Dokument: Genetic and Epigenetic Landscapes of Pediatric Acute Lymphoblastic Leukemia Subtypes

Titel:Genetic and Epigenetic Landscapes of Pediatric Acute Lymphoblastic Leukemia Subtypes
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=52036
URN (NBN):urn:nbn:de:hbz:061-20200122-082937-9
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Dörrenberg, Mareike [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]6,38 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 20.01.2020 / geändert 20.01.2020
Beitragende:Prof. Dr. Borkhardt, Arndt [Gutachter]
Prof. Dr. Gohlke, Holger [Gutachter]
Stichwörter:pediatric acute lymphoblastic leukemia, cancer, next generation sequencing
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibungen:Akute lymphatische Leukämie ist eine maligne Krankheit des hämatopoetischen Systems. Je
nachdem welcher Zelltyp betroffen ist, wird die akute lymphatische Leukämie (ALL) in BZell-
und T-Zell ALL eingeteilt. Beide Leukämietypen können in Subtypen unterteilt werden.
Diese werden über genetische Veränderungen im Patientengenom definiert, die für die
Tumorentstehung hauptverantwortlich sind. Ein Teilgebiet dieser Arbeit ist die Analyse von
Unterschieden zwischen zwei Tumorsubtypen der B-Zell ALL. Der erste Subtyp wird durch
eine Translokation der beiden Chromosomen 1 und 19 charakterisiert. Diese Translokation
führt zu einem Fusionsprotein aus den beiden Transkriptionsfaktoren TCF3 und PBX1. Dieser
leukämische Subtyp tritt häufig im Kindesalter auf und besitzt eine hohe Heilungschance. Der
zweite Subtyp wird durch die Translokation der beiden Chromosomen 17 und 19
charakterisiert. Durch diese entsteht ein Fusionsprotein der beiden Transkriptionsfaktoren
TCF3 und HLF. Dieser leukämische Subtyp kommt sehr selten vor und ist schwer zu
behandeln.
Ein weiterer Aspekt der Gruppierung von Leukämietypen ist das Alter der Patienten. Im
Vergleich zu der Entstehung einer T-Zell Leukämie im Kindesalter, ist die Entstehung einer
Leukämie im Säuglingsalter sehr selten.
Kenntnisse über klinische und molekulare Grundlagen der T-Zell akuten lymphatischen
Leukämie im Säuglingsalter ist kaum vorhanden. Außerdem ist nicht klar, ob eine T-Zell ALL
im Säuglingsalter im Vergleich zur T-Zell ALL im Kindesalter ein eigenes Krankheitsbild
darstellt. Daher beschäftigt sich das zweite Thema dieser Arbeit mit der Analyse von
Unterschieden zwischen einer T-Zell ALL im Säuglings- und im Kindesalter.
Für beide Analysen wurde Patientenmaterial auf einer Illuminaplattform sequenziert. Um
differentiell exprimierte Gene und miRNAs zwischen den beiden B-Zell Leukämietypen zu
erfassen, wurden verschiedene Filter der Datenanalyse-Pipeline verwendet. Eine
Korrelationsanalyse sowie eine target prediction wurde durchgeführt, um potentielle mRNAmiRNA
target-pairs zu entdecken, die jedoch in-vitro durch qPCR und einen Luciferase-
Assay nicht validiert werden konnten. Mit miRDeep wurden potentielle neue miRNAs
gefunden, die jedoch ebenfalls nicht durch qPCR und Northern blot validiert werden konnten.
Anhand der Sequenzierdaten wurde aufgedeckt, dass hsa-miR-7847 in einigen Patienten mit t(
1;19) mutiert im Genom vorliegt, was zukünftig validiert werden wird. Ein neuer HDAC6
Inhibitor wurde an einer Zelllinie mit t(17;19) getestet. Dieses führte nachweislich zu einer
Veränderung in der Genexpression.
Um Unterschiede zwischen einer T-Zell-Leukämie im Säuglings- und im Kindesalter zu
analysieren, wurde eine Exomsequenzierung durchgeführt. Dabei wurden Mutationen in den
Genen NOTCH2, NOTCH3, PTEN und KRAS in den Säuglingspatienten gefunden. Die
Analyse der Transkriptome zeigte 760 differentiell exprimierte Gene und 58 differentiell
exprimierte miRNAs zwischen beiden Kohorten. Über eine Korrelationsanalyse und eine
target prediction wurden 47 potentielle mRNA-miRNA target pairs gefunden, von denen die
meisten einen Einfluss auf die Tumorentstehung haben. Eine pathway-Analyse deckte
betroffene pathways in der Säuglings-T-Zell ALL auf, die im Zusammenhang mit Funktionen
des Immunsystems und der Tumorentwicklung stehen, wie z.B. die Aktivierung des ERK5
pathways.
Bei Analyse von t(1;19)- und t(17;19)-ALL konnten vorhergesagte Interaktionen zwischen
mRNAs und miRNAs sowie das Vorhandensein potentiell neuer miRNAs durch Anwendung
verschiedener molekularbiologischer widerlegt werden. Trotzdem wurden deutliche
molekulare Merkmale in Transkription und Epigenom in der Säuglings-T-Zell Leukämie im
Vergleich zur T-Zell Leukämie im Kindesalter entdeckt, welche einen potentiellen Einfluss
auf die Entstehung und Entwicklung einer Säuglings-T-Zell Leukämie haben können.

Acute lymphoblastic leukemia (ALL) is a malignant disease of the hematopoietic system. It is
distinguished in B-cell- and T-cell acute lymphoblastic leukemia depending on the affected
cell type. Both leukemic types can be further divided into subgroups regarding genetic
aberrations, which occur in the leukemic genomes and are mainly responsible for tumor
development. One aspect of this thesis is the analysis of differences between two of these
tumor subtypes of B-cell ALL. The first subtype is characterized by a translocation between
chromosomes 1 and 19, leading to a fusion of the two transcription factors TCF3 and PBX1. It
is a frequently occurring leukemic subtype in childhood, inferring a good prognosis. The
second subtype is characterized by a translocation between chromosomes 17 and 19, leading
to a fusion of the two transcription factors TCF3 and HLF. This leukemic subtype is very rare
and associated with a poor prognosis.
Another aspect of leukemic grouping is the age of patients. Especially in T-cell ALL the
development of leukemia in infancy is extremely rare compared to a development in
childhood. Clinical and molecular knowledge about infant T-cell ALL is nearly lacking and it
is not clear, if it represents a distinct disease compared to childhood T-cell ALL. Therefore,
the second topic of this thesis deals with the analysis of differences between infant and
childhood T-cell ALL.
To address both topics, patient material was sequenced on an Illumina next generation
sequencing platform. Different filter settings of the data analysis pipeline were used to detect
differentially expressed genes and miRNAs between the two B-cell ALL subtypes.
Correlation analysis and target prediction was performed to find potential mRNA-miRNA
target pairs which, however, could not be validated in-vitro by qPCR and luciferase assay.
Potential novel miRNAs were found using miRDeep, which –again- could not be validated by
qPCR and Northern blot. Hsa-miR-7847 was found to be mutated in some t(1;19) patients,
which has to be validated. A novel HDAC6 inhibitor was tested on a t(17;19) cell line,
leading to differences in gene expression.
Exome sequencing was performed to identify differences between infant and childhood T-cell
ALL and mutations in NOTCH2, NOTCH3, PTEN and KRAS were detected in infant patients.
Analysis of transcriptomes revealed 760 differentially expressed genes and 58 differentially
expressed miRNAs between both cohorts. Correlation analysis and target prediction revealed
47 potential mRNA-miRNA target pairs of which the most have an impact on tumor
development. A pathway analysis revealed affected pathways in infant patients, which rely on
immune functions or tumorigenesis like the activation of the ERK5 pathway.
In summary, predicted interactions between mRNAs and miRNAs as well as predicted novel
miRNAs could be disproved by different techniques of molecular biology by analyzing t(1;19
)- and t(17;19) B-cell ALL. Nevertheless, we found distinct molecular features in infant
compared to childhood T-cell ALL on a transcriptomic and epigenetic level, which have a
potential impact on development and course of disease.
Quelle:1 Orkin, S. H. Diversification of haematopoietic stem cells to
specific lineages. Nature reviews. Genetics 1, 57-64, doi:10.1038/35049577 (2000).
2 Rieger, M. A. & Schroeder, T. Hematopoiesis. Cold Spring Harbor perspectives in
biology 4, doi:10.1101/cshperspect.a008250 (2012).
3 Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology.
Cell 132, 631-644, doi:10.1016/j.cell.2008.01.025 (2008).
4 Passegue, E., Jamieson, C. H., Ailles, L. E. & Weissman, I. L. Normal and leukemic
hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell
characteristics? Proceedings of the National Academy of Sciences of the United States
of America 100 Suppl 1, 11842-11849, doi:10.1073/pnas.2034201100 (2003).
5 Randolph, T. R. Advances in acute lymphoblastic leukemia. Clinical laboratory
science : journal of the American Society for Medical Technology 17, 235-245 (2004).
6 Bennett, J. M. et al. Proposals for Classification of Acute Leukemias. Brit J Haematol
33, 451-&, doi:DOI 10.1111/j.1365-2141.1976.tb03563.x (1976).
7 Vardiman, J. W. et al. The 2008 revision of the World Health Organization (WHO)
classification of myeloid neoplasms and acute leukemia: rationale and important
changes. Blood 114, 937-951, doi:10.1182/blood-2009-03-209262 (2009).
8 Smith, M. et al. Uniform approach to risk classification and treatment assignment for
children with acute lymphoblastic leukemia. Journal of clinical oncology : official
journal of the American Society of Clinical Oncology 14, 18-24, doi:10.1200/JCO.
1996.14.1.18 (1996).
9 Reiter, A. et al. Chemotherapy in 998 unselected childhood acute lymphoblastic
leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86.
Blood 84, 3122-3133 (1994).
10 Trueworthy, R. et al. Ploidy of lymphoblasts is the strongest predictor of treatment
outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric
Oncology Group study. Journal of clinical oncology : official journal of the American
Society of Clinical Oncology 10, 606-613, doi:10.1200/JCO.1992.10.4.606 (1992).
11 Schultz, K. R. et al. Risk- and response-based classification of childhood B-precursor
acute lymphoblastic leukemia: a combined analysis of prognostic markers from the
Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood 109,
926-935, doi:10.1182/blood-2006-01-024729 (2007).
12 Crist, W. et al. Pre-B cell leukemia responds poorly to treatment: a pediatric oncology
group study. Blood 63, 407-414 (1984).
13 Schmiegelow, K. et al. Long-term results of NOPHO ALL-92 and ALL-2000 studies
of childhood acute lymphoblastic leukemia. Leukemia 24, 345-354, doi:10.1038/leu.
2009.251 (2010).
14 Pui, C. H., Carroll, W. L., Meshinchi, S. & Arceci, R. J. Biology, risk stratification,
and therapy of pediatric acute leukemias: an update. J Clin Oncol 29, 551-565, doi:10.
1200/JCO.2010.30.7405 (2011).
87
15 Vogler, L. B. et al. Pre-B-cell leukemia. A new phenotype of childhood lymphoblastic
leukemia. The New England journal of medicine 298, 872-878, doi:10.
1056/NEJM197804202981603 (1978).
16 Uckun, F. M. et al. Human t(1;19)(q23;p13) pre-B acute lymphoblastic leukemia in
mice with severe combined immunodeficiency. Blood 81, 3052-3062 (1993).
17 Borowitz, M. J. et al. Predictability of the t(1;19)(q23;p13) from surface antigen
phenotype: implications for screening cases of childhood acute lymphoblastic
leukemia for molecular analysis: a Pediatric Oncology Group study. Blood 82, 1086-
1091 (1993).
18 Foon, K. A., Schroff, R. W. & Gale, R. P. Surface markers on leukemia and
lymphoma cells: recent advances. Blood 60, 1-19 (1982).
19 Pui, C. H. & Evans, W. E. Acute lymphoblastic leukemia. The New England journal
of medicine 339, 605-615, doi:10.1056/NEJM199808273390907 (1998).
20 Hunger, S. P., Ohyashiki, K., Toyama, K. & Cleary, M. L. Hlf, a novel hepatic bZIP
protein, shows altered DNA-binding properties following fusion to E2A in t(17;19)
acute lymphoblastic leukemia. Genes & development 6, 1608-1620, doi:10.1101/gad.6
.9.1608 (1992).
21 Pui, C. H. et al. Cytogenetic features and serum lactic dehydrogenase level predict a
poor treatment outcome for children with pre-B-cell leukemia. Blood 67, 1688-1692 (
1986).
22 Raimondi, S. C. et al. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with
emphasis on prognostic implications of the t(1;19). J Clin Oncol 8, 1380-1388, doi:10.
1200/JCO.1990.8.8.1380 (1990).
23 Crist, W. M. et al. Poor prognosis of children with pre-B acute lymphoblastic
leukemia is associated with the t(1;19)(q23;p13): a Pediatric Oncology Group study.
Blood 76, 117-122 (1990).
24 Ohno, H. et al. Acute lymphoblastic leukemia associated with a t(1;19)(q23;p13) in an
adult. Internal medicine 32, 584-587 (1993).
25 Mitani, K. et al. Molecular analysis of the t(1;19)(q23;p13) translocation observed in
adult leukemias. International journal of hematology 60, 267-271 (1994).
26 Mertens, F., Johansson, B. & Mitelman, F. Age- and gender-related heterogeneity of
cancer chromosome aberrations. Cancer genetics and cytogenetics 70, 6-11 (1993).
27 Hayashi, Y., Hanada, R., Yamamoto, K., Taguchi, N. & Shikano, T.
Leukoencephalopathy in children with t(1;19) acute lymphoblastic leukaemia. Lancet
340, 316 (1992).
28 Yen, H. J. et al. Pediatric acute lymphoblastic leukemia with t(1;19)/TCF3-PBX1 in
Taiwan. Pediatric blood & cancer 64, doi:10.1002/pbc.26557 (2017).
29 Carroll, A. J. et al. Pre-B cell leukemia associated with chromosome translocation 1;
19. Blood 63, 721-724 (1984).
30 Pui, C. H., Behm, F. G. & Crist, W. M. Clinical and biologic relevance of
immunologic marker studies in childhood acute lymphoblastic leukemia. Blood 82,
343-362 (1993).
31 Mellentin, J. D. et al. The gene for enhancer binding proteins E12/E47 lies at the t(1;
19) breakpoint in acute leukemias. Science 246, 379-382 (1989).
32 Pui, C. H. et al. Immunologic, cytogenetic, and clinical characterization of childhood
acute lymphoblastic leukemia with the t(1;19) (q23; p13) or its derivative. J Clin
Oncol 12, 2601-2606, doi:10.1200/JCO.1994.12.12.2601 (1994).
33 Williams, D. L. et al. New chromosomal translocations correlate with specific
immunophenotypes of childhood acute lymphoblastic leukemia. Cell 36, 101-109 (
1984).
88
34 Nourse, J. et al. Chromosomal translocation t(1;19) results in synthesis of a homeobox
fusion mRNA that codes for a potential chimeric transcription factor. Cell 60, 535-545
(1990).
35 Kamps, M. P., Murre, C., Sun, X. H. & Baltimore, D. A new homeobox gene
contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL
. Cell 60, 547-555 (1990).
36 Murre, C., McCaw, P. S. & Baltimore, D. A new DNA binding and dimerization motif
in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56,
777-783 (1989).
37 Bain, G., Gruenwald, S. & Murre, C. E2A and E2-2 are subunits of B-cell-specific E2-
box DNA-binding proteins. Molecular and cellular biology 13, 3522-3529 (1993).
38 Sawada, S. & Littman, D. R. A heterodimer of HEB and an E12-related protein
interacts with the CD4 enhancer and regulates its activity in T-cell lines. Molecular
and cellular biology 13, 5620-5628 (1993).
39 Monica, K., Galili, N., Nourse, J., Saltman, D. & Cleary, M. L. PBX2 and PBX3, new
homeobox genes with extensive homology to the human proto-oncogene PBX1.
Molecular and cellular biology 11, 6149-6157 (1991).
40 Lu, Q., Wright, D. D. & Kamps, M. P. Fusion with E2A converts the Pbx1
homeodomain protein into a constitutive transcriptional activator in human leukemias
carrying the t(1;19) translocation. Molecular and cellular biology 14, 3938-3948 (
1994).
41 Hunger, S. P. et al. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1
coding sequences in acute lymphoblastic leukemias. Blood 77, 687-693 (1991).
42 Izraeli, S., Kovar, H., Gadner, H. & Lion, T. Unexpected heterogeneity in E2A/PBX1
fusion messenger RNA detected by the polymerase chain reaction in pediatric patients
with acute lymphoblastic leukemia. Blood 80, 1413-1417 (1992).
43 Kamps, M. P., Look, A. T. & Baltimore, D. The human t(1;19) translocation in pre-B
ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming
potentials. Genes & development 5, 358-368 (1991).
44 Suciu, S., Weh, H. J. & Hossfeld, D. K. T-cell acute lymphoblastic leukemia with
translocation (1;18). Cancer genetics and cytogenetics 30, 165-169 (1988).
45 Privitera, E. et al. Different molecular consequences of the 1;19 chromosomal
translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood 79,
1781-1788 (1992).
46 Izraeli, S. et al. Expression of identical E2A/PBX1 fusion transcripts occurs in both
pre-B and early pre-B immunological subtypes of childhood acute lymphoblastic
leukemia. Leukemia 7, 2054-2056 (1993).
47 Kamps, M. P. & Baltimore, D. E2A-Pbx1, the t(1;19) translocation protein of human
pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice.
Molecular and cellular biology 13, 351-357 (1993).
48 Chiaretti, S., Zini, G. & Bassan, R. Diagnosis and subclassification of acute
lymphoblastic leukemia. Mediterranean journal of hematology and infectious diseases
6, e2014073, doi:10.4084/MJHID.2014.073 (2014).
49 Nadler, L. M. et al. Induction of human B cell antigens in non-T cell acute
lymphoblastic leukemia. The Journal of clinical investigation 70, 433-442 (1982).
50 Kohlmann, A. et al. New insights into MLL gene rearranged acute leukemias using
gene expression profiling: shared pathways, lineage commitment, and partner genes.
Leukemia 19, 953-964, doi:10.1038/sj.leu.2403746 (2005).
51 Look, A. T. Oncogenic transcription factors in the human acute leukemias. Science
278, 1059-1064, doi:DOI 10.1126/science.278.5340.1059 (1997).
89
52 Matsunaga, T. et al. Regulation of annexin II by cytokine-initiated signaling pathways
and E2A-HLF oncoprotein. Blood 103, 3185-3191, doi:10.1182/blood-2003-09-3022 (
2004).
53 Yeung, J. et al. Characterization of the t(17;19) translocation by gene-specific
fluorescent in situ hybridization-based cytogenetics and detection of the E2A-HLF
fusion transcript and protein in patients' cells. Haematologica 91, 422-424 (2006).
54 Inukai, T. et al. Hypercalcemia in childhood acute lymphoblastic leukemia: frequent
implication of parathyroid hormone-related peptide and E2A-HLF from translocation
17;19. Leukemia 21, 288-296, doi:10.1038/sj.leu.2404496 (2007).
55 Glover, J. M., Loriaux, M., Tyner, J. W., Druker, B. J. & Chang, B. H. In vitro
sensitivity to dasatinib in lymphoblasts from a patient with t(17;19)(q22;p13) gene
rearrangement pre-B acute lymphoblastic leukemia. Pediatric blood & cancer 59, 576
-579, doi:10.1002/pbc.23383 (2012).
56 Raimondi, S. C. et al. New recurring chromosomal translocations in childhood acute
lymphoblastic leukemia. Blood 77, 2016-2022 (1991).
57 Thompson, M. A. & Davé, U. P. Molecular Genetics of Acute Leukemia, <
https://oncohemakey.com/molecular-genetics-of-acute-leukemia/> (2016).
58 Hunger, S. P., Li, S., Fall, M. Z., Naumovski, L. & Cleary, M. L. The proto-oncogene
HLF and the related basic leucine zipper protein TEF display highly similar DNAbinding
and transcriptional regulatory properties. Blood 87, 4607-4617 (1996).
59 Goldberg, J. M. et al. Childhood T-cell acute lymphoblastic leukemia: the Dana-
Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin
Oncol 21, 3616-3622, doi:10.1200/JCO.2003.10.116 (2003).
60 Aifantis, I., Raetz, E. & Buonamici, S. Molecular pathogenesis of T-cell leukaemia
and lymphoma. Nature reviews. Immunology 8, 380-390, doi:10.1038/nri2304 (2008).
61 Uckun, F. M. et al. Clinical features and treatment outcome of childhood T-lineage
acute lymphoblastic leukemia according to the apparent maturational stage of Tlineage
leukemic blasts: a Children's Cancer Group study. J Clin Oncol 15, 2214-2221
, doi:10.1200/JCO.1997.15.6.2214 (1997).
62 Winick, N. J., Carroll, W. L. & Hunger, S. P. Childhood leukemia--new advances and
challenges. The New England journal of medicine 351, 601-603, doi:10.
1056/NEJMe048154 (2004).
63 Burger, R., Hansen-Hagge, T. E., Drexler, H. G. & Gramatzki, M. Heterogeneity of Tacute
lymphoblastic leukemia (T-ALL) cell lines: suggestion for classification by
immunophenotype and T-cell receptor studies. Leukemia research 23, 19-27 (1999).
64 Girardi, T., Vicente, C., Cools, J. & De Keersmaecker, K. The genetics and molecular
biology of T-ALL. Blood 129, 1113-1123, doi:10.1182/blood-2016-10-706465 (2017).
65 Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute
lymphoblastic leukemia. Science 306, 269-271, doi:10.1126/science.1102160 (2004).
66 Mansur, M. B. et al. Distinctive genotypes in infants with T-cell acute lymphoblastic
leukaemia. British journal of haematology 171, 574-584, doi:10.1111/bjh.13613 (2015
).
67 Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4
encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 (
1993).
68 Peter Nelson, M. K., Anup Sharma, Elsa Maniataki, Zissimos Mourelatos. The
microRNA world: small is mighty. CellPress 28, 6 (2003).
69 Ballantyne, M. D., McDonald, R. A. & Baker, A. H. lncRNA/MicroRNA interactions
in the vasculature. Clinical pharmacology and therapeutics 99, 494-501, doi:10.
1002/cpt.355 (2016).
90
70 Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and
genomic regions involved in cancers. Proceedings of the National Academy of
Sciences of the United States of America 101, 2999-3004, doi:10.1073/pnas.
0307323101 (2004).
71 Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic
lymphocytic leukemias. Proceedings of the National Academy of Sciences of the
United States of America 101, 11755-11760, doi:10.1073/pnas.0404432101 (2004).
72 MacDonagh, L. et al. The emerging role of microRNAs in resistance to lung cancer
treatments. Cancer treatment reviews 41, 160-169, doi:10.1016/j.ctrv.2014.12.009 (
2015).
73 Sun, X., Charbonneau, C., Wei, L., Chen, Q. & Terek, R. M. miR-181a Targets
RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis.
Molecular cancer research : MCR 13, 1347-1357, doi:10.1158/1541-7786.MCR-14-
0697 (2015).
74 Ju, X. et al. Differential microRNA expression in childhood B-cell precursor acute
lymphoblastic leukemia. Pediatric hematology and oncology 26, 1-10, doi:10.
1080/08880010802378338 (2009).
75 Schotte, D. et al. Identification of new microRNA genes and aberrant microRNA
profiles in childhood acute lymphoblastic leukemia. Leukemia 23, 313-322, doi:10.
1038/leu.2008.286 (2009).
76 Jones, K., Nourse, J. P., Keane, C., Bhatnagar, A. & Gandhi, M. K. Plasma microRNA
are disease response biomarkers in classical Hodgkin lymphoma. Clinical cancer
research : an official journal of the American Association for Cancer Research 20,
253-264, doi:10.1158/1078-0432.CCR-13-1024 (2014).
77 Janssen, H. L. et al. Treatment of HCV infection by targeting microRNA. The New
England journal of medicine 368, 1685-1694, doi:10.1056/NEJMoa1209026 (2013).
78 Beg, M. S. et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered
twice weekly in patients with advanced solid tumors. Investigational new drugs 35,
180-188, doi:10.1007/s10637-016-0407-y (2017).
79 Carvalho de Oliveira, J. et al. MiRNA Dysregulation in Childhood Hematological
Cancer. International journal of molecular sciences 19, doi:10.3390/ijms19092688 (
2018).
80 Ohyashiki, K. et al. Establishment of a novel heterotransplantable acute lymphoblastic
leukemia cell line with a t(17;19) chromosomal translocation the growth of which is
inhibited by interleukin-3. Leukemia 5, 322-331 (1991).
81 Matsuo, Y. & Drexler, H. G. Establishment and characterization of human B cell
precursor-leukemia cell lines. Leukemia research 22, 567-579 (1998).
82 Adams, R. A., Flowers, A. & Davis, B. J. Direct implantation and serial
transplantation of human acute lymphoblastic leukemia in hamsters, SB-2. Cancer
research 28, 1121-1125 (1968).
83 Adams, R. A. et al. The question of stemlines in human acute leukemia. Comparison
of cells isolated in vitro and in vivo from a patient with acute lymphoblastic leukemia.
Experimental cell research 62, 5-10 (1970).
84 Rosenfeld, C. et al. Phenotypic characterisation of a unique non-T, non-B acute
lymphoblastic leukaemia cell line. Nature 267, 841-843 (1977).
85 Greil, J. et al. The acute lymphoblastic leukaemia cell line SEM with t(4;11)
chromosomal rearrangement is biphenotypic and responsive to interleukin-7. Br J
Haematol 86, 275-283 (1994).
86 Reichel, M. et al. Fine structure of translocation breakpoints in leukemic blasts with
chromosomal translocation t(4;11): the DNA damage-repair model of translocation.
Oncogene 17, 3035-3044, doi:10.1038/sj.onc.1202229 (1998).
91
87 Drexler, H. G., Quentmeier, H. & MacLeod, R. A. Malignant hematopoietic cell lines:
in vitro models for the study of MLL gene alterations. Leukemia 18, 227-232, doi:10.
1038/sj.leu.2403236 (2004).
88 Findley, H. W., Jr., Cooper, M. D., Kim, T. H., Alvarado, C. & Ragab, A. H. Two new
acute lymphoblastic leukemia cell lines with early B-cell phenotypes. Blood 60, 1305-
1309 (1982).
89 Rio, D. C., Clark, S. G. & Tjian, R. A mammalian host-vector system that regulates
expression and amplification of transfected genes by temperature induction. Science
227, 23-28 (1985).
90 DuBridge, R. B. et al. Analysis of mutation in human cells by using an Epstein-Barr
virus shuttle system. Molecular and cellular biology 7, 379-387 (1987).
91 Pear, W. S., Nolan, G. P., Scott, M. L. & Baltimore, D. Production of high-titer helper
-free retroviruses by transient transfection. Proceedings of the National Academy of
Sciences of the United States of America 90, 8392-8396 (1993).
92 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing
reads. 2011 17, doi:10.14806/ej.17.1.200
pp. 10-12 (2011).
93 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21,
doi:10.1093/bioinformatics/bts635 (2013).
94 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
95 Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with highthroughput
sequencing data. Bioinformatics 31, 166-169, doi:10.
1093/bioinformatics/btu638 (2015).
96 Yates, A. et al. Ensembl 2016. Nucleic acids research 44, D710-716, doi:10.
1093/nar/gkv1157 (2016).
97 Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and
deep-sequencing data. Nucleic acids research 39, D152-157, doi:10.1093/nar/gkq1027
(2011).
98 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics 26, 139
-140, doi:10.1093/bioinformatics/btp616 (2010).
99 Wong, N. & Wang, X. miRDB: an online resource for microRNA target prediction
and functional annotations. Nucleic acids research 43, D146-152, doi:10.
1093/nar/gku1104 (2015).
100 Vergoulis, T. et al. TarBase 6.0: capturing the exponential growth of miRNA targets
with experimental support. Nucleic acids research 40, D222-229, doi:10.
1093/nar/gkr1161 (2012).
101 Garcia, D. M. et al. Weak seed-pairing stability and high target-site abundance
decrease the proficiency of lsy-6 and other microRNAs. Nature structural &
molecular biology 18, 1139-1146, doi:10.1038/nsmb.2115 (2011).
102 Chou, C. H. et al. miRTarBase 2016: updates to the experimentally validated miRNAtarget
interactions database. Nucleic acids research 44, D239-247, doi:10.
1093/nar/gkv1258 (2016).
103 Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics 26, 589-595, doi:10.1093/bioinformatics/btp698 (2010).
104 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,
2078-2079, doi:10.1093/bioinformatics/btp352 (2009).
105 Duraku, L. S. et al. Re-innervation patterns by peptidergic Substance-P, nonpeptidergic
P2X3, and myelinated NF-200 nerve fibers in epidermis and dermis of rats
92
with neuropathic pain. Experimental neurology 241, 13-24, doi:10.1016/j.expneurol.
2012.11.029 (2013).
106 DePristo, M. A. et al. A framework for variation discovery and genotyping using nextgeneration
DNA sequencing data. Nature genetics 43, 491-498, doi:10.1038/ng.806 (
2011).
107 McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl
API and SNP Effect Predictor. Bioinformatics 26, 2069-2070, doi:10.
1093/bioinformatics/btq330 (2010).
108 Adzhubei, I. A. et al. A method and server for predicting damaging missense
mutations. Nature methods 7, 248-249, doi:10.1038/nmeth0410-248 (2010).
109 Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous
variants on protein function using the SIFT algorithm. Nature protocols 4, 1073-1081,
doi:10.1038/nprot.2009.86 (2009).
110 Fischer, U. et al. Genomics and drug profiling of fatal TCF3-HLF-positive acute
lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options.
Nature genetics 47, 1020-1029, doi:10.1038/ng.3362 (2015).
111 Vervoort, S. J., van Boxtel, R. & Coffer, P. J. The role of SRY-related HMG box
transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe?
Oncogene 32, 3397-3409, doi:10.1038/onc.2012.506 (2013).
112 Katoh, M. Function and cancer genomics of FAT family genes (review). International
journal of oncology 41, 1913-1918, doi:10.3892/ijo.2012.1669 (2012).
113 Zhu, J. W. et al. E2F1 and E2F2 determine thresholds for antigen-induced T-cell
proliferation and suppress tumorigenesis. Molecular and cellular biology 21, 8547-
8564, doi:10.1128/MCB.21.24.8547-8564.2001 (2001).
114 Rao, Z. et al. The structure of a Ca(2+)-binding epidermal growth factor-like domain:
its role in protein-protein interactions. Cell 82, 131-141 (1995).
115 Nishi, M. et al. Suppression of the let-7b microRNA pathway by DNA
hypermethylation in infant acute lymphoblastic leukemia with MLL gene
rearrangements. Leukemia 27, 389-397, doi:10.1038/leu.2012.242 (2013).
116 Wu, Z. et al. HMGA2 as a potential molecular target in KMT2A-AFF1-positive infant
acute lymphoblastic leukaemia. Br J Haematol 171, 818-829, doi:10.1111/bjh.13763 (
2015).
117 Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA targets. Cell 120,
15-20, doi:10.1016/j.cell.2004.12.035 (2005).
118 Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational
repression. Genes & development 18, 504-511, doi:10.1101/gad.1184404 (2004).
119 Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513-520 (2002
).
120 Enright, A. J. et al. MicroRNA targets in Drosophila. Genome biology 5, R1, doi:10.
1186/gb-2003-5-1-r1 (2003).
121 John, B. et al. Human MicroRNA targets. PLoS biology 2, e363, doi:10.1371/journal.
pbio.0020363 (2004).
122 Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs
are conserved targets of microRNAs. Genome research 19, 92-105, doi:10.1101/gr.
082701.108 (2009).
123 Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B.
Prediction of mammalian microRNA targets. Cell 115, 787-798 (2003).
124 Alexiou, P., Maragkakis, M., Papadopoulos, G. L., Reczko, M. & Hatzigeorgiou, A. G
. Lost in translation: an assessment and perspective for computational microRNA
target identification. Bioinformatics 25, 3049-3055, doi:10.
93
1093/bioinformatics/btp565 (2009).
125 Pinzon, N. et al. microRNA target prediction programs predict many false positives.
Genome research 27, 234-245, doi:10.1101/gr.205146.116 (2017).
126 Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis:
the Rosetta Stone of a hidden RNA language? Cell 146, 353-358, doi:10.1016/j.cell.
2011.07.014 (2011).
127 Phatak, P. & Donahue, J. M. Biotinylated Micro-RNA Pull Down Assay for
Identifying miRNA Targets. Bio-protocol 7, e2253, doi:10.21769/BioProtoc.2253 (
2017).
128 Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic
gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-
862 (1993).
129 Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing
in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of
translation. Developmental biology 216, 671-680, doi:10.1006/dbio.1999.9523 (1999).
130 Bibi, F. et al. microRNA analysis of gastric cancer patients from Saudi Arabian
population. BMC genomics 17, 751-751, doi:10.1186/s12864-016-3090-7 (2016).
131 Zhong, S. et al. MicroRNA expression profiles of drug-resistance breast cancer cells
and their exosomes. Oncotarget 7, 19601-19609, doi:10.18632/oncotarget.7481 (2016
).
132 Glaser, K. B. et al. Gene expression profiling of multiple histone deacetylase (HDAC)
inhibitors: defining a common gene set produced by HDAC inhibition in T24 and
MDA carcinoma cell lines. Molecular cancer therapeutics 2, 151-163 (2003).
133 Mariadason, J. M., Corner, G. A. & Augenlicht, L. H. Genetic reprogramming in
pathways of colonic cell maturation induced by short chain fatty acids: comparison
with trichostatin A, sulindac, and curcumin and implications for chemoprevention of
colon cancer. Cancer research 60, 4561-4572 (2000).
134 Van Lint, C., Emiliani, S. & Verdin, E. The expression of a small fraction of cellular
genes is changed in response to histone hyperacetylation. Gene expression 5, 245-253
(1996).
135 Lee, H., Lee, S., Bæk, M., Kim, H.-Y. & Jeoung, D.-I. Expression profile analysis of
trichostatin A in human gastric cancer cells. Biotechnology Letters 24, 377-381, doi:10
.1023/A:1014512819978 (2002).
136 de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S. & van Kuilenburg, A. B.
Histone deacetylases (HDACs): characterization of the classical HDAC family. The
Biochemical journal 370, 737-749, doi:10.1042/BJ20021321 (2003).
137 Grozinger, C. M., Hassig, C. A. & Schreiber, S. L. Three proteins define a class of
human histone deacetylases related to yeast Hda1p. Proceedings of the National
Academy of Sciences of the United States of America 96, 4868-4873 (1999).
138 Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on
Hsp90 inhibitors. Nature 425, 407-410, doi:10.1038/nature01913 (2003).
139 Rietveld, L. E., Caldenhoven, E. & Stunnenberg, H. G. Avian erythroleukemia: a
model for corepressor function in cancer. Oncogene 20, 3100-3109, doi:10.1038/sj.
onc.1204335 (2001).
140 Minucci, S., Nervi, C., Lo Coco, F. & Pelicci, P. G. Histone deacetylases: a common
molecular target for differentiation treatment of acute myeloid leukemias? Oncogene
20, 3110-3115, doi:10.1038/sj.onc.1204336 (2001).
141 Saito, A. et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked
in vivo antitumor activity against human tumors. Proceedings of the National
Academy of Sciences of the United States of America 96, 4592-4597 (1999).
94
142 Richon, V. M., Zhou, X., Rifkind, R. A. & Marks, P. A. Histone deacetylase
inhibitors: development of suberoylanilide hydroxamic acid (SAHA) for the treatment
of cancers. Blood cells, molecules & diseases 27, 260-264, doi:10.1006/bcmd.2000.
0376 (2001).
143 He, L. Z. et al. Histone deacetylase inhibitors induce remission in transgenic models
of therapy-resistant acute promyelocytic leukemia. The Journal of clinical
investigation 108, 1321-1330, doi:10.1172/JCI11537 (2001).
144 Marks, P. A., Richon, V. M. & Rifkind, R. A. Histone deacetylase inhibitors: inducers
of differentiation or apoptosis of transformed cells. Journal of the National Cancer
Institute 92, 1210-1216 (2000).
145 Park, M. J. et al. FBXW7 and NOTCH1 mutations in childhood T cell acute
lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol 145, 198
-206, doi:10.1111/j.1365-2141.2009.07607.x (2009).
146 Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute
lymphoblastic leukaemia. Nature 446, 758-764, doi:10.1038/nature05690 (2007).
147 Gutierrez, A. et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell
acute lymphoblastic leukemia. Blood 114, 647-650, doi:10.1182/blood-2009-02-
206722 (2009).
148 Zuurbier, L. et al. The significance of PTEN and AKT aberrations in pediatric T-cell
acute lymphoblastic leukemia. Haematologica 97, 1405-1413, doi:10.3324/haematol.
2011.059030 (2012).
149 Silva, A. et al. PTEN posttranslational inactivation and hyperactivation of the
PI3K/Akt pathway sustain primary T cell leukemia viability. The Journal of clinical
investigation 118, 3762-3774, doi:10.1172/JCI34616 (2008).
150 Yoneda-Kato, N., Tomoda, K., Umehara, M., Arata, Y. & Kato, J. Y. Myeloid
leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit
3. The EMBO journal 24, 1739-1749, doi:10.1038/sj.emboj.7600656 (2005).
151 Mahla, R. S., Reddy, M. C., Prasad, D. V. & Kumar, H. Sweeten PAMPs: Role of
Sugar Complexed PAMPs in Innate Immunity and Vaccine Biology. Frontiers in
immunology 4, 248, doi:10.3389/fimmu.2013.00248 (2013).
152 Lin, H. et al. Loss of immunity-supported senescence enhances susceptibility to
hepatocellular carcinogenesis and progression in Toll-like receptor 2-deficient mice.
Hepatology 57, 171-182, doi:10.1002/hep.25991 (2013).
153 Soares, J. B. et al. Increased hepatic expression of TLR2 and TLR4 in the hepatic
inflammation-fibrosis-carcinoma sequence. Innate immunity 18, 700-708, doi:10.
1177/1753425912436762 (2012).
154 Chen, R., Alvero, A. B., Silasi, D. A., Steffensen, K. D. & Mor, G. Cancers take their
Toll--the function and regulation of Toll-like receptors in cancer cells. Oncogene 27,
225-233, doi:10.1038/sj.onc.1210907 (2008).
155 Ashman, L. K. The biology of stem cell factor and its receptor C-kit. The international
journal of biochemistry & cell biology 31, 1037-1051 (1999).
156 Heinrich, M. C. et al. Kinase mutations and imatinib response in patients with
metastatic gastrointestinal stromal tumor. J Clin Oncol 21, 4342-4349, doi:10.
1200/JCO.2003.04.190 (2003).
157 McLean, S. R. et al. Imatinib binding and cKIT inhibition is abrogated by the cKIT
kinase domain I missense mutation Val654Ala. Molecular cancer therapeutics 4, 2008
-2015, doi:10.1158/1535-7163.MCT-05-0070 (2005).
158 Roberts, K. G. et al. Resistance to c-KIT kinase inhibitors conferred by V654A
mutation. Molecular cancer therapeutics 6, 1159-1166, doi:10.1158/1535-7163.MCT-
06-0641 (2007).
95
159 Liu, M., Wang, G., Gomez-Fernandez, C. R. & Guo, S. GREB1 functions as a growth
promoter and is modulated by IL6/STAT3 in breast cancer. PloS one 7, e46410,
doi:10.1371/journal.pone.0046410 (2012).
160 Mohammed, H. et al. Endogenous purification reveals GREB1 as a key estrogen
receptor regulatory factor. Cell reports 3, 342-349, doi:10.1016/j.celrep.2013.01.010 (
2013).
161 Bauerschlag, D. O. et al. Progression-free survival in ovarian cancer is reflected in
epigenetic DNA methylation profiles. Oncology 80, 12-20, doi:10.1159/000327746 (
2011).
162 Antunes, A. A. et al. GREB1 tissue expression is associated with organ-confined
prostate cancer. Urologic oncology 30, 16-20, doi:10.1016/j.urolonc.2009.09.014 (
2012).
163 Rae, J. M. et al. GREB 1 is a critical regulator of hormone dependent breast cancer
growth. Breast cancer research and treatment 92, 141-149, doi:10.1007/s10549-005-
1483-4 (2005).
164 Laviolette, L. A., Hodgkinson, K. M., Minhas, N., Perez-Iratxeta, C. & Vanderhyden,
B. C. 17beta-estradiol upregulates GREB1 and accelerates ovarian tumor progression
in vivo. International journal of cancer 135, 1072-1084, doi:10.1002/ijc.28741 (2014
).
165 Stoskus, M. et al. Identification of characteristic IGF2BP expression patterns in
distinct B-ALL entities. Blood cells, molecules & diseases 46, 321-326, doi:10.1016/j.
bcmd.2011.02.005 (2011).
166 Gu, G., Sederberg, M. C., Drachenberg, M. R. & South, S. T. IGF2BP1: a novel IGH
translocation partner in B acute lymphoblastic leukemia. Cancer genetics 207, 332-
334, doi:10.1016/j.cancergen.2014.07.002 (2014).
167 Jeffries, S. J., Jones, L., Harrison, C. J. & Russell, L. J. IGH@ translocations co-exist
with other primary rearrangements in B-cell precursor acute lymphoblastic leukemia.
Haematologica 99, 1334-1342, doi:10.3324/haematol.2014.103820 (2014).
168 Yamagishi, M. et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NFkappaB
pathway in adult T cell leukemia and other cancers. Cancer cell 21, 121-135,
doi:10.1016/j.ccr.2011.12.015 (2012).
169 Lin, Y. et al. Engineering of functional replication protein a homologs based on
insights into the evolution of oligonucleotide/oligosaccharide-binding folds. Journal of
bacteriology 190, 5766-5780, doi:10.1128/JB.01930-07 (2008).
170 Poncet, D. et al. Changes in the expression of telomere maintenance genes suggest
global telomere dysfunction in B-chronic lymphocytic leukemia. Blood 111, 2388-
2391, doi:10.1182/blood-2007-09-111245 (2008).
171 Hoxha, M. et al. Relevance of telomere/telomerase system impairment in early stage
chronic lymphocytic leukemia. Genes, chromosomes & cancer 53, 612-621, doi:10.
1002/gcc.22171 (2014).
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät
Dokument erstellt am:22.01.2020
Dateien geändert am:22.01.2020
Promotionsantrag am:11.09.2019
Datum der Promotion:16.12.2020
english
Benutzer
Status: Gast
Aktionen