Dokument: Einfluss einer sterilen Laparotomie und einer moderaten abdominellen Sepsis auf die Mitochondrienfunktion im Darm im zeitlichen Verlauf bis 96h

Titel:Einfluss einer sterilen Laparotomie und einer moderaten abdominellen Sepsis auf die Mitochondrienfunktion im Darm im zeitlichen Verlauf bis 96h
Weiterer Titel:Influence of a sterile laparotomy and a moderate abdominal sepsis on mitochondrial function in the gut over a time course up to 96h
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=51599
URN (NBN):urn:nbn:de:hbz:061-20200110-092341-0
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Itta, Rebecca [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,20 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 26.11.2019 / geändert 26.11.2019
Beitragende:Prof. Dr. Picker, Olaf [Gutachter]
Prof. Dr. med. Akhyari, Payam [Gutachter]
Stichwörter:Mitchochondrien, Sepsis, CASP
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Auch heutzutage stellt eine Sepsis mit den Folgen eines möglichen Multiorganversagens eine große Herausforderung in der Intensivmedizin dar. Sowohl eine Störung der Mikrozirkulation als auch eine mitochondriale Dysfunktion, insbesondere des Gastrointestinaltraktes, werden als ein wesentlicher pathophysiologischer Mechanismus der Sepsis angesehen. Allerdings ist bislang nicht untersucht, ob und in welchem Ausmaß Mitochondrien aus Zellen des Gastrointestinaltraktes ihre Funktion während der Sepsis verändern und welchen Einfluss bereits eine isolierte Laparotomie hat. Ziel dieser Studie war es, im Zeitverlauf über 96 h zu untersuchen, inwieweit eine Sepsis mit abdominellem Fokus zu einer mitochondrialen Dysfunktion des Darmes führt und welcher Bedeutung dabei der reinen Laparotomie (Sham OP) zukommt.
Nach Genehmigung der Tierschutzbehörde wurden 95 männliche Wistar-Ratten in 8 Gruppen (n=11-12) randomisiert: Gruppen 1-4 Sham, Gruppen 5-8 CASP. Nicht behandelte Tiere dienten als Kontrolle (n=9). Zu den Zeitpunkten 24, 48, 72 und 96 Stunden wurde die mitochondriale Funktion in Gewebehomogenaten des Colons mittels Respirometrie gemessen. Dabei wurde der mitochondriale Sauerstoffverbrauch gemessen und zwar für State 2 nach Stimulation mit den Substraten für Komplex I Glutamat/ Malat und Komplex II Succinat und für State 3 nach Stimulation mit ADP. Der „respiratory control ratio“ (RCR= State 3/ State 2) wurde als Maß der Kopplung zwischen Atmungskettenaktivität und oxidativer Phosphorylierung berechnet. Die Effizienz der oxydativen Phosphorylierung wurde durch die ADP/O-Ratio (zugegebene Menge ADP/ Verbrauchter O2) dargestellt. Zur statistischen Analyse wurde das Computerprogramm GraphPad Prism v6.01 verwendet. Dabei wurde eine two-way ANOVA mit Signifikanzniveau p<0,05 und eine Tukey post-hoc Analyse durchgeführt.
Sowohl der RCR als auch die ADP/O-Ratio für beide Komplexe blieben im zeitlichen Verlauf in allen Gruppen unverändert. Die mitochondriale Funktion im Colon blieb bis zu 96h nach einer sterilen Laparotomie und bei einer moderaten abdominellen Sepsis im CASP-Modell unverändert.

Even today sepsis and its most severe complication multi-organ failure are a major challenge in intensive care. Microcirculation and mitochondrial dysfunction are both considered as major pathophysiological mechanisms of sepsis. However, it has not yet been investigated whether and to which extent mitochondria from cells of the gastrointestinal tract change their function during sepsis and what influence a sterile laparotomy already has on them. The aim of this study was to investigate the effect of a sterile laparotomy and of a moderate abdominal sepsis on the mitochondrial function in colon in a time course over 96 hours.
According to the animal welfare authority, 95 male Wistar rats were randomized into 8 groups (n= 11-12): 1-4 sham, 5-8 CASP. Untreated animals served as control (n= 9). The mitochondrial respiration in colon homogenates was assessed 24, 48, 72, and 96 hours after surgery. Mitochondrial oxygen consumption was determined using a Clark-type electrode. State 2 (oxygen consumption in the presence of the substrates for complexes I and II) and state 3 respiration (ADP dependent) were assessed. The respiratory control ratio (RCR= state 3/ state 2) and ADP/O ratio (ADP added/ oxygen consumed) were calculated for both complexes.
Data are presented as means ± SD, two-way ANOVA followed by Tukey’s post hoc test.
Both the RCR and the ADP/O-ratio for both complexes remained unchanged over the time course of 96 hours. The mitochondrial function in the colon remains unchanged up to 96 hours after a sterile laparotomy and by moderate abdominal sepsis.
Quelle:1. Fleischmann, C., Scherag, A., Adhikari, N.K., Hartog, C.S., Tsaganos, T., Schlattmann, P., Angus, D.C., Reinhart, K. Assessment of global incidence and mortality of hospital-treated sepsis: current estimates and limitations. Am J Respir Crit Care Med. 2015, 193 (3), 259-72.
2. Fleischmann, C., Thomas-Rueddel, D.O., Hartmann, M., Hartog, C.S., Welte, T., Heublein, S., Dennler, U., Reinhart, K. Hospital Incidence and Mortality Rates of Sepsis. Dtsch Arzebl Int. 2016, 113(10), 159-66.
3. Martin, G.S., Mannino, D. M. , Eaton, S., Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. The New England Journal of Medicine. 2003, 348 (16), 1546–1554.
4. Angus, D.C., Van der Poll, T. Severe sepsis and septic shock. N.Engl. J.Med. 2013, 369, 840-851.
5. Martin, G.S. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 2012, 10, 701-706.
6. Gaieski, D.F., Edwards, J.M.,, Kallan, M.J., Carr, B.G. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013, 41(5), 1167-1174.
7. Vincent, J-L., Marshall, J.C., Namendys-Silva, S.A., et al. Assessment of the worldwide burden of critical illness: the Intensive Care Over Nations (ICON) audit. Lancet Respir Med. 2014, 2(5), 380-386.
8. Singer, M., Deutschman, C.S., Seymour, C.S., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard G.R., Chiche, J.-D., Coopersmith, C.M., Hotchkiss, R.S., Levy, M.M., Marshall, J.C., Martin, G.S., Opal, S.M., Rubenfeld, G.D., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016, 315, 801-10.
9. Rhodes A., Evans, L., Alhazzani, W., Lewy, M.M., Antonelli, M., Ferrer, R. Kumar, A., Sevransky, J.E. et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock. Intensive Care Med. 2017, 43(3), 304-377.
10. Levy, M.M., Evans, L.E., Rhodes, A. The Surviving Sepsis Campaign Bundle: 2018 update. Critial Care Medizin. 2018, 44(6), 925-928.
11. Abraham, E., Singer, M. Mechanisms of sepsis-induced organ dysfunction. Crit Care Med. 2007, 35, 2408-16.
12. Exline, M.C., Crouser, E.D. Mitochondrial mechanisms of sepsis-induced organ failure. Front Biosci J Virtual Libr. 2008, 13, 5030-41.
13. Oppenheim, J.J. Cytokines, past, present, and future. Int J Hematol. 2002, 74, 3–8.
14. Bauss, F., Droge, W., Mannel, D.N. Tumor necrosis factor mediates endotoxic effects in mice. Infect. Immun. 1987, 55, 1622-25.
15. Feng, M., Sun, T., Zhao, Y., Zhang, H. Detection of Serum Interleukin-6/10/18 Levels in Sepsis and Its Clinical Significancee. J Clin Lab Anal. 2016, 30(6), 1037-1043.
16. Deutschman, C.S., Tracey, K.J. Sepsis: current dogma and new perspectives. Immunity . 2014, 40, 463–75.
17. Balestra, G.M., Legrand, M., Ince, C. Microcirculation and mitochondria in sepsis: getting out of breath. Curr Opin 4 Anaesthesiol. 2009, 22, 184-190.
18. Garrabou, G., Morén, C., López, S., Tobías, E., Cardellach, F., Miró, O., Casademont, J. The effects of sepsis on mitochondria. 2012, 205, 392-400.
19. Galley, H.F. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth. 2011, 107, 57-64.
20. Brealey, D., Brand, M., Hargreaves, I., Heales, S., Land, J., Smolenkski, R., Davies, N.A., Cooper, C.E., Singer, M. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002, 316, 219-223.
21. Rolfe, D.F., Brown, G.C. Cellular energy utilization and molecular origin of standarf metabolic rate in mammals. Physiol Rev. 1997, 77, 731-58.
22. Azevedo, L.C., Janiszewski, M. und Soriano, F.G., Laurindo, F.R. Redox mechanisms of vascular cell dysfunction in sepsis. Endocr. Metab. Immune Disord. Drug Targets. 2006, 6, 159-164.
23. Weidinger, A., Müllebener, A., Paier-Pourani, J. et al. Vicious inducible nitric oxide synthase-mitochondrial reactive oxygen species cycle accelerates inflammatory response and causes liver injury in rats. Antioxid Redox Signal. 2015, 22, 572-586.
24. Rocha, M., Herance, R., Rovira, S., Hernández-Mijares, A., Victor, V.M. Mitochondrial dysfunction and antioxidant therapy in sepsis. Infect Disord Drug Targets . 2012, 12, 161–178.
25. Singer, M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014, 5(1), 66-72.
26. Herminghaus A., Barthel, F., Heinen, A., Beck, C., Vollmer, C., Bauer, I., Weidinger, A., Kozlov, A.V., Picker, O. Severity of polymicrobial sepsis modulates mitochondrial function in rat liver. Mitochondrion. 2015, 24, 122-128.
27. Brealey, D., Karyampudi, S., Jacques, T.S., Novelli, M., Stidwill, R., Taylor, V., Smolenski, R.T., Singer, M. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol. 2004, 268 (3), R491-497.
28. Mittal, A., Hickey, A.J., Chai, C.C., Loveday, B.P., Thompson, N., Dare, A., Delahunt, B., Cooper, G.J., Windsor, J.A., Phillips, A.R. Early organ-specific mitochondrial dysfunction of jejunum and lung found in rats with experimental acute pancreatitis. HPB (Oxford). 2011, 13 (5), 332-341.
29. Thrumbeckaite, S., Kuliaviene, I., Deduchovas, O., Kincius, M., Baniene, R., Virketyte, S., Bukauskas, D., Jansen, E., Kupčinskas, L., Borutaite, V., Gulbinas, A. Experimental acute pancreatitis induces mitochondrial dysfunction in rat pancreas, kidney and lungs but not in liver. Pancreatol. Off. J. Int. Assoc. Pancreatol. IAP Al. 2013, 13, 216–224.
30. Protti, A., Fortunato, F., Caspani, M.L. et al. Mitochondrial changes in platelets are not related to those in skeletal muscle during human septic shock. PLoS ONE. 9.
31. Singer, M., Brealey, D. Mitochondrial dysfunction in sepsis. Biochem. Soc. Symp. 1999, 66, 149- 166.
32. Arulkumaran, N., Deutschman, C.S., Pinsky, M.R., Zuckerbraun, B., Schumacker, P.T., Gomez, H., Gomez, A., Murray, P, Kellum, J.A. Mitochondrial function in Sepsis. Shock. 2016, 45 (3), 271-281.
33. Jeger, V., Diafarzahdeh, S., Jakob, S.M., Takala, J. Mitochondrial function in sepsis. Eur J Clin Invest. 2013, 43(5), 532-42.
34. King, C.J., Tytgat, S., Delude, R.L., Fink, M.P. Ileal mucosal oxygen consumption is decreased in endotoxemic rats but is restored toward normal by treatment with aminoiguanidine. Crit Care Med. 1999, 27, 2518-24.
35. Saxena, A., Lopes, F., Poon, K.K.H., McKay, D.M. Absence of the NOD2 protein renders epithelia more susceptible to barrier dysfunction due to mitochondrial dysfunction. Am J Phyiol Gastrointest Liver Physiol. 2017, 313, G26- G28.
36. Saxena, A., Lopes, F., McKay, D.M. Reduced intestinal epithelial mitochondrial function enhances in vitro interleukin-8 production in response to commensal Escherichia coli. Inflammation Research. 2018, 67, 829- 837.
37. Truse, R., Hinterberg, J., Schulz, J., Herminghaus, A., Weber, A., Mettler-Altmann, T., Bauer, I., Picker, O., Vollmer, C. Effect of topical iloprost and nitroglycerin on gastric microcirculation and barrier function during hemorrhagic shock in dogs. J Vasc Res. 2017, 54, 109–21.
38. Vollmer, C., Weber, A.P.M., Wallenfang, M., Hoffmann, T., Mettler-Altmann, T., Truse, R. Melatonin pretreatment improves gastric mucosal blood flow and maintains intestinal barrier function during hemorrhagic shock in dogs. Microcirculation. 2017, 24.
39. Bonanno, F.G. Clinical pathology of the shock syndromes. J Emerg Trauma Shock . 2011, 4, 233–43.
40. Russell, D.H., Barreto, J.C., Klemm, K., Miller, T.A. Hemorrhagic shock increases gut macromolecular permeability in the rat. Shock. 1995, 4, 50–55.
41. Singer, M., De Santis, V., Vitale, D., Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet. 2004, 364, 545-548.
42. Traeger, T., Koerner, P., Kessler, W., Cziupka, K., Diedrich, S., Busemann, A., Heidecke, C.-D., Maier, S. CASP - a standardized modell for polymicrobial abdominal sepsis. J Vis Exp. 2010, 46, 2299.
43. Lustig, M.K., Bac, V.H., Pavlovic, D., Maier, S., Gründling, M., Grisk, O., Wendt, M., Heidecke, C-D., Lehmann, C. Colon ascendens stent peritonitis - a model of sepsis adopetd to the rat: physiological, mimcrocirculatory and laboratory changes. Shock. 2007, 28-1, 59-64.
44. Schöneborn, S., Vollmer, C., Barthel, F., Herminghaus, A., Schult, J., Bauer, I., Beck, C., Picker, O. Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats. Microvas Research. 2016, 106, 24-30.
45. Stübs, C.C.M., Picker, O., Schulz, J., Obermiller, K., Barthel, F., Hahn, A.-M., Bauer, I., Beck, C. Acute, short-term hypercapnia improves microvascular oxygenation of the colon in an animal model of sepsis. Microvas Res. 2013, 90, 180-186.
46. Lowry, O.H., Rosebrough, N.J., Farr., A.L., Randall, R.J. Protein measurement with the folin phenol reagent. J.Biol.Chem. 1951, 193, 265-275.
47. Gnaiger, E. Mitochondrial Pathways and Respiratory control - an introduction to OXPHOS Analysis. Mitochondrial Physiology Network 19.12. 2014.
48. Tsikas, D. Assessment of lipid peroxidation by measurin malondialdehyde (MDA and relatives in biological samples: Analytical and biological challenges. Anal Biochem. 2017, 524, 13-30.
49. Khoubnasabjafari, M., Ansarin, K., Jouyban, A. Critical review of malondialdehde analysis in biological samples. Curr.Pharmac.Anal. 2016, 12(1), 4-17.
50. Herminghaus A., Papenbrock H., Eberhardt R., Vollmer C., Truse R., Schulz J., Bauer I., Weidinger, A., Kozlov, A.-V., Stiban, J., Picker O. Time-related changes in hepatic and colonic mitochondrial oxygen consumption after abdominal infection in rats. Intensive Care Med Exp. . 2019, 7(1), 4.
51. Wichterman, K., Baue, A., Chaudry, I. Sepsis and septic shoc: a review of laboratory models and a proposal. J Surg Res. 1980, 29: 189-201.
52. Maier, S., Traeger, T., Entleutner, M., Westerholt, A., Kleist, B., Hüser, N., Holzmann, B., Stier, A., Pfeffer, K., Heidecke, C.-D. Cecal ligation and puncture versus colon ascendens stent peritonitis: two distinct animal models for polymicrobial sepsis. Shock Augusta Ga. 2004, 21, 505-511.
53. Rittirsch, D., Hoesel, L.M., Ward, P.A. The disconnect between animal models of sepsis and human sepsis. J. Leukoc. Biol. 2007, 81, 137–143.
54. Zantl, N., Uebe, A., Neumann, B., Wagner, H., Siewert, J.R., Holzmann, B., Heidecke C.D., Pfeffer, K. Essential role of gamma interferon in survival of CASP, a novel murine model of abdominal sepsis. Infect Immun. 1998, 66 (5), 2300-9.
55. Kozlov, A.V., Duvigneau, J.C., Hyatt, T.C., Raju, R., Behling, T., Hartl, R.T., Staniek, K., Miller, I., Gregor, W., Redl, H., Chaudry, I.H. Effect of estrogen on mitochondrial function and intracellular stress markers in rat liver and kidney following trauma-hemorrhagic shock and prolonged hypotension. Mol Med. . 2010, 16, 254- 261.
56. Pecinová, A., Drahota, Z., Nůsková, H., Pecina, P., Houštěk, J. Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion. 2011, 11, 722– 728.
57. Azevedo, L.C.P. Mitochondrial Dysfunction in Sepsis. Drug Targets, 2010, 10, 214-223. 2010, 10, 214- 223.
58. Wu, H.P., Chen, C.K., Chung, K., Tseng, J.C., Hua, C.C., Liu, Y.C., Chuang, D.Y., Yang, C.H. Serial cytokine levels in patients with severe sepsis. Inflamm. Res. 2009, 58 (7), 385- 393.
59. Gogos, C.A., Drosou, E., Bassaris, H.P., Skoutelis, A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis. 2000, 181 (1), 176- 180.
60. Mera, S., Tatulescu, D., Cismaru, C., Bondor, C., Slavcovici, A., Zanc, V., Carstina, D., Oltean, M. Multiplex cyctokine profiling in patients with sepsis.
61. Kumar, A.T., Sudhir, U., Punith, K., Kumar, R., Ravi Kumar, V.N., Rao, M.Y. Cytokine profile in elderly patients with sepsis. Indian J. Crit. Care Med. 2009, 13 (2), 74-78.
62. Kellum, J.A., Kong, L., Fink, M.P., Weissfeld, L.A., Yealy, D.M., Pinsky, M.R., Fine, J., Krichevsky, A., Delude, R.L., Angus, D.C., GenIMS Investigators. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the genetic and inflammatory markers of sepsis (GenIMS) study. Arch Intern Med. 2007, 167 (15), 1655- 63.
63. Osuchowski, M.F., Welch, K., Yang, H., Siddiqui, J., Remick, D.G. Chronic sepsis mortality characterized by an individualized inflammatory response. J Immunol Baltim Md . 179, 623–630.
64. Osuchowski, M.F., Connett, J., Welch, K., Granger, J., Remick, D.G. Stratification is the key: inflammatory biomarkers accurately direct immunomodulatory therapy in experimental sepsis. Crit Care Med . 2009, 37, 1567–1573.
65. Osuchowski, M.F., Welch, K., Siddiqui, J., Remick, D.G. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol Baltim Md. 2006, 177, 1967–1974.
66. Colgan, S.P., Campbell, E.L., Kominsky, D.J. Hypoxia and Mucosal Inflammation. Annu Rev Pathol . 2016, 11, 77–100.
67. Karhausen, J., Furuta, G.T., Tomaszewski, J.E., Johnson, R.S., Colgan, S.P., Haase, V.H. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J Clin Invest . 2004, 114, 1098–1106.
68. Lei, Q., Qiang, F., Chao, D., Di, W., Guoquian, Z., Bo, Y., Lina, Y. Amelioration of hypoxia and LPS induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF κB and HIF 1α signaling pathways. Int J Mol Med . 2014, 34, 1629–1639.
69. Carré, J.E., Singer, M. Cellular energetic metabolism in sepsis: the need for a systems approach. Biochim Biophys Acta . 2008, 1777, 763–771.
70. Brand, M.D., Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem J . 435, 297–312.
71. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem J . 2009, 417, 1–13 .
72. Corda, S., Laplace, C., Vicaut, E., Duranteau, J. Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol . 2001, 24, 762–768.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:2015-2019
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:10.01.2020
Dateien geändert am:10.01.2020
Promotionsantrag am:29.04.2019
Datum der Promotion:06.11.2019
english
Benutzer
Status: Gast
Aktionen