Dokument: Der renale Phänotyp beim Very-Long-Chain Acyl-CoA Dehydrogenase- (VLCAD-) Mangel: Studien am VLCAD-/--Mausmodell

Titel:Der renale Phänotyp beim Very-Long-Chain Acyl-CoA Dehydrogenase- (VLCAD-) Mangel: Studien am VLCAD-/--Mausmodell
Weiterer Titel:The renal phenotype in very-long-chain Acyl-CoA Dehydrogenase- (VLCAD-) Deficiency: Studies on the VLCAD-/--mouse model.
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=54052
URN (NBN):urn:nbn:de:hbz:061-20200902-110942-3
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Krogmann, Antonia [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,75 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 26.08.2020 / geändert 26.08.2020
Beitragende:Prof. Dr. Spiekerkötter, Ute [Gutachter]
Keitel-Anselmino, Verena [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Der Very long-chain acyl-CoA Dehydrogenase (VLCAD)-Mangel ist die häufigste angeborene langkettige Fettsäurenoxidationsstörung und führt zu klinischen Symptomen in Zuständen mit erhöhtem Energiebedarf. Die Nieren und die Leber, als wichtige Organe für die Glukoneogenese, spielen vor allem unter den Bedingungen der gestörten Fettsäurenoxidation eine wichtige Rolle, um die Glukose Homöostase aufrechtzuerhalten. Es ist wenig bekannt, welche Auswirkungen eine gestörte mitochondriale Fettsäurenoxidation auf den renalen Stoffwechsel und die renale Funktion haben.
In der vorliegenden Studie untersuchten wir den renalen Metabolismus und den Nierenphänotyp im Modell der VLCAD-/--Maus. Die Untersuchungen erfolgten in drei Altersstufen der Maus, sowie unter verschiedenen metabolischen Zuständen, wie nach körperlicher Aktivität, nach Fasten und unter einer fettmodifizierten Diät. Zur Charakterisierung des Metabolismus gehörte die Oxidationsrate von Palmitoyl-CoA, um die Funktion des defizienten Enzyms bzw. enzymatische Kompensationsmechanismen zu definieren. Es erfolgte zudem die Bestimmung der Expressionsraten von Genen der β-Oxidation, des Kohlenhydratstoffwechsels, der Lipogenese, sowie die Quantifizierung von Glykogen und der Acylcarnitine im Nierengewebe. Zur Untersuchung der Nierenschädigung und Nierenfunktion wurden Marker des Nierenversagens bestimmt, sowie Funktionsbestimmungen antioxidativer Enzyme durchgeführt, da oxidativer Stress als Pathomechanismus beim VLCAD-Mangel diskutiert wird.
Wichtige Ergebnisse dieser Analysen waren, dass - trotz niedriger Palmitoyl-CoA Oxidationsrate - das Nierengewebe der VLCAD-/--Mäuse keine Hinweise auf oxidativen Stress oder eine Nierenschädigung zeigte. Parallel zu Untersuchungen anderer Organe konnte in den Nieren jedoch eine verminderte Energieproduktion durch reduzierte Fettsäurenoxidation belegt werden. Im Gegensatz zu Herz und Muskel scheint die Niere weniger auf die Energie aus Fettsäuren angewiesen zu sein. Statt dessen entwickelt sie Mechanismen, um die Energieproduktion aus Kohlenhydraten zu sichern, was durch die signifikant erniedrigte Glykogenkonzentration in der Niere vor allem nach körperliche Aktivität belegt wurde. In verschiedenen Stresssituationen vor allem bei körperlicher Aktivität akkumulieren VLCAD-/--Mäuse keine langkettigen Acylcarnitine in den Nieren, wie dieses z.B. im Muskel oder im Herz nach körperlicher Aktivität der Fall ist.
Zusammenfassend kann festgehalten werden, dass die Niere der VLCAD-/--Maus die Defizienz eines Enzyms der mitochondrialen Fettsäurenoxidation kompensieren kann. Die Nierenzellen können den Energiebedarf durch einen aktivierten Kohlenhydratmetabolismus im Rahmen von Ausdauertraining aufrechterhalten. Gleichzeitig fand sich eine Akkumulation langkettiger Fettsäurenmetabolite, deren langfristige Auswirkungen weiterhin unbekannt bleiben. VLCAD-/--Mäuse entwickeln keinen nephrologischen Phänotyp.

Deficiency of the very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common inborn disorder of mitochondrial β-oxidation of long-chain fatty acids. Symptoms usually manifest in situations of increased energy demand. Kidney and liver, the main gluconeogenetic organs, play an important role in maintaining glucose homeostasis if β-oxidation is malfunctioning. Little is known about the consequences of a mitochondrial β-oxidation defects on renal metabolism and function.
Therefore, we investigated how VLCAD-deficiency affects kidney function and kidney metabolism. We examined young and older mice, as well as mice in situations of normal and increased energy demand i.e. after exercise, fasting or under a supplemented fatty diet. To characterize the renal metabolism, we assessed the palmitoyl-CoA (C16-CoA) oxidation rate in the kidney of wild-type and VLCAD-/--mice as well as the expression of other dehydrogenases with overlapping substrate specificity. Renal damage and function were measured by the activity of antioxidant enzymes and by the expression of genes upregulated immediately prior to renal failure. Finally, renal glycogen content and acyl-carnitines were quantified as markers for impaired energy production from fatty acid oxidation.
We were able to show that despite the very low oxidation rate of palmitoyl-CoA in renal mice tissue - the VLCAD-/--mice did not show any signs of oxidative stress or renal damage. In line with other organs we were able to identify a deminished energy production via fatty acid oxidation. Therefore, other than in heart and muscle tissue, the kidneys are not dependent on fatty acid oxidation. Instead the kidney develops mechanism to meet the energy demand via carbohydrate metabolism. This was shown by a decreased glycogen content in VLCAD-/--mice after physical exercise. Under situations of higher energy demand such as physical activity long-chain acylcarnitines do not accumulate in the kidneys of VLCAD-/--mice in contrast to heart and muscle tissue.
In conclusion the kidneys of VLCAD-deficient mice are able to compensate the mitochondrial fatty acid oxidation defect. The activated carbohydrate metabolism meets the energy demand during physical stress. We also demonstrated accumulation of long chain fatty acids with unknown long-term effects. VLCAD-/--mice do not develop a nephrological phenotype.
Quelle:1. Matsubara, Y., et al., Molecular cloning and nucleotide sequence of cDNAs encoding the precursors of rat long chain acyl-coenzyme A, short chain acyl-coenzyme A, and isovaleryl-coenzyme A dehydrogenases. Sequence homology of four enzymes of the acyl-CoA dehydrogenase family. J Biol Chem, 1989. 264(27): p. 16321-31.
2. Spiekerkoetter, U., Störung der Fettsäurenoxidation. Monatsschrift Kinderheilkunde, 2006(12).
3. Stryer, L., Biochemie. Vol. 3. Auflage. 1990, Heidelberg: Spektrum der Wissenschaft mbH.
4. Gregersen, N., et al., Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship. Hum Mutat, 2001. 18(3): p. 169-89.
5. Rinaldo, P., D. Matern, and M.J. Bennett, Fatty acid oxidation disorders. Annu Rev Physiol, 2002. 64: p. 477-502.
6. Arnold, G.L., et al., A Delphi clinical practice protocol for the management of very long chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab, 2009. 96(3): p. 85-90.
7. Lindner, M., G.F. Hoffmann, and D. Matern, Newborn screening for disorders of fatty-acid oxidation: experience and recommendations from an expert meeting. J Inherit Metab Dis, 2010. 33(5): p. 521-6.
8. Spiekerkoetter, U., et al., MS/MS-based newborn and family screening detects asymptomatic patients with very-long-chain acyl-CoA dehydrogenase deficiency. J Pediatr, 2003. 143(3): p. 335-42.
9. Wilcken, B., et al., Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med, 2003. 348(23): p. 2304-12.
10. Mathur, A., et al., Molecular heterogeneity in very-long-chain acyl-CoA dehydrogenase deficiency causing pediatric cardiomyopathy and sudden death. Circulation, 1999. 99(10): p. 1337-43.
11. Andresen, B.S., et al., Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. Am J Hum Genet, 1999. 64(2): p. 479-94.
12. Evans, M., et al., VLCAD deficiency: Follow-up and outcome of patients diagnosed through newborn screening in Victoria. Mol Genet Metab, 2016. 118(4): p. 282-7.
13. Spiekerkoetter, U., et al., Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop. J Inherit Metab Dis, 2009. 32(4): p. 488-97.
14. Laforet, P., et al., Diagnostic assessment and long-term follow-up of 13 patients with Very Long-Chain Acyl-Coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul Disord, 2009. 19(5): p. 324-9.
15. Millington, D.S., et al., Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis, 1990. 13(3): p. 321-4.
16. Zschocke, J. and G.F. Hoffmann, Vademecum Metabolicum; Diagnose und Therapie erblicher Stoffwechselkrankheiten. Vol. 3. Auflage. 2004: Milupa Schattauer.
17. Spiekerkoetter, U., et al., Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis, 2009. 32(4): p. 498-505.
18. Spiekerkoetter, U., Effects of a fat load and exercise on asymptomatic VLCAD deficiency. J Inherit Metab Dis, 2007. 30(3): p. 405.
19. Primassin, S., et al., Carnitine supplementation induces acylcarnitine production in tissues of very long-chain acyl-CoA dehydrogenase-deficient mice, without replenishing low free carnitine. Pediatr Res, 2008. 63(6): p. 632-7.
20. Liebig, M., et al., Carnitine supplementation induces long-chain acylcarnitine production--studies in the VLCAD-deficient mouse. J Inherit Metab Dis, 2006. 29(2-3): p. 343-4.
21. Exil, V.J., et al., Very-long-chain acyl-coenzyme a dehydrogenase deficiency in mice. Circ Res, 2003. 93(5): p. 448-55.
22. Cox, K.B., et al., Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse. Hum Mol Genet, 2001. 10(19): p. 2069-77.
23. Schuler, A.M. and P.A. Wood, Mouse models for disorders of mitochondrial fatty acid beta-oxidation. Ilar j, 2002. 43(2): p. 57-65.
24. Maher, A.C., et al., Low expression of long-chain acyl-CoA dehydrogenase in human skeletal muscle. Mol Genet Metab, 2010. 100(2): p. 163-7.
25. Goetzman, E.S., et al., Long-chain acyl-CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction. J Biol Chem, 2014. 289(15): p. 10668-79.
26. Kurtz, D.M., et al., Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc Natl Acad Sci U S A, 1998. 95(26): p. 15592-7.
27. Spiekerkoetter, U. and P.A. Wood, Mitochondrial fatty acid oxidation disorders: pathophysiological studies in mouse models. J Inherit Metab Dis, 2010. 33(5): p. 539-46.
28. Chegary, M., et al., Mitochondrial long chain fatty acid beta-oxidation in man and mouse. Biochim Biophys Acta, 2009. 1791(8): p. 806-15.
29. Spiekerkoetter, U., et al., Tissue carnitine homeostasis in very-long-chain acyl-CoA dehydrogenase-deficient mice. Pediatr Res, 2005. 57(6): p. 760-4.
30. Tucci, S., et al., Development and pathomechanisms of cardiomyopathy in very long-chain acyl-CoA dehydrogenase deficient (VLCAD(-/-)) mice. Biochim Biophys Acta, 2014. 1842(5): p. 677-85.
31. Guerra, C., et al., Abnormal nonshivering thermogenesis in mice with inherited defects of fatty acid oxidation. J Clin Invest, 1998. 102(9): p. 1724-31.
32. Xiong, D., et al., Cardiac-specific VLCAD deficiency induces dilated cardiomyopathy and cold intolerance. Am J Physiol Heart Circ Physiol, 2014. 306(3): p. H326-38.
33. Spiekerkoetter, U., et al., Evidence for impaired gluconeogenesis in very long-chain acyl-CoA dehydrogenase-deficient mice. Horm Metab Res, 2006. 38(10): p. 625-30.
34. Spiekerkoetter, U., et al., Changes in blood carnitine and acylcarnitine profiles of very long-chain acyl-CoA dehydrogenase-deficient mice subjected to stress. Eur J Clin Invest, 2004. 34(3): p. 191-6.
35. Exil, V.J., et al., Abnormal mitochondrial bioenergetics and heart rate dysfunction in mice lacking very-long-chain acyl-CoA dehydrogenase. Am J Physiol Heart Circ Physiol, 2006. 290(3): p. H1289-97.
36. Stumvoll, M., et al., Renal glucose production and utilization: new aspects in humans. Diabetologia, 1997. 40(7): p. 749-57.
37. Klinke, et al., Physiologie. Vol. 6. Auflage.
38. Schmidt, R.F., F. Lang, and M. Hackmann, Physiologie des Menschen mit Pathophysiologie. Vol. 31. Auflage.
39. Chung, S.W. and M.A. Perrella, Role of HO-1 in renoprotection: location, location, location. Kidney Int, 2004. 65(5): p. 1968-9.
40. Primassin, S., S. Tucci, and U. Spiekerkoetter, Hepatic and muscular effects of different dietary fat content in VLCAD deficient mice. Mol Genet Metab, 2011. 104(4): p. 546-51.
41. ter Veld, F., et al., Corresponding increase in long-chain acyl-CoA and acylcarnitine after exercise in muscle from VLCAD mice. J Lipid Res, 2009. 50(8): p. 1556-62.
42. Tucci, S., S. Primassin, and U. Spiekerkoetter, Fasting-induced oxidative stress in very long chain acyl-CoA dehydrogenase-deficient mice. Febs j, 2010. 277(22): p. 4699-708.
43. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54.
44. Mohanty, J.G., et al., A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods, 1997. 202(2): p. 133-41.
45. Zhou, M., et al., A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem, 1997. 253(2): p. 162-8.
46. Milder, J.B., L.P. Liang, and M. Patel, Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiol Dis, 2010. 40(1): p. 238-44.
47. Xu, J. and A.K. Jaiswal, NAD(P)H:quinone oxidoreductase 1 (NQO1) competes with 20S proteasome for binding with C/EBPalpha leading to its stabilization and protection against radiation-induced myeloproliferative disease. J Biol Chem, 2012. 287(50): p. 41608-18.
48. Mantha, S.V., et al., Antioxidant enzymes in hypercholesterolemia and effects of vitamin E in rabbits. Atherosclerosis, 1993. 101(2): p. 135-44.
49. Lawrence, R.A. and R.F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver. 1976. Biochem Biophys Res Commun, 2012. 425(3): p. 503-9.
50. Pessayre, D., A. Mansouri, and B. Fromenty, Nonalcoholic steatosis and steatohepatitis. V. Mitochondrial dysfunction in steatohepatitis. Am J Physiol Gastrointest Liver Physiol, 2002. 282(2): p. G193-9.
51. Schafer, C., et al., Osmotic regulation of betaine homocysteine-S-methyltransferase expression in H4IIE rat hepatoma cells. Am J Physiol Gastrointest Liver Physiol, 2007. 292(4): p. G1089-98.
52. van Vlies, N., R.J. Wanders, and F.M. Vaz, Measurement of carnitine biosynthesis enzyme activities by tandem mass spectrometry: differences between the mouse and the rat. Anal Biochem, 2006. 354(1): p. 132-9.
53. Systems, B., EnzyChromTM Glycogen Assay Kit (Cat# E2GN-100) Quantitative Colorimetric/Fluorimetric Glycogen Determination, in https://www.bioassaysys.com/NAD-NADH-Assay-Kit-(E2ND-100).html, B. Systems, Editor. 2008. p. 1.
54. NCBI. PPARGC1A PPARG coactivator 1 alpha [ Homo sapiens (human) ] [web page] 2016 20-Aug-2016 [cited 2016 29-Aug-2016]; Available from: http://www.ncbi.nlm.nih.gov/gene/10891
55. NCBI. Ppargc1a peroxisome proliferative activated receptor, gamma, coactivator 1 alpha [ Mus musculus (house mouse) ] 2016 25-Aug-2016 [cited 2016 29-Aug-2016]; Available from: http://www.ncbi.nlm.nih.gov/gene/19017.
56. NBCI. PDK4 pyruvate dehydrogenase kinase 4 [ Homo sapiens (human) ]. 2016 8-Aug-2016 [cited 2016 29-Aug-2016]; Available from: http://www.ncbi.nlm.nih.gov/gene/5166.
57. NCBI. PDHX pyruvate dehydrogenase complex component X [ Homo sapiens (human) ] 2016 25-Aug-2016 [cited 2016 29-Aug-2016]; Available from: http://www.ncbi.nlm.nih.gov/gene/8050.
58. Handschin, C. and B.M. Spiegelman, The role of exercise and PGC1alpha in inflammation and chronic disease. Nature, 2008. 454(7203): p. 463-9.
59. Maines, M.D., The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol, 1997. 37: p. 517-54.
60. Morse, D. and A.M. Choi, Heme oxygenase-1: the "emerging molecule" has arrived. Am J Respir Cell Mol Biol, 2002. 27(1): p. 8-16.
61. Chakraborty, S., et al., The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta, 2012. 1826(1): p. 129-69.
62. Huo, W., et al., Kidney injury molecule-1 (KIM-1): a novel kidney-specific injury molecule playing potential double-edged functions in kidney injury. Transplant Rev (Orlando), 2010. 24(3): p. 143-6.
63. Han, W.K., et al., Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int, 2002. 62(1): p. 237-44.
64. Strable, M.S. and J.M. Ntambi, Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol, 2010. 45(3): p. 199-214.
65. Jiang, T., et al., Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J Biol Chem, 2005. 280(37): p. 32317-25.
66. Tucci, S., et al., Medium-chain triglycerides impair lipid metabolism and induce hepatic steatosis in very long-chain acyl-CoA dehydrogenase (VLCAD)-deficient mice. Mol Genet Metab, 2010. 101(1): p. 40-7.
67. Tucci, S., et al., Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) mouse to compensate a defective fatty acid beta-oxidation. PLoS One, 2012. 7(9): p. e45429.
68. Tucci, S., et al., Mitochondrial fatty acid biosynthesis and muscle fiber plasticity in very long-chain acyl-CoA dehydrogenase-deficient mice. FEBS Lett, 2018. 592(2): p. 219-232.
69. Tucci, S., et al., Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient (VLCAD(-/-)) mice. Mol Cell Pediatr, 2014. 1(1): p. 5.
70. Hirschey, M.D., et al., SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 2010. 464(7285): p. 121-5.
71. Krebs, H.A., RENAL GLUCONEOGENESIS. Adv Enzyme Regul, 1963. 1: p. 385-400.
72. Meyer, C., et al., Renal substrate exchange and gluconeogenesis in normal postabsorptive humans. Am J Physiol Endocrinol Metab, 2002. 282(2): p. E428-34.
73. Ekberg, K., et al., Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes, 1999. 48(2): p. 292-8.
74. Tucci, S., et al., Disrupted fat distribution and composition due to medium-chain triglycerides in mice with a beta-oxidation defect. Am J Clin Nutr, 2011. 94(2): p. 439-49.
75. Bailly, V., et al., Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem, 2002. 277(42): p. 39739-48.
76. Waring, W.S. and A. Moonie, Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clin Toxicol (Phila), 2011. 49(8): p. 720-8.
77. Cairns, A.P., et al., Very-long-chain acyl-coenzyme A dehydrogenase deficiency--a new cause of myoglobinuric acute renal failure. Nephrol Dial Transplant, 2000. 15(8): p. 1232-4.
78. Jones, P.M., et al., Medium-chain fatty acids undergo elongation before beta-oxidation in fibroblasts. Biochem Biophys Res Commun, 2006. 346(1): p. 193-7.
79. Roe, C.R., et al., Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest, 2002. 110(2): p. 259-69.
80. Pervaiz, M.A., et al., MCT oil-based diet reverses hypertrophic cardiomyopathy in a patient with very long chain acyl-coA dehydrogenase deficiency. Indian J Hum Genet, 2011. 17(1): p. 29-32.
81. Hardwick, J.P., et al., PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid omega-Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease. PPAR Res, 2009. 2009: p. 952734.
82. Rao, M.S. and J.K. Reddy, PPARalpha in the pathogenesis of fatty liver disease. Hepatology, 2004. 40(4): p. 783-6.
Rechtliche Vermerke:Alle Studien wurden nach Genehmigung durch das Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (Aktenzeichen 8.87-50.10.34.09.072) und nach den Richtlinien der Tierversuchskommission der Heinrich-Heine-Universität durchgeführt.
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Sonstige Einrichtungen/Externe
Dokument erstellt am:02.09.2020
Dateien geändert am:02.09.2020
Promotionsantrag am:26.11.2019
Datum der Promotion:20.08.2020
english
Benutzer
Status: Gast
Aktionen