Dokument: Lange nicht-kodierende RNAs als Biomarker in Plattenepithelkarzinomen von Kopf und Hals
Titel: | Lange nicht-kodierende RNAs als Biomarker in Plattenepithelkarzinomen von Kopf und Hals | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=53302 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20200603-101438-8 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Voß, Madeleine [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Schulz, Wolfgang A. [Gutachter] Prof. Dr. med. Sabel, Michael [Gutachter] | |||||||
Stichwörter: | Biomarker, CASC9, Plattenepithelkarzinom, lncRNA | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Plattenepithelkarzinome des Kopf-Hals-Bereiches (HNSCC) entstehen aus Zellen der Mukosa in Mund, Nase und Schlund. Das HNSCC stellt den sechsthäufigsten Tumor in Industriestaaten dar und gilt als häufigste bösartige Veränderung des oberen Respirations-traktes. Gehäuft tritt diese Tumorerkrankung bei Männern zwischen 50 und 70 Jahren auf; sie wird vor allem durch das Rauchen und erhöhten Alkoholkonsum verursacht. Die Inzidenz in jüngeren Bevölkerungsgruppen steigt, was in ca. 30% aller Fälle mit einer vorliegenden HPV-Infektion assoziiert ist.
Die HPV-assoziierten Tumore stellen offenbar eine biologisch und klinisch distinkte Subgruppe dar, die mit einem besseren Therapieansprechen und somit einer besseren Prognose vergesellschaftet ist. In frühen Tumorstadien haben Patienten eine gute Überle-bensprognose, die sich jedoch mit Fortschreiten der Erkrankung drastisch reduziert. Da viele Tumore - aufgrund fehlender Früherkennung - erst im fortgeschrittenen Stadium diagnostiziert werden, sind die Überlebenschancen der Patienten bei Erstdiagnose bereits vermindert. Für die Therapieeinschätzung dieser Tumore ist es wichtig, jenseits von his-topathologischen Parametern und HPV-Status geeignete Biomarker zur Früherkennung, Prädiktion von Therapieansprechen und klinischem Verlauf zu finden. Als potentieller Biomarker werden in dieser Arbeit lange nicht kodierende RNAs, kurz lncRNAs, unter-sucht. Von diesen mindestens 200 bp langen RNAs ist aus verschiedenen Tumorentitäten bekannt, dass sie vielfältige Wirkungen auf Zellen ausüben und auch in der Tumorgenese eine bedeutende Rolle spielen können. Vor diesem Hintergrund wurden mittels Literatur- und Datenbankrecherchen potentiell in HNSCC verändert exprimierte lncRNAs identifiziert und ihre Expression in Gewebesets mit Tumor- und Normalproben gemessen. Hierbei stellten sich die lncRNAs HOTAIR, HOXB-AS3 und CASC9 als signifikant überexprimiert in Tumoren dar. Das Hauptaugenmerk wurde im weiteren Verlauf auf CASC9 gelegt und dessen Expression in einer Serie von 49 Tumoren und 20 Normalge-weben mittels qRT-PCR gemessen. Nach Auswertung der klinischen Patientendaten zeig-te sich CASC9 - im Einklang mit den Datenbankanalysen - signifikant über- ex-primiert, auch in fortgeschrittenen Tumorstadien sowie metastasierten Tumoren. Weitere Datenbankrecherchen ergaben, dass CASC9 signifikant in vielen weiteren Plattenepithelkarzinomen überexprimiert wird, sodass der funktionelle Einfluss dieser lncRNA auf Tumorzellen näher betrachtet wurde. Hierzu wurde in zwei verschiedenen Versuchsansätzen auf der einen Seite die Über- expression von CASC9 mittels lentiviraler Transduktion in Vektoren, sowie auf der ande-ren Seite eine Herabregulation von CASC9 mittels shRNA („Knockdown“) erreicht und die Effekte auf Proliferation, Migration und Invasion verschiedener Zelllinien analysiert. Sowohl die - jeweils verifizierte - Überexpression als auch der Knockdown von CASC9 in Zelllinien lösten jedoch nur geringe zelluläre Effekte im Zellkulturmodell aus. Es lässt sich dennoch festhalten, dass CASC9 ein vielversprechender Biomarker-Kandidat zur Identifizierung von Plattenepithelkarzinomen ist. Dabei ist CASC9 offenbar kein Hauptinduktor zellulärer Veränderungen, sondern wirkt vermutlich mit entitätsspezifi-schen Kofaktoren zusammen und könnte so zu einer Dysregulation in der Zelle beitragen. Als weiterführende Fragestellung der Forschung um CASC9 ergibt sich somit die Identi-fizierung der Faktoren, die zur Überexpression von CASC9 in Plattenepithelkarzinomen führen.Squamous carcinoma of the head and neck (HNSCC) is the sixth most common malig-nancy overall and the most common malignancy of the upper respiratory tract. It is caused mostly by cigarette smoking and alcohol consumption and occurs especially in men aged 50-70 years. In recent years, the incidence in the younger generation has increased be-cause of human papillomavirus (HPV) infection. Radiation therapy, surgery, chemothera-py, treatment with EGFR antibodies, immune checkpoint inhibitors or combined treat-ments are applied for primary tumors and recurrent or metastatic disease. Patients with localized HNSCC and low tumor stage have a high chance of cure. The disease recurs in up to 50% of the cases. For high stage, metastatic and recurrent HNSCC treatment options are limited and the outcome is therefore unfavorable. One problem in HNSCC is the belat-ed diagnosis of many tumors which aggravates prognosis. To date, clinically validated prognostic biomarkers for HNSCC are lacking except for HPV positivity, which predicts favorable survival and better response to radio- and chemotherapy. For these reasons new diagnostic and prognostic markers are required. Long noncoding RNAs (lncRNAs) are potential biomarkers, as they are considered in the literature as good candidates for tumor biomarkers and regulators of various neoplastic cell properties. By definition, lncRNAs do not contain substantial open reading frames and consist of more than 200 nucleotides. They can be involved in various cellular processes like prolif-eration, metastasis or apoptosis. LncRNAs are known to be differentially expressed in tumors and may actively contribute to their development and progression. In this thesis differentially expressed lncRNAs in HNSCC were identified by literature and database research. Their expression was then analyzed in two different tissue sets of HNSCC tumor and benign tissue samples. CASC9, HOTAIR and HOXB-AS3 were found to be upregulated in tumors. CASC9 expression was in particular upregulated in advanced tumor stages and metastatic cases. Literature data and a pan-cancer analysis based on data from The Cancer Genome Atlas indicated CASC9 to be overexpressed in other squamous cell cancer types suggesting CASC9 as general biomarker of squamous cell cancers as well. To understand the consequences of CASC9 overexpression in tumors, in vitro experi-ments were performed in HNSCC cell lines to explore the effects of CASC9 expression on cell proliferation, clonogenicity, migration or chemosensitivity. However, upregulation or shRNA-mediated downregulation (knockdown) of CASC9 had no major effects on tumor cells. In conclusion, CASC9 does not appear to be a driving factor in cancers of the oral and oropharyngeal tract but can discriminate well between cancerous and benign samples. Being robustly overexpressed in HNSCC CASC9 is a promising candidate for tumor de-tection, potentially also of squamous cell carcinomas in other organs. An important ques-tion for future work is therefore which factors drive the overexpression of CASC9 in HNSCC and other squamous cell carcinomas. | |||||||
Quelle: | 1. Rudert, H., Maligne Tumoren der Lippen, der Mundhöhle und des Oropharynx. Band 2, 1992, Otorhinolaryngologie in Klinik und Praxis,Thieme.
2. Stransky, N., et al., The mutational landscape of head and neck squamous cell carcinoma. Science, 2011. 333(6046): p. 1157-60. 3. Argiris, A., et al., Head and neck cancer. The Lancet, 2008. 371(9625): p. 1695-1709. 4. Pavon, M.A., et al., Gene expression signatures and molecular markers associated with clinical outcome in locally advanced head and neck carcinoma. J.Carcinog, 2012. 33(9): p. 1707-16. 5. Hoffmann, T.K., et al., Alterations in the p53 pathway and their association with radio- and chemosensitivity in head and neck squamous cell carcinoma. Oral Oncol, 2008. 44(12): p. 1100-9. 6. Cancer Genome Atlas Network, Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 2015. 517(7536): p. 576-82. 7. Leemans, C. R.,et al., The molecular biology of head and neck cancer. Nature Rev. Canc., 2011. 11: p. 9-22. 8. Fang, Y. et al., Roles, functions, and mechanisms of long non-coding RNAs in cancer. GPB, 2016. 14(1): p. 42-54. 9. Fabbri, M., et al., Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res, 2019. 10. Li, L.J., et al., Translation of noncoding RNAs: Focus on lncRNAs, pri-miRNAs, and circRNAs. Exp Cell Res, 2017. 361(1): p. 1-8. 11. Esteller, M., Non-coding RNAs in human disease. Nat Rev Genet, 2011. 12(12): p. 861-74. 12. Sannigrahi, M.K., et al., Role of non-coding RNAs in head and neck squamous cell carcinoma: A narrative review. Oral Dis, 2018. 24(8): p. 1417-1427. 13. Kolenda, T., et al., Biological role of long non-coding RNA in head and neck cancers. Rep Pract Oncol Radiother, 2017. 22(5): p. 378-388. 14. Szell, M., et al., PRINS, a primate-specific long non-coding RNA, plays a role in the keratinocyte stress response and psoriasis pathogenesis. Pflugers Arch, 2016. 468(6): p. 935-43. 15. Iacoangeli, A., et al., Regulatory BC200 RNA in peripheral blood of patients with invasive breast cancer. J Investig Med, 2018. 66(7): p. 1055-1063. 16. Ren, D., et al., Novel insight into MALAT-1 in cancer: Therapeutic targets and clinical applications. Oncol Lett, 2016. 11(3): p. 1621-1630. 17. Kretschmer, A., et al., Molecular biomarkers and prognostic factors for prostate cancer. Urologe A, 2017. 56(7): p. 933-944. 18. Kretz, M., et al., Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 2013. 493(7431): p. 231-5. 19. Ren, K., et al., Long noncoding RNA HOTAIR controls cell cycle by functioning as a competing endogenous RNA in esophageal squamous cell carcinoma. Transl Oncol, 2016. 9(6): p. 489-497. 20. Wang, P., et al., Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. J Exp Clin Cancer Res, 2016. 35: p. 22. 21. Schroeder, A., et al., The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol, 2006. 7: p. 3. 22. Zou, A.E., et al., Transcriptome sequencing uncovers novel long noncoding and small nucleolar RNAs dysregulated in head and neck squamous cell carcinoma. RNA, 2015. 21(6): p. 1122-34. 23. Gao, G.D., et al., LncRNA CASC9 promotes tumorigenesis by affecting EMT and predicts poor prognosis in esophageal squamous cell cancer. Eur. Rev. Med. and Pharmacol. Sci., 2018. 22: p. 422-42. 24. Pan, Z., et al., The long noncoding RNA CASC9 regulates migration and invasion in esophageal cancer. Cancer Med, 2016. 5(9): p. 2442-7. 25. Wu, Y., et al., Up-regulation of lncRNA CASC9 promotes esophageal squamous cell carcinoma growth by negatively regulating PDCD4 expression through EZH2. Mol Cancer, 2017. 16(1): p. 150. 26. Leemans, C.R., et al., The molecular landscape of head and neck cancer. Nat Rev Cancer, 2018. 18(5): p. 269-282. 27. Braakhuis, B.J., et al., Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. J Natl Cancer Inst, 2004. 96(13): p. 998-1006. 28. Olshan, A.F., et al., Alterations of the p16 gene in head and neck cancer: frequency and association with p53, PRAD-1 and HPV. Oncotarget, 1997. 14: p. 811-818. 29. Chau, N.G., et al., Incorporation of next-generation sequencing into routine clinical care to direct treatment of head and neck squamous cell carcinoma. Clin Cancer Res, 2016. 22(12): p. 2939-49. 30. Sun, W., et al., Activation of the NOTCH pathway in head and neck cancer. Cancer Res, 2014. 74(4): p. 1091-104. 31. Nyman, P.E., et al., Loss of function of canonical Notch signaling drives head and neck carcinogenesis. Clin. Cancer Res., 2018. 24(24): p. 6308-6318. 32. Qi, P.,et al., Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer, 2016. 15(1): p. 39. 33. Sahu, A., et al., Long noncoding RNAs in cancer: from function to translation. Trends Cancer, 2015. 1(2): p. 93-109. 34. Deveson, I.W., et al., The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome. Trends Genet, 2017. 33(7): p. 464-478. 35. Yan, X., et al., Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell, 2015. 28(4): p. 529-540. 36. Schmitz, S.U., et al., Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci, 2016. 73(13): p. 2491-509. 37. Schalken, J., et al., Potential utility of cancer-specific biomarkers for assessing response to hormonal treatments in metastatic prostate cancer. Ther Adv Urol, 2014. 6(6): p. 245-52. 38. Ohana, P., Use of H19 regulatory sequences for targeted gene therapy in cancer. Int. J. Cancer, 2002. 39. Ulitsky, I., et al., lincRNAs: genomics, evolution, and mechanisms. Cell, 2013. 154(1): p. 26-46. 40. Gibb, E.A., et al., Long non-coding RNAs are expressed in oral mucosa and altered in oral premalignant lesions. Oral Oncol, 2011. 47(11): p. 1055-61. 41. Chen, M., et al., Identification of oncogenic long noncoding RNAs CASC9 and LINC00152 in oral carcinoma through genome-wide comprehensive analysis. Anticancer Drugs, 2019. 30(4): p. 356-362. 42. Zou, A.E., et al., The non-coding landscape of head and neck squamous cell carcinoma. Oncotarget, 2016. 7. 43. Wu, Y., et al., Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma. Int J Oncol, 2015. 46(6): p. 2586-94. 44. Schipper, J.H., et al., E-Cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res., 1991. 51: p. 6328-6337. 45. Quinn, J.J. et al., Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet, 2016. 17(1): p. 47-62. 46. Walter, V., et al., Molecular subtypes in head and neck cancer exhibit distinct patterns of chromosomal gain and loss of canonical cancer genes. PLoS One, 2013. 8(2): p. e56823. 47. Jing, L., et al., HOTAIR enhanced aggressive biological behaviors and induced radio-resistance via inhibiting p21 in cervical cancer. Tumour Biol, 2015. 36(5): p. 3611-9. 48. Zhou, J., et al., Long noncoding RNA CASC9.5 promotes the proliferation and metastasis of lung adenocarcinoma. Sci Rep, 2018. 8(1): p. 37. 49. Reyes Barron, C., et al., Novel 1.3 Mb germline duplication in chromosome 8q21.11 by microarray comparative genomic hybridization plus single nucleotide polymorphism analysis in an adult patient with pancytopenia and urinary bladder complications. Clin Case Rep, 2018. 6(10): p. 1947-1952. 50. Zhang, J., et al., Long non-coding RNA CASC9 enhances breast cancer progression by promoting metastasis through the meditation of miR-215/TWIST2 signaling associated with TGF-beta expression. Biochem Biophys Res Commun, 2019. 515(4): p. 644-650. 51. Liang, Y., et al., LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death Differ, 2018. 25(11): p. 1980-1995. 52. Li, X., et al., lncRNA CASC9 regulates cell migration and invasion in hemangioma endothelial cells by targeting miR-125a-3p/Nrg1. Onco Targets Ther, 2019. 12: p. 423-432. 53. Klingenberg, M., et al., The long noncoding RNA Cancer Susceptibility 9 and RNA binding protein heterogeneous nuclear ribonucleoprotein L form a complex and coregulate genes linked to AKT signaling. Hepatology, 2018. 68(5): p. 1817-1832. 54. Gramantieri, L., et al., LncRNAs as novel players in hepatocellular carcinoma recurrence. Oncotarget, 2018. 55. Luo, K., et al., LncRNA CASC9 interacts with CPSF3 to regulate TGF-beta signaling in colorectal cancer. J Exp Clin Cancer Res, 2019. 38(1): p. 249. 56. Shang, C., et al., Silence of cancer susceptibility candidate 9 inhibits gastric cancer and reverses chemoresistance. Oncotarget, 2017. 8: p. 15393-15398. 57. Shao, G., et al., lncRNA CASC9 positively regulates CHK1 to promote breast cancer cell proliferation and survival through sponging the miR195/497 cluster. Int J Oncol, 2019. 54(5): p. 1665-1675. 58. Yang, Y., et al., Increased expression of lncRNA CASC9 promotes tumor progression by suppressing autophagy-mediated cell apoptosis via the AKT/mTOR pathway in oral squamous cell carcinoma. Cell Death Dis, 2019. 10(2): p. 41. 59. Hu, X., et al., Long noncoding RNA CASC9 promotes LIN7A expression via miR-758-3p to facilitate the malignancy of ovarian cancer. J Cell Physiol, 2019. 234(7): p. 10800-10808. 60. Ma, P., et al., Transcriptome analysis of EGFR tyrosine kinase inhibitors resistance associated long noncoding RNA in non-small cell lung cancer. Biomed Pharmacother, 2017. 87: p. 20-26. 61. Yu, X., et al., Analysis of distinct long noncoding RNA transcriptional fingerprints in pancreatic ductal adenocarcinoma. Cancer Med, 2017. 6(3): p. 673-680. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Bezug: | 2016-2020 | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 03.06.2020 | |||||||
Dateien geändert am: | 03.06.2020 | |||||||
Promotionsantrag am: | 10.09.2019 | |||||||
Datum der Promotion: | 26.05.2020 |