, H., et al., Comparison of costs and safety of a suture-mediated closure device with conventional manual compression after coronary artery interventions. Catheter Cardiovasc Interv, 2002. 57(3): p. 297-302.
87. Genereux, P., et al., Paravalvular leak after transcatheter aortic valve replacement: the new Achilles' heel? A comprehensive review of the literature. J Am Coll Cardiol, 2013. 61(11): p. 1125-36.
88. Hayashida, K., et al., Transfemoral aortic valve implantation new criteria to predict vascular complications. JACC Cardiovasc Interv, 2011. 4(8): p. 851-8.
89. De Backer, O., et al., Safety and efficacy of using the Viabahn endoprosthesis for percutaneous treatment of vascular access complications after transfemoral aortic valve implantation. Am J Cardiol, 2015. 115(8): p. 1123-9.
90. Stortecky, S., et al., Percutaneous management of vascular complications in patients undergoing transcatheter aortic valve implantation. JACC Cardiovasc Interv, 2012. 5(5): p. 515-24.
91. Nakazawa, G., et al., Incidence and predictors of drug-eluting stent fracture in human coronary artery a pathologic analysis. J Am Coll Cardiol, 2009. 54(21): p. 1924-31.
92. Knut Kröger, E.G.H., Nicht invasive angiologische Diagnostik. Pneumatische segmentale Oszillographie, ed. I. Janicke. 2007: ABW Wissenschaftsverlag GmbH, Kurfürstendamm 57, D-10707 Berlin.
93. Francfort, J.W., et al., Noninvasive techniques in the assessment of lower-extremity arterial occlusive disease. The advantages of proximal and distal thigh cuffs. Arch Surg, 1984. 119(10): p. 1145-8.
94. Kempczinski, R.F., Segmental volume plethysmography in the diagnosis of lower extremity arterial occlusive disease. J Cardiovasc Surg (Torino), 1982. 23(2): p. 125-9.
95. Veulemans V, Afzal S, Ledwig P, et al. Stent fractures after common femoral artery bail-out stenting due to suture device failure in TAVR. Vasa. 2018;47(5):393-401. doi:10.1024/0301-1526/a000712
96. Mehta, R.L., et al., Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care, 2007. 11(2): p. R31.
97. Toggweiler, S., et al., Management of vascular access in transcatheter aortic valve replacement: part 2: Vascular complications. JACC Cardiovasc Interv, 2013. 6(8): p. 767-76.
98. Steinvil, A., et al., Vascular complications after transcatheter aortic valve implantation and their association with mortality reevaluated by the valve academic research consortium definitions. Am J Cardiol, 2015. 115(1): p. 100-6.
99. Cockburn, J., et al., Large calibre arterial access device closure for percutaneous aortic valve interventions: use of the Prostar system in 118 cases. Catheter Cardiovasc Interv, 2012. 79(1): p. 143-9.
100. Mehilli, J., et al., One-year outcomes with two suture-mediated closure devices to achieve access-site haemostasis following transfemoral transcatheter aortic valve implantation. EuroIntervention, 2016. 12(10): p. 1298-1304.
101. Maniotis, C., et al., A systematic review on the safety of Prostar XL versus ProGlide after TAVR and EVAR. Cardiovasc Revasc Med, 2017. 18(2): p. 145-150.
102. Wood, D.A., et al., Pivotal Clinical Study to Evaluate the Safety and Effectiveness of the MANTA Percutaneous Vascular Closure Device. Circ Cardiovasc Interv, 2019. 12(7): p. e007258.
103. Biancari, F., et al., MANTA versus ProGlide vascular closure devices in transfemoral transcatheter aortic valve implantation. Int J Cardiol, 2018. 263: p. 29-31.
104. Hoffmann, P., et al., Access site complications after transfemoral aortic valve implantation - a comparison of Manta and ProGlide. CVIR Endovasc, 2018. 1(1): p. 20.
105. Moriyama, N., L. Lindstrom, and M. Laine, Propensity-matched comparison of vascular closure devices after transcatheter aortic valve replacement using MANTA versus ProGlide. EuroIntervention, 2019. 14(15): p. e1558-e1565.
106. Chaudhry, M.A. and M.R. Sardar, Vascular complications of transcatheter aortic valve replacement: A concise literature review. World J Cardiol, 2017. 9(7): p. 574-582.
107. Sedaghat, A., et al., Routine Endovascular Treatment With a Stent Graft for Access-Site and Access-Related Vascular Injury in Transfemoral Transcatheter Aortic Valve Implantation. Circ Cardiovasc Interv, 2016. 9(8).
108. Sardar, M.R., et al., Vascular complications associated with transcatheter aortic valve replacement. Vasc Med, 2017. 22(3): p. 234-244.
109. Leon, M.B., et al., Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N Engl J Med, 2016. 374(17): p. 1609-20.
110. Thourani, V.H., et al., Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. Lancet, 2016. 387(10034): p. 2218-25.
111. Rogers, T., et al., Society of Thoracic Surgeons Score Variance Results in Risk Reclassification of Patients Undergoing Transcatheter Aortic Valve Replacement. JAMA Cardiol, 2017. 2(4): p. 455-456.
112. Vahanian, A., et al., Transcatheter valve implantation for patients with aortic stenosis: a position statement from the European Association of Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J, 2008. 29(11): p. 1463-70.
113. Popma, J.J., et al., Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N Engl J Med, 2019. 380(18): p. 1706-1715.
114. Mack, M.J., et al., Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N Engl J Med, 2019. 380(18): p. 1695-1705.
115. Vipparthy, S.C., et al., Meta-Analysis of Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Patients With Low Surgical Risk. Am J Cardiol, 2020. 125(3): p. 459-468.
116. Kheiri, B., et al., Meta-Analysis of Transcatheter Aortic Valve Replacement in Low-Risk Patients. Am J Med, 2020. 133(2): p. e38-e41.
117. Thyregod, H.G.H., et al., Five-Year Clinical and Echocardiographic Outcomes from the Nordic Aortic Valve Intervention (NOTION) Randomized Clinical Trial in Lower Surgical Risk Patients. Circulation, 2019.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:08.2015 - 02.2021
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:16.03.2021
Dateien geändert am:16.03.2021
Promotionsantrag am:29.06.2020
Datum der Promotion:16.02.2021
english
Benutzer
Status: Gast
Aktionen