Dokument: Beeinträchtigte taktile zeitliche Diskrimination bei Patienten mit hepatischer Enzephalopathie

Titel:Beeinträchtigte taktile zeitliche Diskrimination bei Patienten mit hepatischer Enzephalopathie
Weiterer Titel:Impaired Tactile Temporal Discrimination in Patients With Hepatic Encephalopathy
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=54401
URN (NBN):urn:nbn:de:hbz:061-20201013-112204-0
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Lazar, Moritz [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]725,6 KB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 07.10.2020 / geändert 07.10.2020
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Das sensorische System erhält und verarbeitet kontinuierlich Stimuli aus der
Umwelt. Um zwei einzelne Stimuli als zeitlich getrennte Ereignisse unterscheiden
zu können, muss die zeitliche Distanz, d. h. die Asynchronität der Stimuli (stimulus
onset asynchrony, SOA) eine bestimmte Dauer überschreiten. Wenn zwei Stimuli
diese zeitliche Reizschwelle unterschreiten, werden sie als ein einzelnes,
gemeinsames Ereignis interpretiert. Für Patienten mit hepatischer
Enzephalopathie (HE) wurden in der Vergangenheit bereits verschiedene
Einschränkungen sensorischer Qualitäten beschrieben wie z. B. eine
verlangsamte visuelle zeitliche Diskrimination mittels der sogenannten kritischen
Flimmerfrequenz (critical flicker frequency, CFF). Die vorliegende Arbeit
untersuchte nun die taktile zeitliche Diskriminationsfähigkeit von Patienten mit HE
unter der Annahme, dass diese Patientengruppe längere SOAs benötigt, um zwei
Stimuli als zeitlich getrennte Ereignisse wahrnehmen zu können.
Um diese Hypothese zu überprüfen, wurden Patienten mit unterschiedlichen
Schweregraden der HE sowie altersentsprechende, gesunde Probanden einem
taktilen zeitlichen Diskriminationstest unterzogen. Alle Teilnehmer erhielten
mehrfach zwei taktile Stimuli mit unterschiedlichen SOAs, die über Ringelektroden
am linken Zeigefinger appliziert wurden. Nach jeder Stimulation sollten die
Probanden berichten, ob sie 1 oder 2 Stimuli wahrgenommen hatten.
Es zeigte sich, dass HE Patienten einen signifikant längeren SOA (Median:
154,4 ms, erstes Quartil: 103,5 ms, drittes Quartil: 169,3 ms) benötigten, um zwei
Stimuli als getrennte Ereignisse wahrnehmen zu können als gesunde Probanden
gleichen Alters (Median: 96,8 ms, erstes Quartil: 31,4 ms, drittes Quartil:
124,1 ms, p < 0,01). Darüber hinaus konnte gezeigt werden, dass die Fähigkeit
zur zeitlichen, taktilen Diskrimination negativ mit der Fähigkeit zur zeitlichen
visuellen Diskrimination korrelierte (r = -0,37, p = 0,033).
Diese Ergebnisse zeigen, dass die taktile zeitliche Diskrimination bei Patienten mit
HE beeinträchtigt ist. Darüber hinaus deuten sie darauf hin, dass taktile und
visuelle Einschränkungen HE Patienten in ähnlicher Weise betreffen. Dies könnte
für einen gemeinsamen zugrundeliegenden, pathophysiologischen Schlüssel-
Mechanismus sprechen. Ein solcher Mechanismus könnte die postulierte, globale
Verlangsamung neuronaler Oszillationen bei HE Patienten sein.

The sensory system continuously receives and processes stimuli from the external
world. To discriminate two stimuli as two temporally separated events the temporal
distance between those stimuli or the stimulus onset asynchrony (SOA) needs to
exceed a certain threshold. If the SOA is shorter than the specific threshold, two
stimuli will be perceived as one single event. It is known that patients with hepatic
encephalopathy (HE) present a broad variety of neuropsychiatric symptoms, e.g.
impairments of the sensory modality. The deterioration of the visual temporal
discrimination ability can be measured by the critical flicker frequency (CFF). In the
present work, the tactile temporal discrimination of patients with HE is analyzed,
assuming that longer SOAs are needed to perceive two stimuli as temporally
separated events.
To test this hypothesis patients with varying grades of HE and age-matched
healthy controls performed a tactile temporal discrimination task. All participants
received multiple pairs of tactile stimuli with varying SOAs, applied by
ringelectrodes to the left index finger. After each stimulation participants reported
whether they perceived the simulation as 1 or 2 separate stimuli.
HE patients needed a significantly longer SOA (median: 154.4 ms, first quartile:
103.5 ms, third quartile: 169.3 ms) to discriminate between two stimuli in
comparison to healthy individuals (median: 96.8 ms, first quartile: 31.4 ms, third
quartile: 124.1 ms, p < 0.01). In addition, it was shown that the tactile temporal
discrimination ability correlates negatively with the visual temporal discrimination
ability (r = -0.37, p = 0.033).
The present results provide evidence that the tactile temporal discrimination is
substantially impaired in patients with HE. Furthermore, the findings indicate that
both the tactile temporal discrimination ability as well as the visual temporal
discrimination ability in HE patients deteriorate in parallel. This outcome argues for
a common underlying pathophysiological key mechanism. Such a mechanism can
be represented by the known global slowing of neuronal oscillations in patients
with HE.
Quelle:AGARWAL, R. & BAID, R. 2016. Asterixis. J Postgrad Med, 62, 115-7.
AHBOUCHA, S. 2011. Neurosteroids and hepatic encephalopathy: an update on
possible pathophysiologic mechanisms. Curr Mol Pharmacol, 4, 1-13.
AMER, K., HASHIM, M. S., ABD EL SAMEEA, E., OBADA, M., EL HELBAWY, M. G.,
EDREES, A., SALMAN, T. A., AL HADDAD, O. & SALAMA, M. 2013. Evaluation of
rifaximin in Egyptian patients with hepatic encephalopathy. Egyptian Liver
Journal, 3, 113-117.
AMODIO, P. & GATTA, A. 2005. Neurophysiological investigation of hepatic
encephalopathy. Metab Brain Dis, 20, 369-79.
ANTELMI, E., ERRO, R., ROCCHI, L., LIGUORI, R., TINAZZI, M., DI STASIO, F.,
BERARDELLI, A., ROTHWELL, J. C. & BHATIA, K. P. 2017. Neurophysiological
correlates of abnormal somatosensory temporal discrimination in dystonia.
Mov Disord, 32, 141-148.
ARTIEDA, J., MURUZABAL, J., LARUMBE, R., GARCIA DE CASASOLA, C. & OBESO, J. A.
1992. Cortical mechanisms mediating asterixis. Mov Disord, 7, 209-16.
BAJAJ, J. S., SCHUBERT, C. M., HEUMAN, D. M., WADE, J. B., GIBSON, D. P., TOPAZ, A.,
SAEIAN, K., HAFEEZULLAH, M., BELL, D. E., STERLING, R. K., STRAVITZ, R. T.,
LUKETIC, V., WHITE, M. B. & SANYAL, A. J. 2010. Persistence of cognitive
impairment after resolution of overt hepatic encephalopathy.
Gastroenterology, 138, 2332-40.
BAJAJ, J. S., WADE, J. B. & SANYAL, A. J. 2009. Spectrum of neurocognitive impairment
in cirrhosis: Implications for the assessment of hepatic encephalopathy.
Hepatology, 50, 2014-21.
BAUMGARTEN, T. J., KONIGS, S., SCHNITZLER, A. & LANGE, J. 2017a. Subliminal
stimuli modulate somatosensory perception rhythmically and provide
evidence for discrete perception. Sci Rep, 7, 43937.
BAUMGARTEN, T. J., NEUGEBAUER, J., OELTZSCHNER, G., FULLENBACH, N. D.,
KIRCHEIS, G., HAUSSINGER, D., LANGE, J., WITTSACK, H. J., BUTZ, M. &
SCHNITZLER, A. 2018. Connecting occipital alpha band peak frequency, visual
temporal resolution, and occipital GABA levels in healthy participants and
hepatic encephalopathy patients. Neuroimage Clin, 20, 347-356.
BAUMGARTEN, T. J., SCHNITZLER, A. & LANGE, J. 2015. Beta oscillations define
discrete perceptual cycles in the somatosensory domain. Proc Natl Acad Sci U S
A, 112, 12187-92.
BAUMGARTEN, T. J., SCHNITZLER, A. & LANGE, J. 2016. Prestimulus Alpha Power
Influences Tactile Temporal Perceptual Discrimination and Confidence in
Decisions. Cereb Cortex, 26, 891-903.
BAUMGARTEN, T. J., SCHNITZLER, A. & LANGE, J. 2017b. Beyond the Peak - Tactile
Temporal Discrimination Does Not Correlate with Individual Peak Frequencies
in Somatosensory Cortex. Front Psychol, 8, 421.
BAUMGARTEN, T. J. L., M.; FÜLLENBACH, N.-D.; JÖRDENS, M. S.; HÄUSSINGER, D.;
SCHNITZLER, A.; LANGE, J. Neuronal oscillatory activity and temporal
perception in the tactile domain - Alterations in hepatic encephalopathy.
Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2019
Chicago.
BERGER, H. 1929. Über das Elektroenkephalogramm des Menschen. Archiv für
Psychiatrie und Nervenkrankheiten, 87, 527-570.
4. Literaturverzeichnis 33
BICKFORD, R. G. & BUTT, H. R. 1955. Hepatic coma: the electroencephalographic
pattern. J Clin Invest, 34, 790-9.
BLAUENFELDT, R. A., OLESEN, S. S., HANSEN, J. B., GRAVERSEN, C. & DREWES, A. M.
2010. Abnormal brain processing in hepatic encephalopathy: evidence of
cerebral reorganization? Eur J Gastroenterol Hepatol, 22, 1323-30.
BRADLEY, D., WHELAN, R., KIMMICH, O., O'RIORDAN, S., MULROONEY, N., BRADY, P.,
WALSH, R., REILLY, R. B., HUTCHINSON, S., MOLLOY, F. & HUTCHINSON, M.
2012. Temporal discrimination thresholds in adult-onset primary torsion
dystonia: an analysis by task type and by dystonia phenotype. J Neurol, 259,
77-82.
BRENNER, M., BUTZ, M., MAY, E. S., KAHLBROCK, N., KIRCHEIS, G., HAUSSINGER, D. &
SCHNITZLER, A. 2015. Patients with manifest hepatic encephalopathy can
reveal impaired thermal perception. Acta Neurol Scand, 132, 156-63.
BROWN, P. 2003. Oscillatory nature of human basal ganglia activity: relationship to
the pathophysiology of Parkinson's disease. Mov Disord, 18, 357-63.
BUSCH, N. A., DUBOIS, J. & VANRULLEN, R. 2009. The phase of ongoing EEG
oscillations predicts visual perception. J Neurosci, 29, 7869-76.
BUTTERWORTH, R. F. 2019. Hepatic Encephalopathy in Cirrhosis: Pathology and
Pathophysiology. Drugs, 79, 17-21.
BUTZ, M., MAY, E. S., HAUSSINGER, D. & SCHNITZLER, A. 2013. The slowed brain:
cortical oscillatory activity in hepatic encephalopathy. Arch Biochem Biophys,
536, 197-203.
BUTZ, M., TIMMERMANN, L., GROSS, J., POLLOK, B., SUDMEYER, M., KIRCHEIS, G.,
HAUSSINGER, D. & SCHNITZLER, A. 2014. Cortical activation associated with
asterixis in manifest hepatic encephalopathy. Acta Neurol Scand, 130, 260-7.
BUZSAKI, G. & DRAGUHN, A. 2004. Neuronal oscillations in cortical networks. Science,
304, 1926-9.
BUZSAKI, G., LOGOTHETIS, N. & SINGER, W. 2013. Scaling brain size, keeping timing:
evolutionary preservation of brain rhythms. Neuron, 80, 751-64.
CALDERONE, D. J., LAKATOS, P., BUTLER, P. D. & CASTELLANOS, F. X. 2014.
Entrainment of neural oscillations as a modifiable substrate of attention.
Trends Cogn Sci, 18, 300-9.
CAULI, O., RODRIGO, R., LLANSOLA, M., MONTOLIU, C., MONFORT, P., PIEDRAFITA, B.,
EL MLILI, N., BOIX, J., AGUSTI, A. & FELIPO, V. 2009. Glutamatergic and
gabaergic neurotransmission and neuronal circuits in hepatic encephalopathy.
Metab Brain Dis, 24, 69-80.
CECERE, R., REES, G. & ROMEI, V. 2015. Individual differences in alpha frequency
drive crossmodal illusory perception. Curr Biol, 25, 231-235.
CHAKRAVARTHI, R. & VANRULLEN, R. 2012. Conscious updating is a rhythmic
process. Proc Natl Acad Sci U S A, 109, 10599-604.
CHAUDHRY, V., CORSE, A. M., O'BRIAN, R., CORNBLATH, D. R., KLEIN, A. S. &
THULUVATH, P. J. 1999. Autonomic and peripheral (sensorimotor)
neuropathy in chronic liver disease: a clinical and electrophysiologic study.
Hepatology, 29, 1698-703.
COHEN, J. 1988. Statistical power analysis for the behavioral sciences.
CONTE, A., FERRAZZANO, G., BELVISI, D., MANZO, N., BATTISTA, E., LI VOTI, P.,
NARDELLA, A., FABBRINI, G. & BERARDELLI, A. 2018. Somatosensory
temporal discrimination in Parkinson's disease, dystonia and essential tremor:
4. Literaturverzeichnis 34
Pathophysiological and clinical implications. Clin Neurophysiol, 129, 1849-
1853.
CONTE, A., KHAN, N., DEFAZIO, G., ROTHWELL, J. C. & BERARDELLI, A. 2013.
Pathophysiology of somatosensory abnormalities in Parkinson disease. Nat
Rev Neurol, 9, 687-97.
CONTE, A., LEODORI, G., FERRAZZANO, G., DE BARTOLO, M. I., MANZO, N., FABBRINI,
G. & BERARDELLI, A. 2016. Somatosensory temporal discrimination threshold
in Parkinson's disease parallels disease severity and duration. Clin
Neurophysiol, 127, 2985-2989.
CONTE, A., MODUGNO, N., LENA, F., DISPENZA, S., GANDOLFI, B., IEZZI, E., FABBRINI,
G. & BERARDELLI, A. 2010. Subthalamic nucleus stimulation and
somatosensory temporal discrimination in Parkinson's disease. Brain, 133,
2656-63.
CONTE, A., ROCCHI, L., NARDELLA, A., DISPENZA, S., SCONTRINI, A., KHAN, N. &
BERARDELLI, A. 2012. Theta-burst stimulation-induced plasticity over
primary somatosensory cortex changes somatosensory temporal
discrimination in healthy humans. PLoS One, 7, e32979.
CRADDOCK, M., POLIAKOFF, E., EL-DEREDY, W., KLEPOUSNIOTOU, E. & LLOYD, D. M.
2017. Pre-stimulus alpha oscillations over somatosensory cortex predict
tactile misperceptions. Neuropsychologia, 96, 9-18.
D. HAkUSSINGER, A. T. B., IN: J. RODES, J.-P. BENHAMOU, A.T. BLEI, J. REICHEN, M.
RIZZETTO (EDS.) 2007. The Textbook of Hepatology: From Basic Science to
Clinical Practise. Oxford: Wiley-Blackwell.
DAVIES, M. G., ROWAN, M. J. & FEELY, J. 1990a. Flash visual evoked responses in the
early encephalopathy of chronic liver disease. Scand J Gastroenterol, 25, 1205-
14.
DAVIES, M. G., ROWAN, M. J. & FEELY, J. 1991. EEG and event related potentials in
hepatic encephalopathy. Metab Brain Dis, 6, 175-86.
DAVIES, M. G., ROWAN, M. J., MACMATHUNA, P., KEELING, P. W., WEIR, D. G. & FEELY,
J. 1990b. The auditory P300 event-related potential: an objective marker of the
encephalopathy of chronic liver disease. Hepatology, 12, 688-94.
DUGUE, L., MARQUE, P. & VANRULLEN, R. 2011. The phase of ongoing oscillations
mediates the causal relation between brain excitation and visual perception. J
Neurosci, 31, 11889-93.
FIORIO, M., EMADI ANDANI, M., RECCHIA, S. & TINAZZI, M. 2018. The somatosensory
temporal discrimination threshold changes after a placebo procedure. Exp
Brain Res, 236, 2983-2990.
FIORIO, M., RECCHIA, S., CORRA, F., SIMONETTO, S., GARCIA-LARREA, L. & TINAZZI,
M. 2012. Enhancing non-noxious perception: behavioural and
neurophysiological correlates of a placebo-like manipulation. Neuroscience,
217, 96-104.
FRITZ, C. O., MORRIS, P. E. & RICHLER, J. J. 2012. Effect size estimates: current use,
calculations, and interpretation. J Exp Psychol Gen, 141, 2-18.
GAETZ, W., EDGAR, J. C., WANG, D. J. & ROBERTS, T. P. 2011. Relating MEG measured
motor cortical oscillations to resting gamma-aminobutyric acid (GABA)
concentration. Neuroimage, 55, 616-21.
GONZALEZ-BURGOS, G., HASHIMOTO, T. & LEWIS, D. A. 2010. Alterations of cortical
GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep,
12, 335-44.
4. Literaturverzeichnis 35
GÖRG, B., QVARTSKHAVA, N., BIDMON, H. J., PALOMERO-GALLAGHER, N., KIRCHEIS,
G., ZILLES, K. & HAUSSINGER, D. 2010. Oxidative stress markers in the brain of
patients with cirrhosis and hepatic encephalopathy. Hepatology, 52, 256-65.
GÖRG, B., SCHLIESS, F. & HAUSSINGER, D. 2013. Osmotic and oxidative/nitrosative
stress in ammonia toxicity and hepatic encephalopathy. Arch Biochem Biophys,
536, 158-63.
GÖTZ, T., HUONKER, R., KRANCZIOCH, C., REUKEN, P., WITTE, O. W., GUNTHER, A. &
DEBENER, S. 2013. Impaired evoked and resting-state brain oscillations in
patients with liver cirrhosis as revealed by magnetoencephalography.
Neuroimage Clin, 2, 873-82.
GROISS, S. J., BUTZ, M., BAUMGARTEN, T. J., FULLENBACH, N. D., HAUSSINGER, D. &
SCHNITZLER, A. 2019. GABA-ergic tone hypothesis in hepatic encephalopathy
- Revisited. Clin Neurophysiol, 130, 911-916.
GUERIT, J. M., AMANTINI, A., FISCHER, C., KAPLAN, P. W., MECARELLI, O.,
SCHNITZLER, A., UBIALI, E. & AMODIO, P. 2009. Neurophysiological
investigations of hepatic encephalopathy: ISHEN practice guidelines. Liver Int,
29, 789-96.
HAMMOND, C., BERGMAN, H. & BROWN, P. 2007. Pathological synchronization in
Parkinson's disease: networks, models and treatments. Trends Neurosci, 30,
357-64.
HAMMOUD, N. & JIMENEZ-SHAHED, J. 2019. Chronic Neurologic Effects of Alcohol.
Clin Liver Dis, 23, 141-155.
HANNULA, H., NEUVONEN, T., SAVOLAINEN, P., TUKIAINEN, T., SALONEN, O.,
CARLSON, S. & PERTOVAARA, A. 2008. Navigated transcranial magnetic
stimulation of the primary somatosensory cortex impairs perceptual
processing of tactile temporal discrimination. Neuroscience Letters, 437, 144-
147.
HARRINGTON, D. L., HAALAND, K. Y. & KNIGHT, R. T. 1998. Cortical networks
underlying mechanisms of time perception. J Neurosci, 18, 1085-95.
HASSAN, S. S., BAUMGARTEN, T. J., ALI, A. M., FULLENBACH, N. D., JORDENS, M. S.,
HAUSSINGER, D., BUTZ, M., SCHNITZLER, A. & GROISS, S. J. 2019. Cerebellar
inhibition in hepatic encephalopathy. Clin Neurophysiol, 130, 886-892.
HÄUSSINGER, D. 2004. [Hepatic encephalopathy: clinical aspects and pathogenesis].
Dtsch Med Wochenschr, 129 Suppl 2, S66-7.
HÄUSSINGER, D., LAUBENBERGER, J., VOM DAHL, S., ERNST, T., BAYER, S., LANGER,
M., GEROK, W. & HENNIG, J. 1994. Proton magnetic resonance spectroscopy
studies on human brain myo-inositol in hypo-osmolarity and hepatic
encephalopathy. Gastroenterology, 107, 1475-80.
HÄUSSINGER, D. & SIES, H. 2013. Hepatic encephalopathy: clinical aspects and
pathogenetic concept. Arch Biochem Biophys, 536, 97-100.
HIRSH, I. J. & SHERRICK, C. E., JR. 1961. Perceived order in different sense modalities.
J Exp Psychol, 62, 423-32.
HOCKERSTEDT, K., KAJASTE, S., MUURONEN, A., RAININKO, R., SEPPALAINEN, A. M.
& HILLBOM, M. 1992. Encephalopathy and neuropathy in end-stage liver
disease before and after liver transplantation. J Hepatol, 16, 31-7.
IEMI, L., CHAUMON, M., CROUZET, S. M. & BUSCH, N. A. 2017. Spontaneous Neural
Oscillations Bias Perception by Modulating Baseline Excitability. J Neurosci, 37,
807-819.
4. Literaturverzeichnis 36
JENSEN, O., GIPS, B., BERGMANN, T. O. & BONNEFOND, M. 2014. Temporal coding
organized by coupled alpha and gamma oscillations prioritize visual
processing. Trends Neurosci, 37, 357-69.
JONES, E. A., SCHAFER, D. F., FERENCI, P. & PAPPAS, S. C. 1984. The GABA hypothesis
of the pathogenesis of hepatic encephalopathy: current status. Yale J Biol Med,
57, 301-16.
JONES, S. R., KERR, C. E., WAN, Q., PRITCHETT, D. L., HAMALAINEN, M. & MOORE, C. I.
2010. Cued Spatial Attention Drives Functionally Relevant Modulation of the
Mu Rhythm in Primary Somatosensory Cortex. Journal of Neuroscience, 30,
13760-13765.
KAHLBROCK, N., BUTZ, M., MAY, E. S., BRENNER, M., KIRCHEIS, G., HAUSSINGER, D. &
SCHNITZLER, A. 2012. Lowered frequency and impaired modulation of gamma
band oscillations in a bimodal attention task are associated with reduced
critical flicker frequency. Neuroimage, 61, 216-27.
KEITEL, V., GORG, B., BIDMON, H. J., ZEMTSOVA, I., SPOMER, L., ZILLES, K. &
HAUSSINGER, D. 2010. The bile acid receptor TGR5 (Gpbar-1) acts as a
neurosteroid receptor in brain. Glia, 58, 1794-805.
KIRCHEIS, G., FLEIG, W. E., GORTELMEYER, R., GRAFE, S. & HAUSSINGER, D. 2007.
Assessment of low-grade hepatic encephalopathy: a critical analysis. J Hepatol,
47, 642-50.
KIRCHEIS, G. & HAUSSINGER, D. 2012. [Hepatic encephalopathy]. Dtsch Med
Wochenschr, 137, 1582-5.
KIRCHEIS, G., HILGER, N. & HAUSSINGER, D. 2014. Value of critical flicker frequency
and psychometric hepatic encephalopathy score in diagnosis of low-grade
hepatic encephalopathy. Gastroenterology, 146, 961-9.
KIRCHEIS, G., WETTSTEIN, M., TIMMERMANN, L., SCHNITZLER, A. & HAUSSINGER, D.
2002. Critical flicker frequency for quantification of low-grade hepatic
encephalopathy. Hepatology, 35, 357-66.
KLINKE, R., PAPE, H.-C., KURTZ, A., SILBERNAGL, S., BAUMANN, R., BRENNER, B., GAY,
R. & ROTHENBURGER, A. 2010. Physiologie. 6., vollständig überarb. Aufl. ed.
Stuttgart u.a.: Thieme.
KRISTOFFERSON, A. B. 1967. Successiveness Discrimination as a Two-State, Quantal
Process. Science, 158, 1337-1339.
KULLMANN, F., HOLLERBACH, S., HOLSTEGE, A. & SCHOLMERICH, J. 1995. Subclinical
hepatic encephalopathy: the diagnostic value of evoked potentials. J Hepatol,
22, 101-10.
KULLMANN, F., HOLLERBACH, S., LOCK, G., HOLSTEGE, A., DIERKS, T. &
SCHOLMERICH, J. 2001. Brain electrical activity mapping of EEG for the
diagnosis of (sub)clinical hepatic encephalopathy in chronic liver disease. Eur J
Gastroenterol Hepatol, 13, 513-22.
LACHMANN, V., GORG, B., BIDMON, H. J., KEITEL, V. & HAUSSINGER, D. 2013.
Precipitants of hepatic encephalopathy induce rapid astrocyte swelling in an
oxidative stress dependent manner. Arch Biochem Biophys, 536, 143-51.
LACRUZ, F., ARTIEDA, J., PASTOR, M. A. & OBESO, J. A. 1991. The anatomical basis of
somaesthetic temporal discrimination in humans. J Neurol Neurosurg
Psychiatry, 54, 1077-81.
LANDAU, AYELET N. & FRIES, P. 2012. Attention Samples Stimuli Rhythmically.
Current Biology, 22, 1000-1004.
4. Literaturverzeichnis 37
LANDAU, A. N., SCHREYER, H. M., VAN PELT, S. & FRIES, P. 2015. Distributed
Attention Is Implemented through Theta-Rhythmic Gamma Modulation. Curr
Biol, 25, 2332-7.
LANGE, J., HALACZ, J., VAN DIJK, H., KAHLBROCK, N. & SCHNITZLER, A. 2012.
Fluctuations of prestimulus oscillatory power predict subjective perception of
tactile simultaneity. Cereb Cortex, 22, 2564-74.
LANGE, J., KEIL, J., SCHNITZLER, A., VAN DIJK, H. & WEISZ, N. 2014. The role of alpha
oscillations for illusory perception. Behav Brain Res, 271, 294-301.
LAZAR, M., BUTZ, M., BAUMGARTEN, T. J., FULLENBACH, N. D., JORDENS, M. S.,
HAUSSINGER, D., SCHNITZLER, A. & LANGE, J. 2018. Impaired Tactile
Temporal Discrimination in Patients With Hepatic Encephalopathy. Frontiers
in Psychology, 9.
LEE, M. S., LEE, M. J., CONTE, A. & BERARDELLI, A. 2018. Abnormal somatosensory
temporal discrimination in Parkinson's disease: Pathophysiological correlates
and role in motor control deficits. Clin Neurophysiol, 129, 442-447.
LIMBACH, K. & CORBALLIS, P. M. 2016. Prestimulus alpha power influences response
criterion in a detection task. Psychophysiology, 53, 1154-1164.
LORINCZ, M. L., KEKESI, K. A., JUHASZ, G., CRUNELLI, V. & HUGHES, S. W. 2009.
Temporal framing of thalamic relay-mode firing by phasic inhibition during
the alpha rhythm. Neuron, 63, 683-96.
MANDIGA, P., FORIS, L. A., KASSIM, G. & BOLLU, P. C. 2020. Hepatic Encephalopathy.
StatPearls. Treasure Island (FL): StatPearls Publishing
StatPearls Publishing LLC.
MAY, E. S., BUTZ, M., KAHLBROCK, N., BRENNER, M., HOOGENBOOM, N., KIRCHEIS, G.,
HAUSSINGER, D. & SCHNITZLER, A. 2014. Hepatic encephalopathy is
associated with slowed and delayed stimulus-associated somatosensory alpha
activity. Clin Neurophysiol, 125, 2427-35.
MONTAGNESE, S., AMODIO, P. & MORGAN, M. Y. 2004. Methods for diagnosing
hepatic encephalopathy in patients with cirrhosis: a multidimensional
approach. Metab Brain Dis, 19, 281-312.
MUTHUKUMARASWAMY, S. D., EDDEN, R. A., JONES, D. K., SWETTENHAM, J. B. &
SINGH, K. D. 2009. Resting GABA concentration predicts peak gamma
frequency and fMRI amplitude in response to visual stimulation in humans.
Proc Natl Acad Sci U S A, 106, 8356-61.
OCHOA-SANCHEZ, R. & ROSE, C. F. 2018. Pathogenesis of Hepatic Encephalopathy in
Chronic Liver Disease. J Clin Exp Hepatol, 8, 262-271.
OELTZSCHNER, G., BUTZ, M., BAUMGARTEN, T. J., HOOGENBOOM, N., WITTSACK, H. J.
& SCHNITZLER, A. 2015. Low visual cortex GABA levels in hepatic
encephalopathy: links to blood ammonia, critical flicker frequency, and brain
osmolytes. Metab Brain Dis, 30, 1429-38.
OLDE DAMINK, S. W., DEUTZ, N. E., DEJONG, C. H., SOETERS, P. B. & JALAN, R. 2002.
Interorgan ammonia metabolism in liver failure. Neurochem Int, 41, 177-88.
OLESEN, S. S., GRAVERSEN, C., HANSEN, T. M., BLAUENFELDT, R. A., HANSEN, J. B.,
STEIMLE, K. & DREWES, A. 2011. Spectral and dynamic electroencephalogram
abnormalities are correlated to psychometric test performance in hepatic
encephalopathy. Scand J Gastroenterol, 46, 988-96.
ORTIZ, M., JACAS, C. & CORDOBA, J. 2005. Minimal hepatic encephalopathy: diagnosis,
clinical significance and recommendations. J Hepatol, 42 Suppl, S45-53.
4. Literaturverzeichnis 38
PASTOR, M. A., DAY, B. L., MACALUSO, E., FRISTON, K. J. & FRACKOWIAK, R. S. 2004.
The functional neuroanatomy of temporal discrimination. J Neurosci, 24, 2585-
91.
PRAKASH, R. & MULLEN, K. D. 2010. Mechanisms, diagnosis and management of
hepatic encephalopathy. Nat Rev Gastroenterol Hepatol, 7, 515-25.
RIDDLE, J., HWANG, K., CELLIER, D., DHANANI, S. & D'ESPOSITO, M. 2019. Causal
Evidence for the Role of Neuronal Oscillations in Top-Down and Bottom-Up
Attention. J Cogn Neurosci, 31, 768-779.
ROCCHI, L., CASULA, E., TOCCO, P., BERARDELLI, A. & ROTHWELL, J. 2016.
Somatosensory Temporal Discrimination Threshold Involves Inhibitory
Mechanisms in the Primary Somatosensory Area. J Neurosci, 36, 325-35.
ROMERO-GOMEZ, M., CORDOBA, J., JOVER, R., DEL OLMO, J. A., RAMIREZ, M., REY, R.,
DE MADARIA, E., MONTOLIU, C., NUNEZ, D., FLAVIA, M., COMPANY, L.,
RODRIGO, J. M. & FELIPO, V. 2007. Value of the critical flicker frequency in
patients with minimal hepatic encephalopathy. Hepatology, 45, 879-85.
SCHNITZLER, A. & GROSS, J. 2005. Normal and pathological oscillatory
communication in the brain. Nat Rev Neurosci, 6, 285-96.
SCHOk LMERICH, J. 2008. Leberzirrhose. Gastroenterologie - Das Referenzwerk für
Klinik und Praxis.
SENZOLO, M., AMODIO, P., D'ALOISO, M. C., FAGIUOLI, S., DEL PICCOLO, F., CANOVA,
D., MASIER, A., BASSANELLO, M., ZANUS, G. & BURRA, P. 2005.
Neuropsychological and neurophysiological evaluation in cirrhotic patients
with minimal hepatic encephalopathy undergoing liver transplantation.
Transplant Proc, 37, 1104-7.
SERGEEVA, O. A. 2013. GABAergic transmission in hepatic encephalopathy. Arch
Biochem Biophys, 536, 122-30.
SHARMA, P., SHARMA, B. C., PURI, V. & SARIN, S. K. 2007. Critical flicker frequency:
diagnostic tool for minimal hepatic encephalopathy. J Hepatol, 47, 67-73.
SONG, K., MENG, M., CHEN, L., ZHOU, K. & LUO, H. 2014. Behavioral oscillations in
attention: rhythmic alpha pulses mediated through theta band. J Neurosci, 34,
4837-44.
STROUD, J. M. 1956. The fine structure of psychological time.
STURM, W., WILLMES, K., ORGASS, B. & HARTJE, W. 1997. Do Specific Attention
Deficits Need Specific Training? Neuropsychological Rehabilitation, 7, 81-103.
TIMMERMANN, L., BUTZ, M., GROSS, J., PLONER, M., SUDMEYER, M., KIRCHEIS, G.,
HAUSSINGER, D. & SCHNITZLER, A. 2008. Impaired cerebral oscillatory
processing in hepatic encephalopathy. Clin Neurophysiol, 119, 265-72.
TIMMERMANN, L., GROSS, J., BUTZ, M., KIRCHEIS, G., HAUSSINGER, D. & SCHNITZLER,
A. 2003. Mini-asterixis in hepatic encephalopathy induced by pathologic
thalamo-motor-cortical coupling. Neurology, 61, 689-92.
TIMMERMANN, L., GROSS, J., KIRCHEIS, G., HAUSSINGER, D. & SCHNITZLER, A. 2002.
Cortical origin of mini-asterixis in hepatic encephalopathy. Neurology, 58, 295-
8.
TINAZZI, M., FASANO, A., DI MATTEO, A., CONTE, A., BOVE, F., BOVI, T., PERETTI, A.,
DEFAZIO, G., FIORIO, M. & BERARDELLI, A. 2013. Temporal discrimination in
patients with dystonia and tremor and patients with essential tremor.
Neurology, 80, 76-84.
4. Literaturverzeichnis 39
TORLOT, F. J., MCPHAIL, M. J. & TAYLOR-ROBINSON, S. D. 2013. Meta-analysis: The
diagnostic accuracy of critical flicker frequency in minimal hepatic
encephalopathy. Aliment Pharmacol Ther, 37, 527-36.
UHLHAAS, P. J. & SINGER, W. 2006. Neural synchrony in brain disorders: relevance
for cognitive dysfunctions and pathophysiology. Neuron, 52, 155-68.
VANRULLEN, R. 2006. The Continuous Wagon Wheel Illusion Is Associated with
Changes in Electroencephalogram Power at 13 Hz. Journal of Neuroscience, 26,
502-507.
VANRULLEN, R. 2016. Perceptual Cycles. Trends Cogn Sci, 20, 723-735.
VARELA, F. J., TORO, A., JOHN, E. R. & SCHWARTZ, E. L. 1981. Perceptual framing and
cortical alpha rhythm. Neuropsychologia, 19, 675-86.
VILSTRUP, H., AMODIO, P., BAJAJ, J., CORDOBA, J., FERENCI, P., MULLEN, K. D.,
WEISSENBORN, K. & WONG, P. 2014. Hepatic encephalopathy in chronic liver
disease: 2014 Practice Guideline by the American Association for the Study of
Liver Diseases and the European Association for the Study of the Liver.
Hepatology, 60, 715-35.
WAGER, T. D., RILLING, J. K., SMITH, E. E., SOKOLIK, A., CASEY, K. L., DAVIDSON, R. J.,
KOSSLYN, S. M., ROSE, R. M. & COHEN, J. D. 2004. Placebo-induced changes in
FMRI in the anticipation and experience of pain. Science, 303, 1162-7.
WEINBERGER, M. & DOSTROVSKY, J. O. 2011. A basis for the pathological oscillations
in basal ganglia: the crucial role of dopamine. Neuroreport, 22, 151-6.
WEISSENBORN, K. 2019. Hepatic Encephalopathy: Definition, Clinical Grading and
Diagnostic Principles. Drugs, 79, 5-9.
WEISSENBORN, K., GIEWEKEMEYER, K., HEIDENREICH, S., BOKEMEYER, M.,
BERDING, G. & AHL, B. 2005. Attention, memory, and cognitive function in
hepatic encephalopathy. Metab Brain Dis, 20, 359-67.
WUTZ, A., WEISZ, N., BRAUN, C. & MELCHER, D. 2014. Temporal windows in visual
processing: "prestimulus brain state" and "poststimulus phase reset"
segregate visual transients on different temporal scales. J Neurosci, 34, 1554-
65.
YANG, S. S., CHU, N. S. & LIAW, Y. F. 1985. Somatosensory evoked potentials in hepat
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:13.10.2020
Dateien geändert am:13.10.2020
Promotionsantrag am:07.10.2020
Datum der Promotion:07.10.2020
english
Benutzer
Status: Gast
Aktionen