Dokument: Einfluss der transkraniellen Gleichstromstimulation über dem prämotorischen Kortex auf das motorische Lernen

Titel:Einfluss der transkraniellen Gleichstromstimulation über dem prämotorischen Kortex auf das motorische Lernen
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=50068
URN (NBN):urn:nbn:de:hbz:061-20190704-112542-5
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Focke, Jan Karl [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]6,45 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 01.07.2019 / geändert 01.07.2019
Beitragende:Prof. Dr. med. Bettina Pollok [Gutachter]
Prof. Dr. Tillmann Supprian [Gutachter]
Stichwörter:tDCS, prämotorischer Kortex, PMC, Motor Cortex, Sequenzlernen, motorisches Lernen, SRTTn
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Motorisches Lernen lässt sich in eine Akquisitions- und Konsolidierungsphase gliedern und basiert auf dem Zusammenspiel verschiedener kortikaler und subkortikaler Areale. Während der primäre motorische Kortex (M1) für die Akquisition und frühe Konsolidierung von Bedeutung ist, wurde die Beteiligung des prämotorischen Kortex (PMC) am motorischen Lernen vor allem für die spätere, möglicherweise schlafabhängige Konsolidierung beschrieben. Ein möglicher Beitrag zur frühen schlafunabhängigen Konsolidierung wurde bislang nicht untersucht. Die vorliegende Arbeit untersucht die funktionelle Bedeutung des linken PMC für die implizite Akquisition und die frühe schlafunabhängige Konsolidierung einer motorischen Sequenz. Zu diesem Zweck erhielten 18 gesunde rechtshändige Probanden/innen an separaten Messterminen, eine jeweils 10-minütige transkranielle Gleichstromstimulation (engl.: transcranial direct current stimulation, tDCS) über dem linken PMC. Die anodale tDCS diente der Erhöhung, die kathodale der Reduzierung der Exzitabilität des PMC. Eine Schein- Stimulation diente als Kontrollbedingung. Unmittelbar im Anschluss an die Stimulation trainierten die Probanden/innen eine serielle Reaktionszeitaufgabe mit der rechten Hand. Während die sequentielle Darbietung motorisches Lernen induzieren sollte, diente eine randomisierte Darbietung als Kontrollbedingung. Die Reaktionszeiten wurden für beide Bedingungen (sequentiell vs. randomisiert) vor dem Üben (t1), zum Ende der Akquisition (t2) und nach einer interferierenden Bedingung unmittelbar im Anschluss an die Akquisition (t3) bestimmt. Eine verminderte Interferenzneigung zum Zeitpunkt t3 wurde als Maß für eine erfolgreiche Konsolidierung interpretiert. Die Auswertung zeigte eine unspezifische Reaktionszeitbeschleunigung zum Zeitpunkt t2 sowohl nach der anodalen als auch nach der kathodalen tDCS. Dieser Effekt könnte die grundlegende Bedeutung des PMC für die Bewegungsplanung widerspiegeln. Zum Zeitpunkt t3 zeigte sich eine verringerte Interferenzneigung nur nach kathodaler Stimulation. Dieses Ergebnis weist auf die Relevanz des PMC für die frühe, schlafunabhängige Konsolidierung einer motorischen Sequenz hin. Die Förderung der frühen Konsolidierung durch die Reduktion der Exzitabilität des PMC legt die Annahme konkurrierender Prozesse zwischen dem M1 und dem PMC während dieser Phase nahe.

Motor learning depends on the functional interaction between various cortical and subcortical brain areas and can be structured by its time-course into acquisition – during the training of a motor skill – and consolidation – after the active training. While the primary motor cortex (M1) appears to be crucial for the acquisition and early consolidation of a motor pattern, the premotor cortex (PMC) has been particularly linked to sleep-dependent consolidation. A possible contribution for sleep-independent consolidation has not been investigated yet. The present thesis aims at elucidating the relevance of the left PMC for acquisition and day-time consolidation of an implicitly learned motor sequence. To this end, eighteen healthy right-handed volunteers received anodal, cathodal and sham transcranial direct current stimulation (tDCS) of the left PMC in three separate sessions for 10 minutes, respectively. While anodal tDCS is thought to enhance cortical excitability, cathodal tDCS has been linked to its reduction. Sham stimulation served as control condition. Subsequently to tDCS the participants were trained on a serial reaction time task (SRTT) with the right hand. A sequential pattern of stimuli was presented to induce motor learning, while a random pattern served as a control condition. Reaction times were measured for both conditions (sequential vs. random) separately prior to training (t1), at the end of training (t2) and after the presentation of an interfering random pattern (t3). Reduced susceptibility to interference at t3 was interpreted as indicator for successful consolidation. Results yield an unspecific facilitation of reaction times at t2 independent of tDCS polarity. This effect likely reflects the relevance of the PMC for movement selection and preparation in general. At t3 cathodal tDCS yielded reduced susceptibility to interference. The results suggest the PMC to be involved in the early sleep- independent consolidation of a motor sequence. Enhanced consolidation effects following inhibitory cathodal tDCS might point to a competition between M1 and PMC during early consolidation that can be modulated by tDCS.
Quelle:BATSIKADZE, G., MOLIADZE, V., PAULUS, W., KUO, M. F. & NITSCHE, M. A. 2013. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol, 591, 1987-2000.
BOROS, K., POREISZ, C., MUNCHAU, A., PAULUS, W. & NITSCHE, M. A. 2008. Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. Eur J Neurosci, 27, 1292-300.
BOYD, L. A. & LINSDELL, M. A. 2009. Excitatory repetitive transcranial magnetic stimulation to left dorsal premotor cortex enhances motor consolidation of new skills. BMC Neurosci, 10, 72.
BRASHERS-KRUG, T., SHADMEHR, R. & BIZZI, E. 1996. Consolidation in human motor memory. Nature, 382, 252-5.
BROWN, R. M. & ROBERTSON, E. M. 2007. Off-line processing: reciprocal interactions between declarative and procedural memories. J Neurosci, 27, 10468-75.
CHEN, R., CLASSEN, J., GERLOFF, C., CELNIK, P., WASSERMANN, E. M., HALLETT, M. & COHEN, L. G. 1997. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48, 1398-403.
CHOUINARD, P. A. & PAUS, T. 2006. The primary motor and premotor areas of the human cerebral cortex. Neuroscientist, 12, 143-52.
COHEN, D. A., PASCUAL-LEONE, A., PRESS, D. Z. & ROBERTSON, E. M. 2005. Off-line learning of motor skill memory: a double dissociation of goal and movement. Proc Natl Acad Sci U S A, 102, 18237-41.
COYNEL, D., MARRELEC, G., PERLBARG, V., PELEGRINI-ISSAC, M., VAN DE MOORTELE, P. F., UGURBIL, K., DOYON, J., BENALI, H. & LEHERICY, S. 2010. Dynamics of motor-related functional integration during motor sequence learning. Neuroimage, 49, 759-66.
DIEKELMANN, S. & BORN, J. 2010. The memory function of sleep. Nat Rev Neurosci, 11, 114-26.
DOYON, J., BELLEC, P., AMSEL, R., PENHUNE, V., MONCHI, O., CARRIER, J., LEHERICY, S. & BENALI, H. 2009. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res, 199, 61-75.
FILMER, H. L., DUX, P. E. & MATTINGLEY, J. B. 2014. Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci, 37, 742-53.
FISCHER, S., HALLSCHMID, M., ELSNER, A. L. & BORN, J. 2002. Sleep forms memory for finger skills. Proc Natl Acad Sci U S A, 99, 11987-91.
GALEA, J. M., ALBERT, N. B., DITYE, T. & MIALL, R. C. 2010. Disruption of the dorsolateral prefrontal cortex facilitates the consolidation of procedural skills. J Cogn Neurosci, 22, 1158-64.
GALEA, J. M. & CELNIK, P. 2009. Brain polarization enhances the formation and retention of motor memories. J Neurophysiol, 102, 294-301.
GHILARDI, M. F., MOISELLO, C., SILVESTRI, G., GHEZ, C. & KRAKAUER, J. W. 2009. Learning of a sequential motor skill comprises explicit and implicit components that consolidate differently. J Neurophysiol, 101, 2218-29.
GIACOBBE, V., KREBS, H. I., VOLPE, B. T., PASCUAL-LEONE, A., RYKMAN, A., ZEIARATI, G., FREGNI, F., DIPIETRO, L., THICKBROOM, G. W. & EDWARDS, D. J. 2013. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: the dimension of timing. NeuroRehabilitation, 33, 49-56.
4. Literaturverzeichnis 29
GRAFTON, S. T., HAZELTINE, E. & IVRY, R. 1995. Functional mapping of sequence learning in normal humans. J Cogn Neurosci, 7, 497-510.
HARDWICK, R. M., ROTTSCHY, C., MIALL, R. C. & EICKHOFF, S. B. 2013. A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage, 67, 283-97.
HASHEMIRAD, F., ZOGHI, M., FITZGERALD, P. B. & JABERZADEH, S. 2016. The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: A systematic review and meta-analysis. Brain Cogn, 102, 1-12.
HAZELTINE, E., GRAFTON, S. T. & IVRY, R. 1997. Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain, 120 ( Pt 1), 123-40.
HIKOSAKA, O., NAKAMURA, K., SAKAI, K. & NAKAHARA, H. 2002. Central mechanisms of motor skill learning. Curr Opin Neurobiol, 12, 217-22.
HIKOSAKA, O., SAKAI, K., MIYAUCHI, S., TAKINO, R., SASAKI, Y. & PUTZ, B. 1996. Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. J Neurophysiol, 76, 617-21.
HONDA, M., DEIBER, M. P., IBANEZ, V., PASCUAL-LEONE, A., ZHUANG, P. & HALLETT, M. 1998. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain, 121 ( Pt 11), 2159-73.
HUMMEL, F. C., HEISE, K., CELNIK, P., FLOEL, A., GERLOFF, C. & COHEN, L. G. 2010. Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiol Aging, 31, 2160-8.
KANG, E. K. & PAIK, N. J. 2011. Effect of a tDCS electrode montage on implicit motor sequence learning in healthy subjects. Exp Transl Stroke Med, 3, 4.
KANTAK, S. S., MUMMIDISETTY, C. K. & STINEAR, J. W. 2012a. Primary motor and premotor cortex in implicit sequence learning--evidence for competition between implicit and explicit human motor memory systems. Eur J Neurosci, 36, 2710-5.
KANTAK, S. S., STINEAR, J. W., BUCH, E. R. & COHEN, L. G. 2012b. Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabil Neural Repair, 26, 282-92.
KANTAK, S. S. & WINSTEIN, C. J. 2012. Learning-performance distinction and memory processes for motor skills: a focused review and perspective. Behav Brain Res, 228, 219-31.
KARNI, A., MEYER, G., JEZZARD, P., ADAMS, M. M., TURNER, R. & UNGERLEIDER, L. G. 1995. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377, 155-8.
KARNI, A., MEYER, G., REY-HIPOLITO, C., JEZZARD, P., ADAMS, M. M., TURNER, R. & UNGERLEIDER, L. G. 1998. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci U S A, 95, 861-8.
KARNI, A. & SAGI, D. 1993. The time course of learning a visual skill. Nature, 365, 250- 2.
LEHERICY, S., BENALI, H., VAN DE MOORTELE, P. F., PELEGRINI-ISSAC, M., WAECHTER, T., UGURBIL, K. & DOYON, J. 2005. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci U S A, 102, 12566-71.
4. Literaturverzeichnis 30
LUFT, A. R. & BUITRAGO, M. M. 2005. Stages of motor skill learning. Mol Neurobiol, 32, 205-16.
MAQUET, P. 2001. The role of sleep in learning and memory. Science, 294, 1048-52. MAQUET, P., LAUREYS, S., PEIGNEUX, P., FUCHS, S., PETIAU, C., PHILLIPS, C., AERTS, J.,
DEL FIORE, G., DEGUELDRE, C., MEULEMANS, T., LUXEN, A., FRANCK, G., VAN DER LINDEN, M., SMITH, C. & CLEEREMANS, A. 2000. Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci, 3, 831- 6.
MEEHAN, S. K., ZABUKOVEC, J. R., DAO, E., CHEUNG, K. L., LINSDELL, M. A. & BOYD, L. A. 2013. One hertz repetitive transcranial magnetic stimulation over dorsal premotor cortex enhances offline motor memory consolidation for sequence- specific implicit learning. Eur J Neurosci, 38, 3071-9.
MITZ, A. R., GODSCHALK, M. & WISE, S. P. 1991. Learning-dependent neuronal activity in the premotor cortex: activity during the acquisition of conditional motor associations. J Neurosci, 11, 1855-72.
MUELLBACHER, W., ZIEMANN, U., WISSEL, J., DANG, N., KOFLER, M., FACCHINI, S., BOROOJERDI, B., POEWE, W. & HALLETT, M. 2002. Early consolidation in human primary motor cortex. Nature, 415, 640-4.
NAKAHARA, H., DOYA, K. & HIKOSAKA, O. 2001. Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences - a computational approach. J Cogn Neurosci, 13, 626-47.
NISSEN, M. J. & BULLEMER, P. 1987. Attentional requirements of learning: evidence from performance measures. Cogn Psychol, 19, 1-32.
NITSCHE, M. A., COHEN, L. G., WASSERMANN, E. M., PRIORI, A., LANG, N., ANTAL, A., PAULUS, W., HUMMEL, F., BOGGIO, P. S., FREGNI, F. & PASCUAL-LEONE, A. 2008. Transcranial direct current stimulation: State of the art 2008. Brain Stimul, 1, 206-23.
NITSCHE, M. A., JAKOUBKOVA, M., THIRUGNANASAMBANDAM, N., SCHMALFUSS, L., HULLEMANN, S., SONKA, K., PAULUS, W., TRENKWALDER, C. & HAPPE, S. 2010. Contribution of the premotor cortex to consolidation of motor sequence learning in humans during sleep. J Neurophysiol, 104, 2603-14.
NITSCHE, M. A. & PAULUS, W. 2000. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol, 527 Pt 3, 633- 9.
NITSCHE, M. A. & PAULUS, W. 2001. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57, 1899-901.
NITSCHE, M. A., SCHAUENBURG, A., LANG, N., LIEBETANZ, D., EXNER, C., PAULUS, W. & TERGAU, F. 2003. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci, 15, 619-26.
OHBAYASHI, M., OHKI, K. & MIYASHITA, Y. 2003. Conversion of working memory to motor sequence in the monkey premotor cortex. Science, 301, 233-236.
PASCUAL-LEONE, A., VALLS-SOLE, J., WASSERMANN, E. M. & HALLETT, M. 1994. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117 ( Pt 4), 847-58.
PELLICCIARI, M. C., BRIGNANI, D. & MINIUSSI, C. 2013. Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach. Neuroimage, 83, 569-80.
4. Literaturverzeichnis 31
PENHUNE, V. B. & DOYON, J. 2002. Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences. J Neurosci, 22, 1397- 406.
PENHUNE, V. B. & DOYON, J. 2005. Cerebellum and M1 interaction during early learning of timed motor sequences. Neuroimage, 26, 801-12.
PENHUNE, V. B. & STEELE, C. J. 2012. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res, 226, 579-91.
POE, G. R., NITZ, D. A., MCNAUGHTON, B. L. & BARNES, C. A. 2000. Experience- dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res, 855, 176-80.
POLDRACK, R. A. & PACKARD, M. G. 2003. Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia, 41, 245-51.
QIN, Y. L., MCNAUGHTON, B. L., SKAGGS, W. E. & BARNES, C. A. 1997. Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos Trans R Soc Lond B Biol Sci, 352, 1525-33.
REIS, J., ROBERTSON, E., KRAKAUER, J. W., ROTHWELL, J., MARSHALL, L., GERLOFF, C., WASSERMANN, E., PASCUAL-LEONE, A., HUMMEL, F., CELNIK, P. A., CLASSEN, J., FLOEL, A., ZIEMANN, U., PAULUS, W., SIEBNER, H. R., BORN, J. & COHEN, L. G. 2008. Consensus: "Can tDCS and TMS enhance motor learning and memory formation?". Brain Stimul, 1, 363-369.
REIS, J., SCHAMBRA, H. M., COHEN, L. G., BUCH, E. R., FRITSCH, B., ZARAHN, E., CELNIK, P. A. & KRAKAUER, J. W. 2009. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A, 106, 1590-5.
RIOULT-PEDOTTI, M. S., FRIEDMAN, D. & DONOGHUE, J. P. 2000. Learning-induced LTP in neocortex. Science, 290, 533-6.
ROBERTSON, E. M., PASCUAL-LEONE, A. & MIALL, R. C. 2004a. Current concepts in procedural consolidation. Nat Rev Neurosci, 5, 576-82.
ROBERTSON, E. M., PASCUAL-LEONE, A. & PRESS, D. Z. 2004b. Awareness modifies the skill-learning benefits of sleep. Curr Biol, 14, 208-212.
RROJI, O., VAN KUYCK, K., NUTTIN, B. & WENDEROTH, N. 2015. Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity. PLoS One, 10, e0127270.
SAKAI, K., HIKOSAKA, O., MIYAUCHI, S., TAKINO, R., SASAKI, Y. & PUTZ, B. 1998. Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci, 18, 1827-40.
SCHLUTER, N. D., RUSHWORTH, M. F., PASSINGHAM, R. E. & MILLS, K. R. 1998. Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain, 121 ( Pt 5), 785-99.
SEIDLER, R. D., PURUSHOTHAM, A., KIM, S. G., UGURBIL, K., WILLINGHAM, D. & ASHE, J. 2005. Neural correlates of encoding and expression in implicit sequence learning. Exp Brain Res, 165, 114-24.
SHADMEHR, R. & BRASHERS-KRUG, T. 1997. Functional stages in the formation of human long-term motor memory. J Neurosci, 17, 409-19.
SHADMEHR, R. & HOLCOMB, H. H. 1997. Neural correlates of motor memory consolidation. Science, 277, 821-5.
4. Literaturverzeichnis 32
SILVANTO, J., MUGGLETON, N. G., COWEY, A. & WALSH, V. 2007a. Neural activation state determines behavioral susceptibility to modified theta burst transcranial magnetic stimulation. Eur J Neurosci, 26, 523-8.
SILVANTO, J., MUGGLETON, N. G., COWEY, A. & WALSH, V. 2007b. Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. Eur J Neurosci, 25, 1874-81.
SILVANTO, J. & PASCUAL-LEONE, A. 2008. State-dependency of transcranial magnetic stimulation. Brain Topogr, 21, 1-10.
SONG, S., MARKS, B., HOWARD, J. H., JR. & HOWARD, D. V. 2009. Evidence for parallel explicit and implicit sequence learning systems in older adults. Behav Brain Res, 196, 328-32.
SONG, S. B. 2009. Consciousness and the consolidation of motor learning. Behav Brain Res, 196, 180-186.
STAGG, C. J. & NITSCHE, M. A. 2011. Physiological basis of transcranial direct current stimulation. Neuroscientist, 17, 37-53.
STEFAN, K., COHEN, L. G., DUQUE, J., MAZZOCCHIO, R., CELNIK, P., SAWAKI, L., UNGERLEIDER, L. & CLASSEN, J. 2005. Formation of a motor memory by action observation. J Neurosci, 25, 9339-46.
TANJI, J. 1996. New concepts of the supplementary motor area. Curr Opin Neurobiol, 6, 782-7.
TECCHIO, F., ZAPPASODI, F., ASSENZA, G., TOMBINI, M., VOLLARO, S., BARBATI, G. & ROSSINI, P. M. 2010. Anodal transcranial direct current stimulation enhances procedural consolidation. J Neurophysiol, 104, 1134-40.
VIDONI, E. D. & BOYD, L. A. 2007. Achieving enlightenment: what do we know about the implicit learning system and its interaction with explicit knowledge? J Neurol Phys Ther, 31, 145-54.
WALKER, M. P., BRAKEFIELD, T., MORGAN, A., HOBSON, J. A. & STICKGOLD, R. 2002. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron, 35, 205-11.
WILKINSON, L., TEO, J. T., OBESO, I., ROTHWELL, J. C. & JAHANSHAHI, M. 2010. The contribution of primary motor cortex is essential for probabilistic implicit sequence learning: evidence from theta burst magnetic stimulation. J Cogn Neurosci, 22, 427-36.
WILLINGHAM, D. B. 1998. A neuropsychological theory of motor skill learning. Psychol Rev, 105, 558-84.
WILSON, M. A. & MCNAUGHTON, B. L. 1994. Reactivation of hippocampal ensemble memories during sleep. Science, 265, 676-9.
YOKOI, A., ARBUCKLE, S. A. & DIEDRICHSEN, J. 2018. The Role of Human Primary Motor Cortex in the Production of Skilled Finger Sequences. J Neurosci, 38, 1430-1442.
ZIEMANN, U., ILIC, T. V., PAULI, C., MEINTZSCHEL, F. & RUGE, D. 2004. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci, 24, 1666-72.
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:04.07.2019
Dateien geändert am:04.07.2019
Promotionsantrag am:29.01.2019
Datum der Promotion:25.06.2019
english
Benutzer
Status: Gast
Aktionen