Dokument: Effekte von direkten Faktor-Xa-Inhibitoren auf die Thrombozytenfunktion von Patienten mit Vorhofflimmern

Titel:Effekte von direkten Faktor-Xa-Inhibitoren auf die Thrombozytenfunktion von Patienten mit Vorhofflimmern
Weiterer Titel:Effects of direct factor-Xa-inhibitors on platelet function of patients with atrial fibrillation
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=53561
URN (NBN):urn:nbn:de:hbz:061-20200701-104533-6
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: M'Pembele, René [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,09 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 25.06.2020 / geändert 25.06.2020
Beitragende:PD Dr. med. Polzin, Amin [Gutachter]
Schneppendahl, Johannes [Gutachter]
Stichwörter:Rivaroxaban, Thrombozyten, Aggregation, Vorhofflimmern
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Seit einigen Jahren werden direkte Faktor-Xa-Inhibitoren wie Rivaroxaban als Antikoagulanzien bei Vorhofflimmern empfohlen. Aktuelle Studien zeigen neben der Reduktion von Schlaganfällen zudem eine Mortalitätssenkung durch Rivaroxaban. Thrombozyten spielen eine große Rolle in der Entstehung ischämischer Ereignisse. Daher hypothetisierten wir in dieser Arbeit, dass direkte Faktor-Xa-Inhibitoren Einfluss auf die Thrombozytenaktivierung haben. Dazu wurden Versuche an 62 Patienten durchgeführt. Es wurden die Thrombozytenfunktion in der Lichttransmissionsaggregometrie und der Mehrfachelektrodenaggregometrie, das endogene Thrombinpotenzial (ETP) und die Thrombozytenadhäsion in einer Flusskammer unter Einnahme von Rivaroxaban sowie Apixaban gemessen. Die Freisetzung von Thromboxan aus Thrombozyten wurde nach Stimulation mit Faktor Xa (FXa) erhoben. Nach Einnahme von Rivaroxaban oder Apixaban waren die Thrombozytenaggregation, die Thrombozytenadhäsion und das ETP im Vergleich zum Ausgangswert erniedrigt. FXa konnte als potenter, direkter, dosisabhängiger Aktivator der Thrombozytenaggregation und Thromboxanbildung dargestellt werden. Dieser Effekt war unabhängig von anderen plasmatischen Gerinnungsfaktoren wie Thrombin. Die Aktivierung ließ sich dosisabhängig durch Rivaroxaban und Vorapaxar, einem PAR-1 Thrombinrezeptorantagonist, in gleichem Maße hemmen. Zusammenfassend konnte gezeigt werden, dass FXa eine wichtige Rolle in der Aktivierung von Thrombozyten spielt. Diese Aktivierung bindet direkte Effekte von FXa auf PAR-1 Rezeptoren mit ein. Der Mechanismus kann durch Faktor-Xa-Inhibitoren gehemmt werden, was in einer geringeren Thrombozytenreaktivität resultiert. Patienten mit Vorhofflimmern und einem hohen Risiko für ein ischämisches Ereignis könnten daher von diesem Effekt profitieren.

Direct factor Xa inhibitors like Rivaroxaban are recommended to prevent stroke in patients with atrial fibrillation. Recent studies showed that therapy with Rivaroxaban not only decreases the risk of thromboembolic events, but also mortality. This might be due to other effects than the inhibition of plasmatic coagulation factors. As platelets play a major role in pathophysiology of cardiovascular events, this thesis focused on the effects of direct factor Xa inhibitors on platelet reactivity. Therefore 62 patients were enrolled in a trial. Platelet function was measured by light transmission aggregometry (LTA), multiple electrode aggregometry and endogenous thrombin potential (ETP) before and after intake of direct factor Xa inhibitors. In addition, Platelet adhesion was assessed in a flow chamber and the release of thromboxane from platelets was measured after stimulation with factor Xa (FXa). Platelet aggregation, platelet adhesion and ETP were reduced, compared to baseline, after medication with Rivaroxaban or Apixaban. We identified FXa as a potent, dose dependant activator of platelet aggregation in LTA. This effect was independent from thrombin. This activation could be inhibited dose dependently by Rivaroxaban or Vorapaxar, a thrombin receptor antagonist. Furthermore, FXa leaded to increased secretion of thromboxane from platelets. As conclusion this thesis could show that FXa plays a role in platelet activation. The activation is mediated by a direct activation of PAR-1 thrombin receptors on platelets. This effect can be inhibited by direct factor Xa inhibitors resulting in reduced platelet reactivity. Patients with atrial fibrillation and high cardiovascular morbidity could benefit from this effect.  
Quelle:1. Joseph, P., et al., Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res, 2017. 121(6): p. 677-694.
2. Chugh, S.S., et al., Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation, 2014. 129(8): p. 837-47.
3. Zoni-Berisso, M., et al., Epidemiology of atrial fibrillation: European perspective. Clin Epidemiol, 2014. 6: p. 213-20.
4. Chugh, S.S., et al., Epidemiology and natural history of atrial fibrillation: clinical implications. J Am Coll Cardiol, 2001. 37(2): p. 371-8.
5. Steffel, J., et al., The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J, 2018. 39(16): p. 1330-1393.
6. Kirchhof, P., et al., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur J Cardiothorac Surg, 2016. 50(5): p. e1-e88.
7. Halperin, J.L., et al., Efficacy and safety of rivaroxaban compared with warfarin among elderly patients with nonvalvular atrial fibrillation in the Rivaroxaban Once Daily, Oral, Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF). Circulation, 2014. 130(2): p. 138-46.
8. Granger, C.B., et al., Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med, 2011. 365(11): p. 981-92.
9. Giugliano, R.P., et al., Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med, 2013. 369(22): p. 2093-104.
10. Mega, J.L., et al., Rivaroxaban in patients with a recent acute coronary syndrome. N Engl J Med, 2012. 366(1): p. 9-19.
11. Eikelboom, J.W., et al., Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N Engl J Med, 2017. 377(14): p. 1319-1330.
12. Hoffman, M., A cell-based model of coagulation and the role of factor VIIa. Blood Rev, 2003. 17 Suppl 1: p. S1-5.
13. Freynhofer, M.K., et al., Platelet turnover predicts outcome after coronary intervention. Thromb Haemost, 2017. 117(5): p. 923-933.
14. Ibrahim, H., et al., Association of immature platelets with adverse cardiovascular outcomes. J Am Coll Cardiol, 2014. 64(20): p. 2122-9.
15. Erathi, H.V., et al., Evaluation of On-Clopidogrel platelet reactivity overtime, SYNTAX SCORE, genetic polymorphisms and their relationship to one year clinical outcomes in STEMI patients undergoing PCI. Minerva Cardioangiol, 2018. 66(1): p. 16-25.
16. Petzold, T., et al., Rivaroxaban Reduces Arterial Thrombosis by Inhibition of FXa Driven Platelet Activation Via Protease Activated Receptor-1. Circ Res, 2019.
17. Gale, A.J., Continuing education course #2: current understanding of hemostasis. Toxicol Pathol, 2011. 39(1): p. 273-80.
18. Berndt, M.C., P. Metharom, and R.K. Andrews, Primary haemostasis: newer insights. Haemophilia, 2014. 20 Suppl 4: p. 15-22.
19. Hoffman, M. and D.M. Monroe, 3rd, A cell-based model of hemostasis. Thromb Haemost, 2001. 85(6): p. 958-65.
20. Kuter, D.J., The physiology of platelet production. Stem Cells, 1996. 14 Suppl 1: p. 88-101.
21. Yun, S.H., et al., Platelet Activation: The Mechanisms and Potential Biomarkers. Biomed Res Int, 2016. 2016: p. 9060143.
22. Ghoshal, K. and M. Bhattacharyya, Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis. ScientificWorldJournal, 2014. 2014: p. 781857.
23. Ruggeri, Z.M., The role of von Willebrand factor in thrombus formation. Thromb Res, 2007. 120 Suppl 1: p. S5-9.
24. Ruggeri, Z.M., Old concepts and new developments in the study of platelet aggregation. J Clin Invest, 2000. 105(6): p. 699-701.
25. Ruggeri, Z.M., et al., Platelets have more than one binding site for von Willebrand factor. J Clin Invest, 1983. 72(1): p. 1-12.
26. Clemetson, K.J., Platelets and primary haemostasis. Thromb Res, 2012. 129(3): p. 220-4.
27. Gremmel, T., A.L. Frelinger, 3rd, and A.D. Michelson, Platelet Physiology. Semin Thromb Hemost, 2016. 42(3): p. 191-204.
28. Golebiewska, E.M. and A.W. Poole, Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev, 2015. 29(3): p. 153-62.
29. Crawley, J.T., et al., The central role of thrombin in hemostasis. J Thromb Haemost, 2007. 5 Suppl 1: p. 95-101.
30. Adams, M.N., et al., Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther, 2011. 130(3): p. 248-82.
31. Kahn, M.L., et al., A dual thrombin receptor system for platelet activation. Nature, 1998. 394(6694): p. 690-4.
32. Dahlback, B., Blood coagulation. Lancet, 2000. 355(9215): p. 1627-32.
33. Smith, S.A., R.J. Travers, and J.H. Morrissey, How it all starts: Initiation of the clotting cascade. Crit Rev Biochem Mol Biol, 2015. 50(4): p. 326-36.
34. Silverberg, M., et al., Autoactivation of human Hageman factor. Demonstration utilizing a synthetic substrate. J Biol Chem, 1980. 255(15): p. 7281-6.
35. Tankersley, D.L. and J.S. Finlayson, Kinetics of activation and autoactivation of human factor XII. Biochemistry, 1984. 23(2): p. 273-9.
36. Palta, S., R. Saroa, and A. Palta, Overview of the coagulation system. Indian J Anaesth, 2014. 58(5): p. 515-23.
37. Kotecha, D., et al., Efficacy of beta blockers in patients with heart failure plus atrial fibrillation: an individual-patient data meta-analysis. Lancet, 2014. 384(9961): p. 2235-43.
38. Sanna, T., et al., Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med, 2014. 370(26): p. 2478-86.
39. Schnabel, R.B., et al., 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet, 2015. 386(9989): p. 154-62.
40. Heeringa, J., et al., Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J, 2006. 27(8): p. 949-53.
41. Staerk, L., et al., Atrial Fibrillation: Epidemiology, Pathophysiology, and Clinical Outcomes. Circ Res, 2017. 120(9): p. 1501-1517.
42. Andersson, T., et al., All-cause mortality in 272,186 patients hospitalized with incident atrial fibrillation 1995-2008: a Swedish nationwide long-term case-control study. Eur Heart J, 2013. 34(14): p. 1061-7.
43. Schneider, M.P., et al., Prevention of atrial fibrillation by Renin-Angiotensin system inhibition a meta-analysis. J Am Coll Cardiol, 2010. 55(21): p. 2299-307.
44. Wachtell, K., et al., Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention For End Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol, 2005. 45(5): p. 712-9.
45. Schmieder, R.E., et al., Reduced incidence of new-onset atrial fibrillation with angiotensin II receptor blockade: the VALUE trial. J Hypertens, 2008. 26(3): p. 403-11.
46. Nguyen, B.L., et al., Histopathological substrate for chronic atrial fibrillation in humans. Heart Rhythm, 2009. 6(4): p. 454-60.
47. Allessie, M.A., et al., Electropathological substrate of long-standing persistent atrial fibrillation in patients with structural heart disease: longitudinal dissociation. Circ Arrhythm Electrophysiol, 2010. 3(6): p. 606-15.
48. Haissaguerre, M., et al., Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med, 1998. 339(10): p. 659-66.
49. Lim, H.S., et al., Effect of atrial fibrillation on atrial thrombogenesis in humans: impact of rate and rhythm. J Am Coll Cardiol, 2013. 61(8): p. 852-60.
50. Sposato, L.A., et al., Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. Lancet Neurol, 2015. 14(4): p. 377-87.
51. Wolf, P.A., R.D. Abbott, and W.B. Kannel, Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 1991. 22(8): p. 983-8.
52. Savelieva, I. and A.J. Camm, Clinical relevance of silent atrial fibrillation: prevalence, prognosis, quality of life, and management. J Interv Card Electrophysiol, 2000. 4(2): p. 369-82.
53. Nutrition classics from The Journal of Biological Chemistry 138:21-33, 1941. Studies on the hemorrhagic sweet clover disease. IV. The isolation and crystallization of the hemorrhagic agent by Harold A. Campbell and Karl Paul Link. Nutr Rev, 1974. 32(8): p. 244-6.
54. Pirmohamed, M., Warfarin: almost 60 years old and still causing problems. Br J Clin Pharmacol, 2006. 62(5): p. 509-11.
55. Hart, R.G., L.A. Pearce, and M.I. Aguilar, Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med, 2007. 146(12): p. 857-67.
56. Hirsh, J., et al., Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest, 1998. 114(5 Suppl): p. 445S-469S.
57. Kuruvilla, M. and C. Gurk-Turner, A review of warfarin dosing and monitoring. Proc (Bayl Univ Med Cent), 2001. 14(3): p. 305-6.
58. Horton, J.D. and B.M. Bushwick, Warfarin therapy: evolving strategies in anticoagulation. Am Fam Physician, 1999. 59(3): p. 635-46.
59. Esmon, C.T., et al., Anticoagulation proteins C and S. Adv Exp Med Biol, 1987. 214: p. 47-54.
60. Booth, S.L., et al., Dietary vitamin K1 and stability of oral anticoagulation: proposal of a diet with constant vitamin K1 content. Thromb Haemost, 1997. 77(3): p. 504-9.
61. Hirsh, J., et al., Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest, 2001. 119(1 Suppl): p. 8S-21S.
62. Tsu, L.V., J.E. Dienes, and W.E. Dager, Vitamin K dosing to reverse warfarin based on INR, route of administration, and home warfarin dose in the acute/critical care setting. Ann Pharmacother, 2012. 46(12): p. 1617-26.
63. Hanley, J.P., Warfarin reversal. J Clin Pathol, 2004. 57(11): p. 1132-9.
64. Heidbuchel, H., et al., Implementation of non-vitamin K antagonist oral anticoagulants in daily practice: the need for comprehensive education for professionals and patients. Thromb J, 2015. 13: p. 22.
65. Lane, D.A. and K. Wood, Cardiology patient page. Patient guide for taking the non-vitamin K antagonist oral anticoagulants for atrial fibrillation. Circulation, 2015. 131(16): p. e412-5.
66. Ruff, C.T., et al., Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet, 2014. 383(9921): p. 955-62.
67. Perzborn, E., et al., In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939--an oral, direct Factor Xa inhibitor. J Thromb Haemost, 2005. 3(3): p. 514-21.
68. Kubitza, D., et al., Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin Pharmacol Ther, 2005. 78(4): p. 412-21.
69. Mueck, W., et al., Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet, 2014. 53(1): p. 1-16.
70. Weinz, C., et al., Pharmacokinetics of BAY 59-7939--an oral, direct Factor Xa inhibitor--in rats and dogs. Xenobiotica, 2005. 35(9): p. 891-910.
71. Weinz, C., et al., Metabolism and excretion of rivaroxaban, an oral, direct factor Xa inhibitor, in rats, dogs, and humans. Drug Metab Dispos, 2009. 37(5): p. 1056-64.
72. Patel, M.R., et al., Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med, 2011. 365(10): p. 883-91.
73. Mahaffey, K.W., et al., Ischaemic cardiac outcomes in patients with atrial fibrillation treated with vitamin K antagonism or factor Xa inhibition: results from the ROCKET AF trial. Eur Heart J, 2014. 35(4): p. 233-41.
74. Chatterjee, S., et al., Rivaroxaban and risk of myocardial infarction: insights from a meta-analysis and trial sequential analysis of randomized clinical trials. Coron Artery Dis, 2013. 24(8): p. 628-35.
75. Cattaneo, M., et al., Results of a worldwide survey on the assessment of platelet function by light transmission aggregometry: a report from the platelet physiology subcommittee of the SSC of the ISTH. J Thromb Haemost, 2009. 7(6): p. 1029.
76. Born, G.V., Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature, 1962. 194: p. 927-9.
77. Platelet aggregation: Part II Some results from a new method of study. J Clin Pathol, 1962. 15(5): p. 452-5.
78. Cattaneo, M., et al., Recommendations for the Standardization of Light Transmission Aggregometry: A Consensus of the Working Party from the Platelet Physiology Subcommittee of SSC/ISTH. J Thromb Haemost, 2013.
79. Hayward, C.P., et al., Development of North American consensus guidelines for medical laboratories that perform and interpret platelet function testing using light transmission aggregometry. Am J Clin Pathol, 2010. 134(6): p. 955-63.
80. Cardinal, D.C. and R.J. Flower, The electronic aggregometer: a novel device for assessing platelet behavior in blood. J Pharmacol Methods, 1980. 3(2): p. 135-58.
81. Paniccia, R., et al., Platelet function tests: a comparative review. Vasc Health Risk Manag, 2015. 11: p. 133-48.
82. Bochsen, L., et al., The influence of platelets, plasma and red blood cells on functional haemostatic assays. Blood Coagul Fibrinolysis, 2011. 22(3): p. 167-75.
83. Seyfert, U.T., et al., Variables influencing Multiplate(TM) whole blood impedance platelet aggregometry and turbidimetric platelet aggregation in healthy individuals. Platelets, 2007. 18(3): p. 199-206.
84. Hemker, H.C., et al., The calibrated automated thrombogram (CAT): a universal routine test for hyper- and hypocoagulability. Pathophysiol Haemost Thromb, 2002. 32(5-6): p. 249-53.
85. Tripodi, A., Thrombin Generation Assay and Its Application in the Clinical Laboratory. Clin Chem, 2016. 62(5): p. 699-707.
86. Tripodi, A., et al., Review article: the prothrombin time test as a measure of bleeding risk and prognosis in liver disease. Aliment Pharmacol Ther, 2007. 26(2): p. 141-8.
87. Marlar, R.A., B. Clement, and J. Gausman, Activated Partial Thromboplastin Time Monitoring of Unfractionated Heparin Therapy: Issues and Recommendations. Semin Thromb Hemost, 2017. 43(3): p. 253-260.
88. Hemker, H.C. and S. Beguin, Phenotyping the clotting system. Thromb Haemost, 2000. 84(5): p. 747-51.
89. Andersen, H., et al., Protease-activated receptor 1 is the primary mediator of thrombin-stimulated platelet procoagulant activity. Proc Natl Acad Sci U S A, 1999. 96(20): p. 11189-93.
90. Dittrich, W. and W. Gohde, [Impulse fluorometry of single cells in suspension]. Z Naturforsch B, 1969. 24(3): p. 360-1.
91. Picot, J., et al., Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology, 2012. 64(2): p. 109-30.
92. Adan, A., et al., Flow cytometry: basic principles and applications. Crit Rev Biotechnol, 2017. 37(2): p. 163-176.
93. Duperray, A., et al., Biosynthesis and assembly of platelet GPIIb-IIIa in human megakaryocytes: evidence that assembly between pro-GPIIb and GPIIIa is a prerequisite for expression of the complex on the cell surface. Blood, 1989. 74(5): p. 1603-11.
94. Kahn, M.L., et al., Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest, 1999. 103(6): p. 879-87.
95. Femia, E.A., et al., Effect of platelet count on platelet aggregation measured with impedance aggregometry (Multiplate analyzer) and with light transmission aggregometry. J Thromb Haemost, 2013. 11(12): p. 2193-6.
96. Alkhamis, T.M., R.L. Beissinger, and J.R. Chediak, Artificial surface effect on red blood cells and platelets in laminar shear flow. Blood, 1990. 75(7): p. 1568-75.
97. Koltai, K., et al., Platelet Aggregometry Testing: Molecular Mechanisms, Techniques and Clinical Implications. Int J Mol Sci, 2017. 18(8).
98. Steppich, B., et al., Effect of the FXa inhibitors Rivaroxaban and Apixaban on platelet activation in patients with atrial fibrillation. J Thromb Thrombolysis, 2017. 43(4): p. 490-497.
99. Banovcin, P., Jr., et al., Platelet Aggregation in Direct Oral Factor Xa Inhibitors-treated Patients With Atrial Fibrillation: A Pilot Study. J Cardiovasc Pharmacol, 2017. 70(4): p. 263-266.
100. Olivier, C.B., et al., Dabigatran and rivaroxaban do not affect AA- and ADP-induced platelet aggregation in patients receiving concomitant platelet inhibitors. J Thromb Thrombolysis, 2016. 42(2): p. 161-6.
101. Nehaj, F., et al., First Evidence: TRAP-Induced Platelet Aggregation Is Reduced in Patients Receiving Xabans. Clin Appl Thromb Hemost, 2018. 24(6): p. 914-919.
102. Sokol, J., et al., First evidence: rivaroxaban and apixaban reduce thrombin-dependent platelet aggregation. J Thromb Thrombolysis, 2018. 46(3): p. 393-398.
103. Wan, H., et al., An in-vitro evaluation of direct thrombin inhibitor and factor Xa inhibitor on tissue factor-induced thrombin generation and platelet aggregation: a comparison of dabigatran and rivaroxaban. Blood Coagul Fibrinolysis, 2016. 27(8): p. 882-885.
104. Moroi, M., et al., Analysis of the involvement of the von Willebrand factor-glycoprotein Ib interaction in platelet adhesion to a collagen-coated surface under flow conditions. Blood, 1997. 90(11): p. 4413-24.
105. Graff, J., et al., Effects of the oral, direct factor xa inhibitor rivaroxaban on platelet-induced thrombin generation and prothrombinase activity. J Clin Pharmacol, 2007. 47(11): p. 1398-407.
106. Johnson, M., E. Ramey, and P.W. Ramwell, Sex and age differences in human platelet aggregation. Nature, 1975. 253(5490): p. 355-7.
107. Fiedel, B.A. and H. Gewurz, Effects of C-reactive protein on platelet function. II. Inhibition by CRP of platelet reactivities stimulated by poly-L-lysine, ADP, epinephrine, and collagen. J Immunol, 1976. 117(4): p. 1073-8.
108. Skoglund, C., et al., C-reactive protein and C1q regulate platelet adhesion and activation on adsorbed immunoglobulin G and albumin. Immunol Cell Biol, 2008. 86(5): p. 466-74.
109. Weiss, K., et al., Influence of a single dose of calcium channel blockers on platelet function. Platelets, 1991. 2(1): p. 41-3.
110. Pourtau, L., et al., Platelet function and microparticle levels in atrial fibrillation: Changes during the acute episode. Int J Cardiol, 2017. 243: p. 216-222.
111. Al Dieri, R., et al., The thrombogram in rare inherited coagulation disorders: its relation to clinical bleeding. Thromb Haemost, 2002. 88(4): p. 576-82.
112. Hemker, H.C., R. Al Dieri, and S. Beguin, Thrombin generation assays: accruing clinical relevance. Curr Opin Hematol, 2004. 11(3): p. 170-5.
113. Artang, R., et al., Assessment of the effect of direct oral anticoagulants dabigatran, rivaroxaban, and apixaban in healthy male volunteers using a thrombin generation assay. Res Pract Thromb Haemost, 2017. 1(2): p. 194-201.
114. Bertaggia-Calderara, D., et al., Effect of Rivaroxaban on thrombin generation in vivo. A study in obese patients. Int J Lab Hematol, 2018. 40(1): p. e11-e14.
115. Rigano, J., et al., Thrombin generation estimates the anticoagulation effect of direct oral anticoagulants with significant interindividual variability observed. Blood Coagul Fibrinolysis, 2018. 29(2): p. 148-154.
116. Kim, P.Y., et al., Mechanistic Basis for the Differential Effects of Rivaroxaban and Apixaban on Global Tests of Coagulation. TH Open, 2018. 2(2): p. e190-e201.
117. Schuepbach, R.A. and M. Riewald, Coagulation factor Xa cleaves protease-activated receptor-1 and mediates signaling dependent on binding to the endothelial protein C receptor. J Thromb Haemost, 2010. 8(2): p. 379-88.
118. Bhattacharjee, G., et al., Factor Xa binding to annexin 2 mediates signal transduction via protease-activated receptor 1. Circ Res, 2008. 102(4): p. 457-64.
119. Achilles, A., et al., Dabigatran enhances platelet reactivity and platelet thrombin receptor expression in patients with atrial fibrillation. J Thromb Haemost, 2017. 15(3): p. 473-476.
120. Chen, B., et al., Characterization of thrombin-bound dabigatran effects on protease-activated receptor-1 expression and signaling in vitro. Mol Pharmacol, 2015. 88(1): p. 95-105.
121. Olivier, C.B., et al., TRAP-induced platelet aggregation is enhanced in cardiovascular patients receiving dabigatran. Thromb Res, 2016. 138: p. 63-68.
122. Petzold, T., et al., Oral thrombin inhibitor aggravates platelet adhesion and aggregation during arterial thrombosis. Sci Transl Med, 2016. 8(367): p. 367ra168.
123. Al-Tamimi, M., et al., Coagulation-induced shedding of platelet glycoprotein VI mediated by factor Xa. Blood, 2011. 117(14): p. 3912-20.
124. Pignatelli, P., et al., Anti Xa oral anticoagulants inhibit in vivo platelet activation by modulating glycoprotein VI shedding. Pharmacol Res, 2016. 113(Pt A): p. 484-489.
125. Vesterqvist, O., Measurements of the in vivo synthesis of thromboxane and prostacyclin in humans. Scand J Clin Lab Invest, 1988. 48(5): p. 401-7.
126. Pastori, D., et al., Urinary 11-dehydro-thromboxane B2 is associated with cardiovascular events and mortality in patients with atrial fibrillation. Am Heart J, 2015. 170(3): p. 490-7 e1.
127. Eikelboom, J.W., et al., Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation, 2002. 105(14): p. 1650-5.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:2016-2018
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:01.07.2020
Dateien geändert am:01.07.2020
Promotionsantrag am:03.03.2020
Datum der Promotion:25.06.2020
english
Benutzer
Status: Gast
Aktionen