Dokument: Experimental investigation of photodynamic diagnostic and therapy on a human chordoma cell line model in vitro

Titel:Experimental investigation of photodynamic diagnostic and therapy on a human chordoma cell line model in vitro
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=50917
URN (NBN):urn:nbn:de:hbz:061-20191029-080855-4
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Eismann, Lennert [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]9,98 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 17.09.2019 / geändert 17.09.2019
Beitragende:Prof. Dr. med. Cornelius, Jan Frederick [Gutachter]
Priv. Doz. Dr. Wagenmann, Martin [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Summary
Chordomas are rare neoplasm of the axial skeleton with predilection for the skull base and sacral region. Patients become symptomatic at advanced tumor stages due to slow and infiltrative growth into adjacent anatomical structures. At present, standard therapy is radical resection followed by radiotherapy. However, late diagnosis and proximity to surrounding vital structures often result in subtotal excision and hence in elevated local recurrence rates. Up to date, chemotherapy has shown to be ineffective. Therefore, new adjuvant treatment modalities are needed. 5-aminolevulinic acid based photodynamic therapy revealed promising results in meningioma, glioma and puitary adenoma models and encouraged us to investigate the efficacy of ALA/PDT on a human chordoma cell line in vitro. The results indicated that PPIX accumulation was superior after 6 h 5-ALA incubation time in comparison to a standard incubation time of 4 h. Furthermore, we detected a lethal effect 24 h of laser-irradiation on chordoma cells having been incubated for 6 h with graded doses of 5-ALA beforehand. High cell density of chordomas increased toxic effect of ALA/PDT. This might be explained by high intercellular communication and suggests existence of a so-called bystander effect. These preliminary findings of PPIX accumulation after exogenous 5-ALA application in chordoma cells may be of clinical interest for fluorescence-guided surgery of chordomas. In fact, residual tumor might better be detected increasing local tumor control. Even more, unresectable tumor remnants might be destroyed by ALA/PDT as intraoperative adjuvant treatment modality. Further investigations on different chordoma cell lines and tumor cells are needed to confirm these preliminary findings.

Zusammenfassung
Chordome sind seltene Tumore der Schädelbasis und des Os sacrum. Charakteristisch ist ihr langsames infiltratives Wachstum, weshalb diese Tumore meist erst im fortgeschrittenen Stadium symptomatisch werden. Der Goldstandard in der Therapie ist eine möglichst radikale Resektion gefolgt von einer adjuvanten Bestrahlung. Aufgrund von später Diagnosestellung und der Nähe zu vitalen Strukturen ist eine komplette Resektion schwierig und nur selten möglich. Residuales Tumorgewebe erhöht die lokale Rezidivrate. Chemotherapeutika zeigten bisher noch keinen Erfolg, sodass neue adjuvante Therapiemöglichkeiten notwendig sind. Eine alternative Behandlungsmethode könnte die 5- Aminolävulinsäure gestützte photodynamische Therapie darstellen, die bisher vielversprechende Ergebnisse bei unterschiedlichen Hirntumoren gezeigt hat. In der vorliegenden Arbeit untersuchten wir das Potential von 5-ALA gestützter PDT an einer humanen Chordomzelllinie in einem in vitro Modell. Dabei konnten wir im Vergleich zur Standardinkubationszeit von 4 Stunden eine erhöhte dosisabhängige Fluoreszenz nach 6 stündiger Inkubationszeit beobachten. Zudem verzeichneten wir einen letalen Effekt 24 h nach Bestrahlung mittels Laserlicht der mit 5-ALA behandelten Zellen. Eine hohe Zelldichte konnte dabei als positiver Einflussfaktor für einen maximalen letalen Effekt identifiziert werden. Dies könnte Hinweis auf eine hohe interzelluläre Kommunikation und die Existenz eines sogenannten Bystander Effekts sein. Diese Ergebnisse weisen erstens auf einen möglichen klinischen Nutzen von 5-ALA zur fluoreszenz-gestützten Resektion von Chordomen hin. Weiterhin könnten inoperable Tumorreste mittels photodynamischer Therapie adjuvant im gleichen Setting mit behandelt werden. Weitere Untersuchungen an Zelllinien und Tumorgewebe sind allerdings nötig, um diese vielversprechenden ersten experimentellen Ergebnisse weiter abzusichern.
Quelle:1. Sen C, Triana AI, Berglind N, Godbold J, Shrivastava RK. Clival chordomas: clinical management, results, and complications in 71 patients. Journal of neurosurgery. 2010;113(5):1059-71.
2. Kolb D, Pritz E, Steinecker-Frohnwieser B, Lohberger B, Deutsch A, Kroneis T, et al. Extended ultrastructural characterization of chordoma cells: the link to new therapeutic options. PloS one. 2014;9(12):e114251.
3. Gulluoglu S, Turksoy O, Kuskucu A, Ture U, Bayrak OF. The molecular aspects of chordoma. Neurosurgical review. 2016;39(2):185-96; discussion 96.
4. Bell D, Raza SM, Bell AH, Fuller GN, DeMonte F. Whole-transcriptome analysis of chordoma of the skull base. Virchows Archiv : an international journal of pathology. 2016.
5. Makhdoomi R, Ramzan A, Khursheed N, Bhat S, Baba K, Mohsin R, et al. Clinicopathological characteristics of chordoma: an institutional experience and a review of the literature. Turkish neurosurgery. 2013;23(6):700-6.
6. Choi D, Gleeson M. Surgery for Chordomas of the Craniocervical Junction: Lessons Learned. Skull Base. 2010;20(01):041-5.
7. Rich TA, Schiller A, Suit HD, Mankin HJ. Clinical and pathologic review of 48 cases of chordoma. Cancer. 1985;56(1):182-7.
8. Sun X, Hornicek F, Schwab JH. Chordoma: an update on the pathophysiology and molecular mechanisms. Current reviews in musculoskeletal medicine. 2015;8(4):344-52.
9. von Witzleben A, Goerttler LT, Lennerz J, Weissinger S, Kornmann M, Mayer-Steinacker R, et al. In chordoma, metastasis, recurrences, Ki-67 index, and a matrix-poor phenotype are associated with patients' shorter overall survival. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2015.
10. Colia V, Stacchiotti S. Medical treatment of advanced chordomas. European journal of cancer (Oxford, England : 1990). 2017;83:220-8.
11. Stacchiotti S, Sommer J. Building a global consensus approach to chordoma: a position paper from the medical and patient community. The Lancet Oncology. 2015;16(2):e71-e83.
12. El-Heliebi A, Kroneis T, Wagner K, Meditz K, Kolb D, Feichtinger J, et al. Resolving tumor heterogeneity: genes involved in chordoma cell development identified by low-template analysis of morphologically distinct cells. PloS one. 2014;9(2):e87663.
13. Chugh R, Tawbi H, Lucas DR, Biermann JS, Schuetze SM, Baker LH. Chordoma: the nonsarcoma primary bone tumor. The oncologist. 2007;12(11):1344-50.
14. Youssef C, Aoun SG, Moreno JR, Bagley CA. Recent advances in understanding and managing chordomas. F1000Research. 2016;5:2902.
15. Walcott BP, Nahed BV, Mohyeldin A, Coumans J-V, Kahle KT, Ferreira MJ. Chordoma: current concepts, management, and future directions. The Lancet Oncology. 2012;13(2):e69-e76.
16. Fletcher CD UK, Mertens F. Pathology and Genetics of Tumours of Soft Tissue and Bone. IARC Press. 2002:316-7.
17. Tian K, Wang L, Ma J, Wang K, Li D, Du J, et al. MR Imaging Grading System for Skull Base Chordoma. AJNR Am J Neuroradiol. 2017.
18. Stacchiotti S, Gronchi A, Fossati P, Akiyama T, Alapetite C, Baumann M, et al. Best practices for the management of local-regional recurrent chordoma: a position paper by the Chordoma Global Consensus Group. Annals of Oncology. 2017;28(6):1230-42.
19. Chibbaro S, Cornelius JF, Froelich S, Tigan L, Kehrli P, Debry C, et al. Endoscopic endonasal approach in the management of skull base chordomas--clinical experience on a large series, technique, outcome, and pitfalls. Neurosurgical review. 2014;37(2):217-24; discussion 24-5.
20. Tan NC, Naidoo Y, Oue S, Alexander H, Robinson S, Wickremesekera A, et al. Endoscopic surgery of skull base chordomas. Journal of neurological surgery Part B, Skull base. 2012;73(6):379-86.
21. Justin F. Fraser, Gurston G. Nyquist, Moore N, Vijay K. Anand, Theodore H. Schwartz. Endoscopic endonasal transclival resection of chordomas: operative technique, clinical outcome, and review of the literature. Journal of neurosurgery. 2010;112(5):1061-9.
22. Rahme RJ, Arnaout OM, Sanusi OR, Kesavabhotla K, Chandler JP. Endoscopic Approach to Clival Chordomas: The Northwestern Experience. World Neurosurgery. 2018;110:e231-e8.
23. Colli BO, Al-Mefty O. Chordomas of the skull base: follow-up review and prognostic factors. Neurosurgical Focus. 2001;10(3):1-11.
24. Pendharkar AV, Ho AL, Sussman ES, Desai A. Surgical Management of Sacral Chordomas: Illustrative Cases and Current Management Paradigms. Cureus. 2015;7(8):e301.
25. Sciubba DM, De la Garza Ramos R, Goodwin CR, Xu R, Bydon A, Witham TF, et al. Total en bloc spondylectomy for locally aggressive and primary malignant tumors of the lumbar spine. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2016;25(12):4080-7.
26. Arnautovic KI, Al-Mefty O. Surgical seeding of chordomas. Neurosurg Focus. 2001;10(3):E7.
27. Shimony N, Gonen L, Shofty B, Abergel A, Fliss DM, Margalit N. Surgical resection of skull-base chordomas: experience in case selection for surgical approach according to anatomical compartments and review of the literature. Acta Neurochirurgica. 2017;159(10):1835-45.
28. Fourney DR, Gokaslan ZL. Current management of sacral chordoma. Neurosurg Focus. 2003;15(2):E9.
29. Wang L, Wu Z, Tian K, Wang K, Li D, Ma J, et al. Clinical features and surgical outcomes of patients with skull base chordoma: a retrospective analysis of 238 patients. Journal of neurosurgery. 2017;127(6):1257-67.
30. Tzortzidis F, Elahi F, Wright D, Natarajan SK, Sekhar LN. Patient Outcome at Long-term Follow-up after Aggressive Microsurgical Resection of Cranial Base Chordomas. Neurosurgery. 2006;59(2):230-7.
31. Cloyd JM, Acosta FL, Jr., Polley MY, Ames CP. En bloc resection for primary and metastatic tumors of the spine: a systematic review of the literature. Neurosurgery. 2010;67(2):435-44; discussion 44-5.
32. Radaelli S, Stacchiotti S, Ruggieri P, Donati D, Casali PG, Palmerini E, et al. Sacral Chordoma: Long-term Outcome of a Large Series of Patients Surgically Treated at Two Reference Centers. Spine. 2016;41(12):1049-57.
33. Yang C, Hornicek FJ, Wood KB, Schwab JH, Choy E, Iafrate J, et al. Characterization and analysis of human chordoma cell lines. Spine. 2010;35(13):1257-64.
34. Fleming GF, Heimann PS, Stephens JK, Simon MA, Ferguson MK, Benjamin RS, et al. Dedifferentiated chordoma. Response to aggressive chemotherapy in two cases. Cancer. 1993;72(3):714-8.
35. Chugh R, Dunn R, Zalupski MM, Biermann JS, Sondak VK, Mace JR, et al. Phase II study of 9-nitro-camptothecin in patients with advanced chordoma or soft tissue sarcoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005;23(15):3597-604.
36. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. The Journal of pharmacology and experimental therapeutics. 2005;315(3):971-9.
37. Casali PG, Messina A, Stacchiotti S, Tamborini E, Crippa F, Gronchi A, et al. Imatinib mesylate in chordoma. Cancer. 2004;101(9):2086-97.
38. Stacchiotti S, Marrari A, Tamborini E, Palassini E, Virdis E, Messina A, et al. Response to imatinib plus sirolimus in advanced chordoma. Annals of oncology : official journal of the European Society for Medical Oncology. 2009;20(11):1886-94.
39. Singhal N, Kotasek D, Parnis FX. Response to erlotinib in a patient with treatment refractory chordoma. Anti-Cancer Drugs. 2009;20(10):953-5.
40. Yasuda M, Bresson D, Chibbaro S, Cornelius JF, Polivka M, Feuvret L, et al. Chordomas of the skull base and cervical spine: clinical outcomes associated with a multimodal surgical resection combined with proton-beam radiation in 40 patients. Neurosurgical review. 2012;35(2):171-82; discussion 82-3.
41. Herman D. Suit, Michael Goitein, John Munzenrider, Lynn Verhey, Kenneth R. Davis, Andreas Koehler, et al. Definitive radiation therapy for chordoma and chondrosarcoma of base of skull and cervical spine. Journal of neurosurgery. 1982;56(3):377-85.
42. Thieblemont C, Biron P, Rocher F, Bouhour D, Bobin JY, Gerard JP, et al. Prognostic factors in chordoma: role of postoperative radiotherapy. European journal of cancer (Oxford, England : 1990). 1995;31a(13-14):2255-9.
43. Di Maio S, Temkin N, Ramanathan D, Sekhar LN. Current comprehensive management of cranial base chordomas: 10-year meta-analysis of observational studies. Journal of neurosurgery. 2011;115(6):1094-105.
44. De Amorim Bernstein K, DeLaney T. Chordomas and chondrosarcomas-The role of radiation therapy. Journal of surgical oncology. 2016;114(5):564-9.
45. Gatfield ER, Noble DJ, Barnett GC, Early NY, Hoole ACF, Kirkby NF, et al. Tumour Volume and Dose Influence Outcome after Surgery and High-dose Photon Radiotherapy for Chordoma and Chondrosarcoma of the Skull Base and Spine. Clinical Oncology. 2018;30(4):243-53.
46. Young VA, Curtis KM, Temple HT, Eismont FJ, DeLaney TF, Hornicek FJ. Characteristics and Patterns of Metastatic Disease from Chordoma. Sarcoma. 2015;2015:517657.
47. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. Photodynamic therapy of cancer: an update. CA: a cancer journal for clinicians. 2011;61(4):250-81.
48. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagnosis and Photodynamic Therapy. 2005;2(1):1-23.
49. Ackroyd R, Kelty C, Brown N, Reed M. The history of photodetection and photodynamic therapy. Photochem Photobiol. 2001;74(5):656-69.
50. T. J. Dougherty GBG, R. Fiel, K. R. Weishaupt, and D. G. Boyle. Photoradiation Therapy. II. Cure of Animal Tumors With Hematoporphyrin and Light. J Natl Cancer Inst. 1975;55:115 - 21.
51. Friedberg JS, Simone CB, Culligan MJ, Barsky AR, Doucette A, McNulty S, et al. Extended pleurectomy/decortication-based treatment for advanced stage, epithelial mesothelioma yielding a median survival of nearly three years. The Annals of thoracic surgery. 2017;103(3):912-9.
52. Shafirstein G, Battoo A, Harris K, Baumann H, Gollnick SO, Lindenmann J, et al. Photodynamic Therapy of Non-Small Cell Lung Cancer. Narrative Review and Future Directions. Annals of the American Thoracic Society. 2016;13(2):265-75.
53. Grant WE, MacRobert A, Bown SG, Hopper C, Speight PM. Photodynamic therapy of oral cancer: photosensitisation with systemic aminolaevulinic acid. The Lancet. 1993;342(8864):147-8.
54. Wenig BL, Kurtzman DM, Grossweiner LI, Mafee MF, Harris DM, Lobraico RV, et al. Photodynamic therapy in the treatment of squamous cell carcinoma of the head and neck. Archives of otolaryngology--head & neck surgery. 1990;116(11):1267-70.
55. Bader MJ, Stepp H, Beyer W, Pongratz T, Sroka R, Kriegmair M, et al. Photodynamic therapy of bladder cancer - a phase I study using hexaminolevulinate (HAL). Urologic oncology. 2013;31(7):1178-83.
56. Cornelius JF, Slotty PJ, El Khatib M, Giannakis A, Senger B, Steiger HJ. Enhancing the effect of 5-aminolevulinic acid based photodynamic therapy in human meningioma cells. Photodiagnosis Photodyn Ther. 2014;11(1):1-6.
57. Muragaki Y, Akimoto J, Maruyama T, Iseki H, Ikuta S, Nitta M, et al. Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors. Journal of neurosurgery. 2013;119(4):845-52.
58. Xu J, Gao J, Wei Q. Combination of Photodynamic Therapy with Radiotherapy for Cancer Treatment. Journal of Nanomaterials. 2016;2016:7.
59. Pogue BW, O'Hara JA, Demidenko E, Wilmot CM, Goodwin IA, Chen B, et al. Photodynamic therapy with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity. Cancer Res. 2003;63(5):1025-33.
60. Diez B, Ernst G, Teijo MJ, Batlle A, Hajos S, Fukuda H. Combined chemotherapy and ALA-based photodynamic therapy in leukemic murine cells. Leukemia Research. 2012;36(9):1179-84.
61. Peterson CM, Shiah JG, Sun Y, Kopeckova P, Minko T, Straight RC, et al. HPMA copolymer delivery of chemotherapy and photodynamic therapy in ovarian cancer. Advances in experimental medicine and biology. 2003;519:101-23.
62. Snyder JW, Greco WR, Bellnier DA, Vaughan L, Henderson BW. Photodynamic therapy: a means to enhanced drug delivery to tumors. Cancer Res. 2003;63(23):8126-31.
63. Allison RR, Moghissi K. Photodynamic Therapy (PDT): PDT Mechanisms. Clinical endoscopy. 2013;46(1):24-9.
64. Nicolas Fotinos MAC, Florence Popowycz, Robert Gurny and Norbert Lange'. 5-AminolevuIinic Acid Derivatives in Photomedicine Characteristics Application and Perspectives. Photochemistryand Photobiology. 2006;82:994-1 015.
65. Rene ́ C. Krieg HM, Joachim Rauch, Stefan Seeger and Ruth Knuechel. Metabolic Characterization of Tumor Cell–specific Protoporphyrin IX Accumulation After Exposure to 5-Aminolevulinic Acid in Human Colonic Cells. Photochemistry and Photobiology. 2002;76(5):518 - 25.
66. Wang J, Xu J, Chen J, He Q, Xiang L, Huang X, et al. Successful photodynamic therapy with topical 5-aminolevulinic acid for five cases of cervical intraepithelial neoplasia. Archives of gynecology and obstetrics. 2010;282(3):307-12.
67. Loh CS, MacRobert AJ, Bedwell J, Regula J, Krasner N, Bown SG. Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy. Br J Cancer. 1993;68(1):41-51.
68. Hamblin MR. Advances in Photodynamic Therapy: Basic, Translational, and Clinical: Artech House; 2008.
69. Berkovitch-Luria G, Weitman M, Nudelman A, Rephaeli A, Malik Z. Multifunctional 5-aminolevulinic acid prodrugs activating diverse cell-death pathways. Investigational new drugs. 2012;30(3):1028-38.
70. Johan MOAN ØB, Jean-Michel GAULLIER, Trond STOKKE, Harald B. STEEN, LiWei MA and Kristian BERG. Protoporphyrin IX accumulation in cells treated with 5-aminolevulinic acid: dependence on cell density, cell size and cell cycle. Int J Cancer. 1998;75:134 - 9.
71. Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers in medical science. 2009;24(2):259-68.
72. Wachowska M, Muchowicz A, Firczuk M, Gabrysiak M, Winiarska M, Wańczyk M, et al. Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer. Molecules. 2011;16(5):4140.
73. Dabrowski JM, Arnaut LG. Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology. 2015;14(10):1765-80.
74. Tetard MC, Vermandel M, Mordon S, Lejeune JP, Reyns N. Experimental use of photodynamic therapy in high grade gliomas: a review focused on 5-aminolevulinic acid. Photodiagnosis Photodyn Ther. 2014;11(3):319-30.
75. Marsden VS, Strasser A. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annual review of immunology. 2003;21:71-105.
76. Chipuk JE, Bouchier-Hayes L, Green DR. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell death and differentiation. 2006;13(8):1396-402.
77. Bratton SB, Salvesen GS. Regulation of the Apaf-1-caspase-9 apoptosome. Journal of cell science. 2010;123(Pt 19):3209-14.
78. Vanlangenakker N, Berghe T, Krysko D, Festjens N, Vandenabeele P. Molecular Mechanisms and Pathophysiology of Necrotic Cell Death. Current Molecular Medicine. 2008;8(3):207-20.
79. Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta. 2007;1776(1):86-107.
80. Altman BJ, Rathmell JC. Metabolic stress in autophagy and cell death pathways. Cold Spring Harb Perspect Biol. 2012;4(9):a008763.
81. Hong-Tai Ji L-TC, Yu-Hsin Lin, Hsiung-Fei Chien and Chin-Tin Chen. 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP-activated protein kinase. Molecular Cancer. 2010;9(91).
82. Peng Q, Nesland JM. Effects of Photodynamic Therapy on Tumor Stroma. Ultrastructural Pathology. 2004;28(5-6):333-40.
83. Dolmans DEJGJ, Kadambi A, Hill JS, Waters CA, Robinson BC, Walker JP, et al. Vascular Accumulation of a Novel Photosensitizer, MV6401, Causes Selective Thrombosis in Tumor Vessels after Photodynamic Therapy. Cancer Research. 2002;62(7):2151.
84. Etminan N, Peters C, Lakbir D, Bunemann E, Borger V, Sabel MC, et al. Heat-shock protein 70-dependent dendritic cell activation by 5-aminolevulinic acid-mediated photodynamic treatment of human glioblastoma spheroids in vitro. Br J Cancer. 2011;105(7):961-9.
85. Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chemical reviews. 2010;110(5):2795-838.
86. Stummer Wea. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006 May;7(5 , 392 - 401).
87. Tonn JC, Stummer W. Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. Clinical neurosurgery. 2008;55:20-6.
88. Kim A, Khurana M, Moriyama Y, Wilson BC. Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements. Journal of Biomedical Optics. 2010;15(6):067006.
89. Cornelius JF, Slotty PJ, Kamp MA, Schneiderhan TM, Steiger HJ, El-Khatib M. Impact of 5-aminolevulinic acid fluorescence-guided surgery on the extent of resection of meningiomas--with special regard to high-grade tumors. Photodiagnosis Photodyn Ther. 2014;11(4):481-90.
90. Coluccia D, Fandino J, Fujioka M, Cordovi S, Muroi C, Landolt H. Intraoperative 5-aminolevulinic-acid-induced fluorescence in meningiomas. Acta Neurochir (Wien). 2010;152(10):1711-9.
91. Valdes PA, Bekelis K, Harris BT, Wilson BC, Leblond F, Kim A, et al. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence in Meningioma: Qualitative and Quantitative Measurements In Vivo. Neurosurgery. 2014;10(0 1):74-83.
92. Stummer W, Rodrigues F, Schucht P, Preuss M, Wiewrodt D, Nestler U, et al. Predicting the "usefulness" of 5-ALA-derived tumor fluorescence for fluorescence-guided resections in pediatric brain tumors: a European survey. Acta Neurochir (Wien). 2014;156(12):2315-24.
93. Barbagallo GM, Certo F, Heiss K, Albanese V. 5-ALA fluorescence-assisted surgery in pediatric brain tumors: report of three cases and review of the literature. Br J Neurosurg. 2014;28(6):750-4.
94. Agawa Y, Wataya T. The use of 5-aminolevulinic acid to assist gross total resection of pediatric astroblastoma. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery. 2018;34(5):971-5.
95. Kamp MA, Fischer I, Buhner J, Turowski B, Cornelius JF, Steiger HJ, et al. 5-ALA fluorescence of cerebral metastases and its impact for the local-in-brain progression. Oncotarget. 2016;7(41):66776-89.
96. Kamp MA, Grosser P, Felsberg J, Slotty PJ, Steiger HJ, Reifenberger G, et al. 5-aminolevulinic acid (5-ALA)-induced fluorescence in intracerebral metastases: a retrospective study. Acta Neurochir (Wien). 2012;154(2):223-8; discussion 8.
97. Utsuki S, Miyoshi N, Oka H, Miyajima Y, Shimizu S, Suzuki S, et al. Fluorescence-guided resection of metastatic brain tumors using a 5-aminolevulinic acid-induced protoporphyrin IX: pathological study. Brain tumor pathology. 2007;24(2):53-5.
98. Hu Y, Masamune K. Flexible laser endoscope for minimally invasive photodynamic diagnosis (PDD) and therapy (PDT) toward efficient tumor removal. Opt Express. 2017;25(14):16795-812.
99. Bruderlein S, Sommer JB, Meltzer PS, Li S, Osada T, Ng D, et al. Molecular characterization of putative chordoma cell lines. Sarcoma. 2010;2010:630129.
100. Cornelius JF, Eismann L, Ebbert L, Senger B, Petridis AK, Kamp MA, et al. 5-Aminolevulinic acid-based photodynamic therapy of chordoma: In vitro experiments on a human tumor cell line. Photodiagnosis and Photodynamic Therapy. 2017;20:111-5.
101. Teshigawara T, Mizuno M, Ishii T, Kitajima Y, Utsumi F, Sakata J, et al. Novel potential photodynamic therapy strategy using 5-Aminolevulinic acid for ovarian clear-cell carcinoma. Photodiagnosis Photodyn Ther. 2018;21:121-7.
102. El-Khatib M, Tepe C, Senger B, Dibue-Adjei M, Riemenschneider MJ, Stummer W, et al. Aminolevulinic acid-mediated photodynamic therapy of human meningioma: an in vitro study on primary cell lines. International journal of molecular sciences. 2015;16(5):9936-48.
103. Schwake M, Nemes A, Dondrop J, Schroeteler J, Schipmann S, Senner V, et al. In-Vitro Use of 5-ALA for Photodynamic Therapy in Pediatric Brain Tumors. Neurosurgery. 2018:nyy054-nyy.
104. Fisher CJ, Niu C, Foltz W, Chen Y, Sidorova-Darmos E, Eubanks JH, et al. ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia. PloS one. 2017;12(7):e0181654-e.
105. Song PH, Beyhaghi H, Sommer J, Bennett AV. Symptom burden and life challenges reported by adult chordoma patients and their caregivers. Quality of Life Research. 2017;26(8):2237-44.
106. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature genetics. 2000;24(3):227-35.
107. Farrell TM, Pettengill OS, Longnecker DS, Cate CC, Cohn KH. Growing colorectal tumors: minimizing microbial and stromal competition and assessing in vitro selection pressures. Cytotechnology. 2000;34(3):205-11.
108. Hatakeyama T, Murayama Y, Komatsu S, Shiozaki A, Kuriu Y, Ikoma H, et al. Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells. Oncology reports. 2013;29(3):911-6.
109. Bachor R, Reich, E., Rück, A. et al. Aminolevulinic acid for photodynamic therapy of bladder carcinoma cells. Urol Res. 1996(0300-5623 (Print)).
110. Zhou BR, Zhang LC, Permatasari F, Liu J, Xu Y, Luo D. ALA-PDT elicits oxidative damage and apoptosis in UVB-induced premature senescence of human skin fibroblasts. Photodiagnosis and Photodynamic Therapy June 2016;14(1873-1597 (Electronic)):47-56.
111. Iinuma S, Farshi SS, Ortel B, Hasan T. A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin. British Journal of Cancer. 1994;70(1):21-8.
112. Fukuda H, Batlle AMC, Riley PA. Kinetics of porphyrin accumulation in cultured epithelial cells exposed to ALA. International Journal of Biochemistry. 1993;25(10):1407-10.
113. Wyld L, Smith O, Lawry J, Reed MW, Brown NJ. Cell cycle phase influences tumour cell sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro. British Journal of Cancer. 1998;78(1):50-5.
114. Li N, Sun M, Wang Y, Lv Y, Hu Z, Cao W, et al. Effect of cell cycle phase on the sensitivity of SAS cells to sonodynamic therapy using low-intensity ultrasound combined with 5-aminolevulinic acid in vitro. PloS one. 2015(1791-3004 (Electronic)).
115. Schick E, Kaufmann R Fau - Ruck A, Ruck A Fau - Hainzl A, Hainzl A Fau - Boehncke WH, Boehncke WH. Influence of activation and differentiation of cells on the effectiveness of photodynamic therapy. Acta Derm Venereol. 1995;75(4)(0001-5555 (Print)):276-9.
116. Rittenhouse-Diakun K, Van Leengoed H Fau - Morgan J, Morgan J Fau - Hryhorenko E, Hryhorenko E Fau - Paszkiewicz G, Paszkiewicz G Fau - Whitaker JE, Whitaker Je Fau - Oseroff AR, et al. The role of transferrin receptor (CD71) in photodynamic therapy of activated and malignant lymphocytes using the heme precursor delta-aminolevulinic acid (ALA). Photochem Photobiol. 1995;61(5)(0031-8655 (Print)):523-8.
117. Hryhorenko EA, Rittenhouse-Diakun K Fau - Harvey NS, Harvey Ns Fau - Morgan J, Morgan J Fau - Stewart CC, Stewart Cc Fau - Oseroff AR, Oseroff AR. Characterization of endogenous protoporphyrin IX induced by delta-aminolevulinic acid in resting and activated peripheral blood lymphocytes by four-color flow cytometry. Photochem Photobiol 1998;67(5)(0031-8655 (Print)):565-72.
118. Nakayama T, Otsuka S, Kobayashi T, Okajima H, Matsumoto K, Hagiya Y, et al. Dormant cancer cells accumulate high protoporphyrin IX levels and are sensitive to 5-aminolevulinic acid-based photodynamic therapy. 2016;6:36478.
119. Gibbs SL, Chen B Fau - O'Hara JA, O'Hara Ja Fau - Hoopes PJ, Hoopes Pj Fau - Hasan T, Hasan T Fau - Pogue BW, Pogue BW. Protoporphyrin IX level correlates with number of mitochondria, but increase in production correlates with tumor cell size. Photochem Photobiol. 2006;82(5)(0031-8655 (Print)):1334-41.
120. Friedmann I, Harrison DFN, Bird ES. The fine structure of chordoma with particular reference to the physaliphorous cell. Journal of Clinical Pathology. 1962;15:116-25.
121. Keshtkar A, Keshtkar A, Lawford P. Cellular morphological parameters of the human urinary bladder (malignant and normal). International Journal of Experimental Pathology. 2007;88(3):185-90.
122. Najafi M, Fardid R, Hadadi G, Fardid M. The Mechanisms of Radiation-Induced Bystander Effect. Journal of Biomedical Physics & Engineering. 2014;4(4):163-72.
123. Kessel DH, Olivier D, Douilard S, Patrice T. PDT-induced in vitro bystander effect. 2009;7380:73803Y.
124. Calì B, Ceolin S, Ceriani F, Bortolozzi M, Agnellini AHR, Zorzi V, et al. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury. Oncotarget. 2015;6(12):10161-74.
125. Bazak J, Fahey JM, Wawak K, Korytowski W, Girotti AW. Enhanced aggressiveness of bystander cells in an anti-tumor photodynamic therapy model: Role of nitric oxide produced by targeted cells. Free Radical Biology and Medicine. 2017;102(Supplement C):111-21.
126. Klammer H, Mladenov E, Li F, Iliakis G. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Letters. 2015;356(1):58-71.
127. Azzam EI, de Toledo SM, Little JB. Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene. 2003;22(45):7050-7.
128. Erlandson RA, Tandler B, Lieberman PH, Higinbotham NL. Ultrastructure of Human Chordoma. Cancer Research. 1968;28(10):2115.
129. Bergh P, Kindblom L-G, Gunterberg B, Remotti F, Ryd W, Meis-Kindblom JM. Prognostic factors in chordoma of the sacrum and mobile spine. Cancer. 2000;88(9):2122-34.
130. Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, et al. In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. Journal of photochemistry and photobiology B, Biology. 1998;45(2-3):160-9.
131. Webber J, Kessel D Fau - Fromm D, Fromm D. Side effects and photosensitization of human tissues after aminolevulinic acid. J Surg Res 1997. 1997;68(1)(0022-4804 (Print)).
132. Rick K, Sroka R Fau - Stepp H, Stepp H Fau - Kriegmair M, Kriegmair M Fau - Huber RM, Huber Rm Fau - Jacob K, Jacob K Fau - Baumgartner R, et al. Pharmacokinetics of 5-aminolevulinic acid-induced protoporphyrin IX in skin and blood. J Photochem Photobiol B 1997;40(3)(1011-1344 (Print)):313-9.
133. Jocham D, Witjes F, Wagner S, Zeylemaker B, van Moorselaar J, Grimm M-O, et al. Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. The Journal of Urology. 2005;174(3):862-6.
134. Ruggieri P, Angelini A, Ussia G, Montalti M, Mercuri M. Surgical Margins and Local Control in Resection of Sacral Chordomas. Clinical Orthopaedics and Related Research®. 2010;468(11):2939-47.
135. Nguyen QT, Tsien RY. Fluorescence-guided surgery with live molecular navigation — a new cutting edge. 2013;13:653.
136. Labidi M, Watanabe K, Bouazza S, Bresson D, Bernat AL, George B, et al. Clivus chordomas: a systematic review and meta-analysis of contemporary surgical management. J Neurosurg Sci. 2016;60(4):476-84.
137. Zoli M, Milanese L, Bonfatti R, Faustini-Fustini M, Marucci G, Tallini G, et al. Clival chordomas: considerations after 16 years of endoscopic endonasal surgery. Journal of neurosurgery. 2017:1-10.
138. Lyons M, Phang I, Eljamel S. The effects of PDT in primary malignant brain tumours could be improved by intraoperative radiotherapy. Photodiagnosis Photodyn Ther. 2012;9(1):40-5.
139. Wilson BC, Muller PJ, Yanch JC. Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours. Physics in medicine and biology. 1986;31(2):125-33.
140. Dupont C, Mordon S, Deleporte P, Reyns N, Vermandel M. A novel device for intraoperative photodynamic therapy dedicated to glioblastoma treatment. Future oncology (London, England). 2017;13(27):2441-54.
141. Marks PV, Belchetz PE, Saxena A, Igbaseimokumo U, Thomson S, Nelson M, et al. Effect of photodynamic therapy on recurrent pituitary adenomas: clinical phase I/II trial ‘ an early report. British Journal of Neurosurgery. 2000;14(4):317-25.
142. Filonenko EV, Kaprin AD, Alekseev BYa, Apolikhin OI, Slovokhodov EK, Ivanova-Radkevich VI, et al. 5-Aminolevulinic acid in intraoperative photodynamic therapy of bladder cancer (results of multicenter trial). Photodiagnosis and Photodynamic Therapy. 2016;16:106-9.
143. Bryan RT, Collins SI, Daykin MC, Zeegers MP, Cheng KK, Wallace DMA, et al. Mechanisms of recurrence of Ta/T1 bladder cancer. Annals of The Royal College of Surgeons of England. 2010;92(6):519-24.
144. Stepp H, Stummer W. 5-ALA in the management of malignant glioma. Lasers in surgery and medicine. 2018.
145. Schwartz C, Rühm A, Tonn J-C, Kreth S, Kreth F-W. SURG-25INTERSTITIAL PHOTODYNAMIC THERAPY OF DE-NOVO GLIOBLASTOMA MULTIFORME WHO IV. Neuro-Oncology. 2015;17(Suppl 5):v219-v20.
146. Shafirstein G, Bellnier D, Oakley E, Hamilton S, Potasek M, Beeson K, et al. Interstitial Photodynamic Therapy—A Focused Review. Cancers. 2017;9(2):12.
147. Erdem E, Angtuaco EC, Van Hemert R, Park JS, Al-Mefty O. Comprehensive Review of Intracranial Chordoma. RadioGraphics. 2003;23(4):995-1009.
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:29.10.2019
Dateien geändert am:29.10.2019
Promotionsantrag am:15.10.2015
Datum der Promotion:03.09.2019
english
Benutzer
Status: Gast
Aktionen