Dokument: Analysen zur Stabilität und Degradation biogener Substanzen sowie zum Resistenzpotential der Flechte Buellia frigida unter simulierten Marsbedingungen und Exposition im LEO-Weltraum

Titel:Analysen zur Stabilität und Degradation biogener Substanzen sowie zum Resistenzpotential der Flechte Buellia frigida unter simulierten Marsbedingungen und Exposition im LEO-Weltraum
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=50014
URN (NBN):urn:nbn:de:hbz:061-20190626-104214-3
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor:M. Sc. Backhaus, Theresa [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]14,60 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 25.06.2019 / geändert 25.06.2019
Beitragende:Prof. Dr. Ott, Sieglinde [Gutachter]
Prof. Dr. Martin, William F. [Gutachter]
Stichwörter:BIOMEX, Astrobiologie, Flechten, Strahlung
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibung:Die endemisch antarktische Flechte Buellia frigida sowie neun verschiedene biogene Substanzen wurden als Teil des „Biology and Mars Experiment“ (BIOMEX) für 1,5 Jahre an der Außenseite der ISS am Zvezda Modul gegenüber Weltraumbedingungen des Low Earth Orbit (LEO) exponiert. Sowohl die Flechtenproben als auch die Proben der biogenen Substanzen waren während des Experiments auf verschiedenen Trägermaterialien in der EXPOSE-R2 Einheit integriert: auf Gestein (rock), auf Quarz-Plättchen sowie auf künstlich hergestellten Mars-Pellets. Die Quarz-Plättchen und die Gesteins-Proben waren gegenüber Weltraum-Bedingungen des LEO exponiert (Vakuum), während die Proben auf den sogenannten Mars-Pellets zusätzlich einer künstlichen Mars-Atmosphäre ausgesetzt waren. Die BIOMEX Proben sind während der Weltraumexposition den verschiedenen Bedingungen des LEO ausgesetzt (extraterrestrische Strahlung, extreme Temperaturen, Vakuum bzw. Mars-Atmosphäre). Ziel dieses Experiments war, die Vitalität der Flechte und die Stabilität der biogenen Substanzen nach Exposition im LEO zu testen. Für die Analyse wurden verschiedene wissenschaftliche Methoden angewendet.
Die Stabilität der biogenen Substanzen wurde mittels Raman-Spektroskopie analysiert. Einige der untersuchten Substanzen lassen sich nach der Exposition im Weltraum nicht oder kaum noch detektieren. Drei der getesteten Substanzen sind nach Exposition im LEO noch nachweisen und daher als Biomaker für zukünftige Weltraum-Missionen zu empfehlen.
Die Analyse der BIOMEX Flechtenproben erfolgte mittels verschiedener Methoden (Raster- und Transmissions-Elektronenmikroskopie, Randomly Amplified Polymorphic DNA (RAPD)-PCR Technik, LIVE/DEAD Färbung, Chlorophyll a Fluoreszenz, Kulturversuch und Sporulationsversuch). Das im Cortex von Buellia frigida eingelagerte Melanin wirkt als effizienter UV Schutz für die Symbionten. Die Fähigkeit des Organismus zur Anhydrobiose führt zu einer hohen Trockentoleranz, die unter den Vakuum Bedingungen des Weltraums den Vorteil bietet, strahlungsinduzierten Schäden wie die Radiolyse von Wasser deutlich zu reduzieren. Die Ergebnisse zeigen jedoch einen deutlichen Vitalitätsverlust der Flechte nach der Exposition im LEO.
Das BIOMEX Experiment ist bereits das zweite Langzeit Experiment, in dem die Auswirkungen der LEO Bedingungen auf die Flechtensymbiose und ihre eukaryotischen Bionten untersucht wurden. Im ersten Experiment, dem „lichen and fungi experiment“ (LIFE), wurde die Flechte Xanthoria elegans, eine kosmopolitisch verbreitete Flechte, im LEO exponiert. Die Analyse dieser Flechte zeigte ein deutlich höheres Resistenzpotential nach der Exposition im LEO, als die Flechte Buellia frigida. Der Endemismus der antarktischen Flechte Buellia frigida führt zu Lebensstrategien, die an die Besonderheiten der jeweiligen Umweltbedingungen speziell angepasst sind. Sie weist somit ein engeres Spektrum auf als eine kosmopolitische Art. Es kann postuliert werden, dass dieser Aspekt von Relevanz für das niedrigere Resistenzpotential von B. frigida ist.
Quelle:Acuña, H, M., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Anderson, K. A., Carlson, C. W., Mc Fadden, J., Curtis, D. W., Mitchell, D., Reme, H., Mazelle, C., Sauvaud, J. A., d’Uston, C., Cros, A., Medale, J. L., Bauer, S. J., CLoutier, P., Mayhew, M., Winterhalter, D., Ness, N. F. (1998). Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor mission. Science 279(5357) 1676-1680.
Ahmadjian, V. (1993). The lichen symbiosis. New York: John Wiley & Sons.
Allen, D. J., Nogués, S., Baker, N. R. (1998). Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? Journal of experimental botany 49(328), 1775-1788.
Aro, E. M., Virgin, I., Andersson, B. (1993). Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta 1143(2) 113-134.
Atienzar, F. A., Venier, P., Jha, A. N., Depledge, M. H. (2002). Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutation Research 521(1-2) 151-163.
Atienziar, A., Cordi, B., Donkin, M. E., Evenden, A. J., Jha, A. N., Depledge, M. H. (2000). Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae, Palmaria palmata. Aquatic Toxicology 50(1-2) 1-12.
Aubert, S., Juge, C., Boisson, A. M., Gout, E., Bligny, R. (2007). Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 226(5) 1287-1297.
Backhaus, T. (2014). Einfluss von UC-V Strahlung auf den isolierten Photobionten der Flechte Circinaria gyrosa. Bachelor-Arbeit, Heinrich-Heine-Universität, Düsseldorf.
Backhaus, T., de la Torre, R., Lyhme, K., de Vera, J.-P., Meeßen, J. (2015). Desiccation and low temperature attenuate the effect of UVC254nm in the photobiont of the astrobiologically relevant lichens Circinaria gyrosa and Buellia frigida. International Journal of Astrobiology 14(3), S. 479-488.
Backhaus, T., Meeßen, J., Demets, R., de Vera, J. P., Ott, S. (2019). Characterisation of viability of the lichen Buellia frigida after 1.5 years in space on the international space station. Astrobiology 19(2) 233-241.
Balzer, A. (2012). Sustainability of the composting toilet. Undergraduate Honors Theses 282.
Barboza-Flores, M., Meléndres, R., Chernoc, V., Castaneda, B., Pedroza-Montero, M., Gan, B., Ahn, J., Zhang, Q., Yoon, S. (2002). Thermoluminescence in DVC Diamond Films: Application to actinometric dosimetry. Radiation Protection Dosimetry 100(14), 443-446.
Barták, M., Váczi, P., Hájek, J., Smykla, J. (2007). Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar biology 3(1), 47-51.
Bender, B. (2000). Methoden zur Messung der Lichtgeschwindigkeit und Aspekte zur Konstanz der Lichtgeschwindigkeit. Examensarbeit, Diplomica Verlag GmbH.
Berger, T., Hajek, M., Bilski, P., Körner, C., Vanhavere, F., Reitz, G. (2012). Cosmic radiation exposure of biological test systems during the EXPOSE-E mission. Astrobiology 12(5), 387-392.
Boiteux, L. S., Fonseca, M. E., Simon, P. W. (1999). Effects of plant tissue and DNA purification method on randomly amplified polymorphic DNA-based genetic fingerprinting analysis in carrot. Journal of the American Society for Horticultural Science 124(1), 32-38.
Böttger, U., de Vera, J. P., Fritz, J., Weber, I., Hübers, H. W., Schulze-Makuch, D. (2012). Optimizing the detection of carotene in cyanobacteria in a Martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planetary and Space Science 60(1), 356-362.
Brandt, A., de Vera, J. P., Onofri, S., Ott, S. (2015). Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated mars conditions on the ISS. International Journal of Astrobiology 14(3), S. 411-425.
Brandt, A., Posthoff, E., de Vera, J. P., Onofri, S., Ott, S. (2016). Characterisation of growth and ultrastructural effects of the Xanthoria elegans photbiont after 1.5 years of space exposure on the International Space Station. Origin of life and evolution of biospheres 46(2-3), 311-321.
Brandt, A., Meeßen, J., Jänicke, R. U., Raguse, M., Ott, S. (2017). Simulated space radiation: impact of four different types of high-dose ionizing radiation on the lichen Xanthoria elegans. Astrobiology 17(2) 136-144.
Braus, G. (2010). Das Königreich der Pilze: Vom Fluch der Pharaonen zur kulinarischen Bereicherung. Jahrbuch der Akademie der Wissenschaften zu Göttingen, 457-466.
Brix, J., Brose, M., Fartasch, M., Horak, W., Jossen, H., Kitz, E., Knuschke, P., Ott, G., Reichrath, J., Reidenbach, H. D., Schmid, H. R., Siekmann, H., Steinmetz, M., Völker, T. (2012). Leitfaden ,,Sonnenstrahlung“, Fachverband für Strahlenschutz
Brodo, I. M., Sharnoff, S. D., Sharnoff, S. (2001). Lichens of north america. Yale University Press, New Haven, London.
Brown, D. H., Ascaso, C., Rapsch, S. (1987). Ultrastructural changes in the pyrenoid of the lichen Parmelia sulcata stored under controlled conditions. Protoplastma 136(2) 136-144.
Brunstein, K. A. & Cline, T. L. (1966). Possible spectral neutrality of cosmic radiation. Nature 209(5029) 1186.
Büdel, B. & Scheidegger, C. (1996). Thallus morphology and anatomy. Lichen biology 2, 40-68.
Buffoni Hall, R. S., Paulsson, M., Duncan, K., Tobin, A. K., Widell, S., Bornmann, J. F. (2003). Water- and temperature dependence of DNA damage and repair in the fruticose lichen Cladonia arbuscula ssp. mitis exposed to UV-B radiation. Physiologia Planatarum 118(3), S. 371-379.
Cacao, E. H., Hada, M., Saganti, P. B., George, K. A., Cucinotta, F. A. (2016). Relative biological effectiveness of HZE particles for chromosomal exchanges and other surrogate cancer risk endpoints. PLoS One 11(4), e0153998.
Caldwell, T. E., Abdelrehim, I. M., Land, D. P. (1998). Preadsorbed oxygen atoms affect the product distribution and kinetics of acetylene cyclization to benzene on Pd (111): A laser-induced thermal desorption/fourier transform mass spectrometry study. The Journal of Physical Chemistry B 102(3), 562-568.
Clayton, M. & Wiencke, C. (1998). The antarctic marine macroalgal flora: levels of endemism and characteristics of endemic species. New Zealand Natural Sciences 34.
Crowe, J. H., Hoekstra, F. A., Crowe, L. M. (1992). Anhydrobiosis. Annual Review of Physiology 54(1), 579-599.
Danylchenko, O. & Sorochinsky, B. (2005). Use of RAPD assay for the detection of mutation changes in plant DNA induced by UV-C and y-rays. BMC Plant Biology 5(1) 1-2.
Darwin, D (1859). On the origin of species by means of natural selection. Murray, London. 220.
de Bary, H. A. (1979). Die Erscheinung der Symbiose. Verlag von Karl J. Trübner, Straßburg.
de la Torre Noetzel, R., Sancho, L. G., Pintado, A., Rettberg, P., Rabbow, E., Panitz, C., Deutschmann, U., Reina, M., Horneck, G. (2007). BIOPAN experiment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem. Advances in Space Research 40(11) 1665-1671.
de la Torre, R., Horneck, G., Sancho, L. G., Pintado, A., Scherer, K., Facius, R., Deutschmann, U., Reina, M., Baglioni, P., Demets, R. (2004). Studies of lichens from high mountain regions in outer space: the Biopan experiment. In: Proceedings of the third european workshop on exo-astrobiology, Mars: the search for life, edited by R.A. harris and L. Ouwehand, ESA SP-545, ESA Publications Division, Noordwijk, Netherlands 193-194.
de la Torre, R., Miller, A. Z., Cubero, B., Martín-Cerezo, M. L., Raguse, M., Meeßen, J. (2017). The effect of high-dose ionizing radiation on the astrobiological model lichen Circinaria gyrosa. Astrobiology 17(2), 145-153.
de la Torre, R., Sancho, L. G., Horneck, G., de los Ríos, A., Wierzchos, J., Olsson-Francis, K., Cockell, C., Rettberg, P., Berger, T., de Vera, J. P., Ott, S., Frías, J. M., Gonzalez, P. M., Lucas, M. M., Reina, M., Pintado, A:, Demets, R. (2010). Survival of lichens and bacteria exposed to outer space conditions-Results of the Lithopanspermia experiments. Icarus 208(2), 735-748.
de los Ríos, A., Ascaso, C., Wierzchos, J., Sancho, L. G. (2010). Space flight effects on lichen ultrastructure and physiology. Symbiosis and stress: joint ventures in biology, cellular origion, life in extreme habitats and astrobiology 17(5), edited by J. Seckbach and M. Grube, Springer, Heidelberg, 557-593.
de los Ríos, A., Wierzchos, J., Sancho, L. G., Ascaso, C. (2004). Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiology Ecology 50(3) 143-152.
de Vera, J. P., Möhlmann, D., Butina, F., Lorek, A., Wernecke, R., Ott, S. (2010). Survival potential and photosynthetic activity of lichens under Mars-like conditions: a laboratory study. Astrobiology 18(2) 215-227.
de Vera, J. P. & Ott, S. (2010). Resistance of symbiotic eukaryotes. Survival to simulated space conditions and asteroid impact catalysms. Symbioses and Stress 17, 595-611.
de Vera, J. P., Horneck, G., Rettberg, P., Ott, S. (2003). The potential of the lichen symbiosis to cope with the extreme conditions of outer space I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. International Journal of Astrobiology 1(4) 285-293.
de Vera, J. P., Horneck, G., Rettberg, P., Ott, S. (2004a). The potential of lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. Advances in Space Research 33(8) 1236-1243.
de Vera, J. P., Horneck, G., Rettberg, P., Ott, S. (2004b). In the context of panspermia: may lichens serve as shuttles for their bionts in space? Proceedings of the Third European Workshop on Astrobiology, ESA SP-545, ESA Publications Division, ESTEC, Noordwijk, the Netherlands 197-198.
de Vera, J. P., Rettberg, P., Ott, S. (2008). Life at the limits: capacities of isolated and cultured lichen symbionts to resist extreme environmental stresses. Origion of Live and Evolution of Biospheres 38(5), 457-468.
de Vera, J. P., Schulze-Makuch, D., Khan, A., Lorek, A., Koncz, A., Möhlmann, D., Spohn, T. (2014). Adaptation of an Antarctic lichen to martian niche conditions can occur within 34 days. Planet and Space Science 98 182-190.
de Winne, F. W. (2015). Biology research on EXPOSE-R, Safety in Clusters . esa, Space for life, human spaceflight science newsletter (7) 10-14.
Determeyer-Wiedmann, N., Sadowsky, A., Convey, P., Ott, S. (2019). Physiological life history strategies of photobionts of lichen species from Antarctic and moderate European habitats in response to stressful conditions. Polar Biology 42(2), 395-405.
Donahue, B. A., Yin, S., Taylor, J. S., Reines, D., Hanawalt, P. C. (1994). Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proceedings of the National Academy of Sciences 91(18), 8502-8506.
Duplessis, S., Tagu, D., & Martin, F. (2002). Living together underground - a molecular glimpse of the ectomycorrhizal symbiosis. In: Molecular Biology of Fungal Development. Osieqasz HD (Ed.), Marcel Dekker Inc., New York Basel, 302-303.
Dyer, P. & Crittenden, P. (2008). Antarctic lichens: life in the freezer. Microbiology Today 35(2), 74.
Eichler, J. (2011). Physikalische Größen. Physik. Vieweg+Teubner 1-3.
Eker, A. P., Yajima, H., Yasui, A. (1994). DNA photolyase from the fungus Neurospora cassa. Purification, characterization and comparison with other photolyases. Photochemistry and Photobiology 60(2) 125-133.
Emerson, F. W. (1947). Basic botany. The Blakiston Co., Philadelphia.
Engelen, A., Buschbom, J., Voncey, P., Ott, S. (2008). Specificity and selectivity of algal partners in the lichen symbioses at coastal and inland sites in Antarctica. In: Antarktische Nunatakker als Modell-Ökosystem für intiale Besiedlungsprozesse und Artendiversität in nacheiszeitlichen Perioden. Dissertation Heinrich-Heine-Universität Düsseldorf, 75-96.
Esnault, M. A., Legue, F., Chenal, C. (2010). Ionizing radiation: advances in plant response. Environmental and experimental botany 68(3), 231-237.
Fairén, A. G., Davila, A. F., Lim, D., Bramall, N., Bonaccorsi, R., Zavaleta, J., Uceda, E. R., Stoker, C., Wierzchos, J., Dohm, J. M., Amils, R., Andersen, D., McKay, C. P. (2010). Astrobiology through the ages of mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology 10(8), 821-843.
Finster, K., Hansen, A., Liengaard, L., Mikkelsen, K., Kristoffersen, T., Merison, J., Nørnberg, P., Lomstein, B. A. (2007). Mars simulation experiments with complex microbial soil communities. In ROME: Response of organisms to the Martian environment, edited by Horneck, G. (Cockell, C., ESA communications, ESTEC, Noordwijk, Netherlands), 59-71.
Friedmann, E. I., Hua, M., Ocampo-Friedmann, R. (1988). Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58(2-3) 251-259.
Gannutz, T. P. (1972). Effects of gamma radiation on lichens - I. acute gamma radiation on lichen algae and fungi. Radiation Botany 12(5), 331-338.
Gasulla, F., de Noca, P. G., Esteban-Carrasco, A., Zapata, J. M., Barreno, E., Guéra, A. (2009). Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta 231(1) 195-208.
Gehrig, H., Schüssler, A., Kluge, M. (1996). Geosiphon pyriforme, a fungus forming endocytobiosis with Nostic (cyanobacteria), is an ancestral member of the Glomales: Evidence by SSU rRNA analysis. Journal of Molecular Evolution 43(1), 71-81.
Giovanetti, M. (2002). Survival strategies in arbuscular mycorrhizal symbionts. Symbiosis: Mechanisms and Model Systems. Seckbach J (Ed.), Kluwer, Academic Press, Dordrecht 293-321.
Girard, P. M., Francesconi, S., Pozzebon, M., Graindorge, D., Rochette, P., Droun, R., Sage, E. (2011). UVA-induced damage to DNA and proteins: direct versus indirect photochemical processes. journal of Physics: Conference Series 261(1), IOP Publishing.
Haak, V., Maus, S., Korte, M., Lühr, H. (2003). Das Erdmagnetfeld – Beobachtung und Überwachung. Spezial: Geophysik. Physik in unserer Zeit 34(5), 218-224.
Harm, W. (1980). Biological effects of ultraviolet radiation.
Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., Ehresmann, B., Rafkin, S., Eigenbrode, J. L., Brinza, D. E., Weigle, G., Böttcher, S., Böhm, E., Burmeister, S, Guo, J., Köhler, J., Martin, C., Reitz, G., Cucinotta, F. A., Kim, M. H., Grinspoon, D., Bullock, M. A., Posner, A., Gómez-Elvira, J., Vasavada, A., Grotzinger, J. P. and MSL Science Team (2014). Mars' surface radiation environment measured with the mars science laboratory's curiosity rover. scoemce 343(6169), 1-6.
Hawksworth, D. L. (1988). The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Botanical Journal of the Linnean Society 96(1), 3-20.
Henssen, A. & Jahns, H. M. (1974). Lichenes. Eine Einführung in die Flechtenkunde. Stuttgart: Georg Thieme Verlag.
Hestmark, G. (1991). To sex or not to sex--: structures and strategies of reproduction in the family Umbilicariaceae (Lecanorales, Ascomycetes). Sommerfeltia Supplement 3 1-47.
Hoekstra, F., Golovina, E. A., Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science 6(9), 431-438.
Holder, J. M., Wynn-Williams, D. D., Perez, F. R., Edwards, H. G. (2000). Raman spectroscopy of pigments and oxalates in situ within epilithic lichens. Acarospora from the Antarctic and mediterranean. New Phytologist 145(2) 271-280.
Hollis, J. M., Lovas, F. J., Jewell, P. R. (2000). Interstellar glycoaldehyde: the first sugar. The Astrophysical Journal Letters 540(2), L107.
Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron 33(2) 179-197.
Honegger, R. (1986). Ultrastructural studies in lichens. New phytologist 103(4), 797-808.
Honegger, R. (1991). Functional aspects of the lichen symbiosis. Annual review of plant biology 42(1), 553-578.
Honegger, R. (1993). Developmental biology of lichens. New Phytology 125(4), 659-677.
Honegger, R. (1996). Experimental studies of growth and regenerative capacity in the foliose lichen Xanthoria parietina. New Phytologist 133(4), 573-581.
Honegger, R. (1998). The lichen symbiosis - What is so spectacular about it? Lichenologist 30(3) 193-212.
Honegger, R. (2003). The impact of different long-term storage conditions on the viability of lichen-forming ascomycetes and their green algal photobiont, Trebouxia spp. Plant Biology 5(3), 324-330.
Honegger, R. (2018). Fossil lichens from the lower Devonian and their bacterial and fungal epi- and endobionts. Biochemical Systematics and Ecology 34, 547-563.
Honegger, R., Peter, M., Scherrer, S. (1996). Drought-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens. Protoplasma 190(3) 221-232.
Horne, R. B., Thorne, R. M., Glauert, S. A., Meredith, N. P., Pokhotelov, D., Santolík, O. (2007). Electron acceleration in the van allen radiation belts by fast magnetosonic waves. Geophysical research letters 34(17) 1-5.
Horneck, G. (1999). Astrobiology studies of microbes in simulated interplanetary space. Laboratory astrophysics and space research. Springer, Dordrecht. 667-685.
Horneck, G. (2001). Likelihood of transport of life between the planets of our solar system. First steps in the origin of life in the universe. Springer, Dordrecht. 231-236.
Horneck, G., Bücker, H., Reitz, G., Requardt, H., Dose, K., Martens, K. D., Mennigmann, H. D., Weber, P. (1984). Life sciences: microorganisms in the space environment. Science 225(4658) 226-228.
Horneck, G., Klaus, D. M., Mancinelli, R. L. (2010). Space microbiology. Microbiology and Molecular Biology Reviews 74(1) 121-156.
Horneck, G., Stöffler, D., Ott, S., Hornemann, U., Cockell, S. C., Möller, R:, Meyer, C., de Vera, J. P., Schade, S., Artemieva, N. A. (2008). Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of Lithopanspermia experimentally tested. Astrobiology 8(1) 17-44.
Huneck, S. & Yoshimura, I. (1996). Identification of lichen substances. Identification of lichen substances, Springer, Berlin, Heidelberg. 11-123.
Jahns, H. M. (1988). The lichen thallus. CRC handbook of lichenology, Vol I CRC Press, BOCA Ranton. 95-143.
Jahns, H. M. & Ott, S. (1997). Life strategies in lichens - some general considerations. Bibliotheca Lichenologica 67. 49-68.
Jänchen, J., Meeßen, J., Herzog, T. H., Feist, M., de la Torre, R., de Vera, J. P. (2015). Humidity interaction of lichens under astrobiological aspects: the impact of UVC exposure on their water retention properties. International Journal of Astrobiology 14(3), 445-456.
Jansen, M., Gaba, V., Greenberg, B. M., Mattoo, A. K., Edelman, M. (1996a). Low threshold levels of ultraviolet-B in a background of photosynthetically active radiation trigger rapid degradation of the D2 protein of photosystem-II. The plant journal 9(5), 693-699.
Jansen, M. A., Babu, T. S., Heller, D., Gaba, V., Mattoo, A. K., Edelman, M. (1996b). Ultraviolet-B effects on Spirodela oligorhiza: induction of different protection mechanisms. Plant Science 115(2) 217-223.
Jansen, M. A., Gaba, V., Greenberg, B. M. (1998). Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends in Plant Science 3(4) 131-135.
Jasinghe, V. J. & Perera, C: O. (2005). Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D 2 by UV irradiation. Food chemistry 92(3), 541-546.
Jenkins, G. I., Christie, J. M., Fuglevand, G., Long, J. C., Jackson, J. A. (1995). Plant responses to UV and blue light: biochemical and genetic approachies. Plant Science 112(2) 117-138.
Jensen, M. (2002). Measurement of chlorophyll fluorescence in lichens. Protocols in Lichenology. Springer, Berlin, Heidelberg. 135-151.
Joseph, R. G., Dass, R. S., Rizzo, V., Cantasano, N., Bianciardi, G. (2019). Evidence of life on Mars? Journal of Astrobiology and space science reviews 1(40), 40-81.
Joshi, P. N., Ramaswamy, N. K., Iyer, R. K., Nair, J. S., Pradhan, M. K., Gartia, S., Biswal, B., Biswal. U. C. (2007). Partial protection of photosynthetic apparatus from UV-B induced damage by UV-A radiation. Environmental and Experimental Botany 59(2) 166-172.
Kaiser, R. I., Parker, D. S., Mebel, A. M. (2015). Reaction dynamics in astrochemistry: low-temperature pathways to polycyclic aromatic hydrocarbons in the interstellar medium. Annual Review of Physical Chemistry 66(2015), 43-67.
Kappen, L. (1985). Lichen-habitats as micro-oases in the Antarctic-the role of temperature. Polarforschung 55(1), 49-54.
Kappen, L. (1993). Plant activity under snow and ice, with particular reference to lichens. Arctic 46(4) 297-302.
Kappen, L. (1997). Flechten in der Antarktis. Flechten. Geschichte, Biologie, Systematik, Ökologie, Naturschutz und kulturelle Bedeutung. Kleine Senckenberg-Reihe 27. 149-156
Kappen, L., Schroeter, B., Green, T. G: A., Seppelt, R: D. (1998). Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold. Oecologia 113(3), 325-331.
Kappen, L., Schroeter, B., Scheidegger, C., Sommerkorn, M., Hestmark, G. (1996). Cold resistance and metabolic activity of lichens below 0°C. Advances in space research 18(12) 119-128.
Kappen, L. (2000). Some aspects of the great success of lichens in Antarctica. Antarctic Science 12(3), 314-324.
Kappen, L. & Friedmann, E. I. (1983). Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. Polar Biology 1(4) 227-232.
Kappen, S. B., Green, T. G., Seppelt, D. R. (1998). Microclimatic conditions, meltwater moistening, and the distributional pattern of Buellia frigida on rock in a southern continental Antarctic habitat. Polar biology 19(2) 101-106.
Keresztes, E. & Kovács, Á. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron 33(2) 199-210.
Kinraide, W. T. B. & Ahmadjian, V. (1970). The effects of usnic acid on the physiology of two cultured species of the lichen alga Trebouxia Puym. Lichenologist 4(3) 234-247.
Kosugi, M., Arita, M., Shizuma, R:, Moriyama, Y:, Kashino, Y., Koike, H., Satoh, K. (2009). Responses to desiccation stress in lichens are different from those in their photobionts. Plant and cell physiology 50(4), 879-888.
Kovács, E. & Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron 33 271-274.
Kranner, I. & Birtic, S. (2005). A modulating role for antioxidants in desiccation tolerance. Integrative and Comparative Biology 45(5), 734-740.
Kranner, I., Becket, R., Hochmann, A., Nash III, T. H. (2008). Desiccation-tolerance in lichens: a review. The Bryologist 111(4), 576-593.
Kranner, I., Zorn, M., Turk, B., Wornik, S., Becket, R. P., Batic, F. (2003). Biochemical traints of lichens differing in relative desiccation tolerance. New Phytologist 160(1) 167-176.
Kranner, L., Cram, W. J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheimer, E., Pfeifhoher, H. W. (2005). Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proceedings of the National Academy of Sciences 102(8), 3141-3146.
Kuroda, S., Yano, H., Koga-Ban, Y., Tabei, Y., Takaiwa, F., Kayano, T., Tanaka, H. (1999). Identification of DNA polymorphism induced by X-ray and UV irradiation in plant cells. Japan Agricultural Research Quarterly (33) 223-226.
Kvenvolden, K. A., Lawless, J. G., Ponnamperuma, C. (1971). Nonprotein amino acids in the murchison meteorite. Proceedings of the National Academy of Sciences of the United States of America 68(2), 486-490.
Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I. R., Moore, C. (1970). Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228(5275), 923-926.
Lalrotuluanga, Senthil Kumar, N., Gurusubramanian, G. (2011). Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage in mosquito larvae treated with plant extracts. Science Vision 11(3) 155-158.
Lange, O. L. (1954). Einige Messungen zum Wärmehaushalt poikilohydrer Flechten und Moose. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B 5.2 182-190.
Lange, O. L. (1969). The functional adaptation of lichens to ecological conditions of arid areas. Berichte der deutschen botanischen Gesellschaft 82(1), 3-22.
Lange, O. L. (1992). Pflanzenleben unter Stress. Flechten als Pioniere der Vegetation an Extremstandorten der Erde. Rostra Universitas Wirceburgensis, Würzburg. 213-217
Lange, O. L. & Kappen, L. (1972). Photosynthesis of lichens from Antarctica. Antarctic terrestrial biology 20, 83-95.
Lange, O. L., Bilger, W., Rimke, S., Schreiber, U. (1989). Chlorophyll fluorescence of lichens containing green and blue-green algae during hydration by water vapor uptake and by addition of liquid water. Botanica acta 102(4), 306-313.
Lange, O. L., Green, T. G. A., Heber, U. (2001). Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? Journal of Experimental Botany 52(363) 2033-2042.
Larson, D. (1987). The absorption and release of water by lichens. Bibliotheca Lichenologica 25(35), 351-360.
Leavitt, S. D., Kraichak, E., Nelsen, M. P., Altermann, S., Divakar, P., Alors, D., Esslinger, T. L., Crespo, A., Lumbsch, T. (2015). Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Molecular Ecology 24(14), 3779-3797.
Lytvyn, D. I., Yemets, A. I., Blume, Y. B. (2010). UV-B overexposure induces programmed cell death in a BY-2 tobacco cell line. Environmental and Experimental Botany 68(1), 51-57.
Maldonado, A. P., O'Connell, D., Welch, E., Vann, R., van der Woude, M. W. (2016). Spartial dependence of DNA damage in bacteria due to low-temperature plasma application as assessed at the single cell level. Scientific Reports 6(2016) 1-10.
Meeßen, J., Backhaus, T., Brandt, A., Raguse, M., Böttger, U., de Vera, J. P., de la Torre, R. (2017). The effect of high-dose ionizing radiation on the isolated photobiont of the astrobiological model lichen Circinaria gyrosa. Astrobiologie 17(2) 154-162.
Meeßen, J., Backhaus, T., Sadowsky, A., Mrkalj, M., Sánchez, F. J., de la Torre, R., Ott, S. (2014b). Effects of UVC254nm on the photosynthetic activity of photobionts from the astrobiologically relevant lichens Buellia frigida and Circinaria gyrosa. International Journal of Astrobiology 13(4), 340-352.
Meeßen, J., Sánchez, F. J., Sadowsky, A., de Vera, J. P., de la Torre, R., Ott, S. (2014a). Extremotolerance and resistance of lichens: comparative studies on five lichen species used in astrobiological research II. Secondary lichen compounds. Origins of Life and Evolution of Biospheres 43(6), 501-526.
Meeßen, J., Sánchez, F. J., Brandt, A., Balzer, E. M., de la Torre, R., Sancho, L. G., de Vera, J. P., Ott, S. (2013). Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research. I. Morphological and anatomical characteristics. Origins of Life and Evolution of Biospheres 43(3) 283-303.
Meeßen, J., Wuthenow, P., Schille, P., Rabbow, E., de Vera, J. P., Ott, S. (2015). Resistance of the lichen Buellia frigida to simulated space conditions during the preflight tests for BIOMEX-Viability assay and morphological stability. Astrobiology 15(8), 601-615.
Meredith, P. & Riesz, J. (2004). Radiative relaxation quantum yields for synthetic eumelanin. Photochemistry and Photobiology 79(2) 211-216.
Miller, S. L. (1953). A production of amino acids under possible primitive Earth conditions. Science 117(3046), 528-529.
Miller, S. L., Urey, H. C., Oró, J. (1976). Origin of organic compounds on the primitive earth and in meteorites. Journal of Molecular Evolution9(1), 59-72.
Moeller, R., Raguse, M., Leuko, S., Berger, T., Hellweg, C. E., Fujimori, A., Okayasu, R., Horneck, G., STARLIFE Research Group (2017). STARLIFE-An international campaign to study the role of galactic cosmic radiation in astrobiological model systems. Astrobiology 17(2) 101-110.
Moussa, G. (2009). Referenzbereich der minimalen Erythemdosis für UVB- und UVA-Strahlung.
Nash III, T. H., White, S. L., Marsh, J. E. (1977). Lichen and moss distribution and biomass in hot desert ecosystems. The Bryologist 80(3), 470-479.
Nasibi, F. & M'Kalantari, K. H. (2005). The effects of UV-A, UV-B and UV-C on protein and ascorbate content, lipid peroxidation and biosynthesis of screening compounds in Brassica napus. Iranian Journal of Science and Technology 29(1), 39-48.
Nelson, J. R., Lawrence, C. W., Hinkle, D. C. (1996). Thymine-thymine dimer bypass by yeast DNA-polymerase ζ. Science 272(5268) 1646-1649.
Nguyen, K. H., Chollet-Krugler, M., Gouault, N., Tomasi, S. (2913). UV-protectant metabolites from lichens and their symbiotic partners. Natural product reports 30(12) 1490-1508.
Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews 64(3), 548-572.
Nicholson, W. L., Schuerger, A. C., Setlow, P. (2005). The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutation Research 571(1-2) 249-264.
Noblet, A., Stalport, F., Guan, Y. Y., Poch, O., Coll, P., Szopa, C., Cloix, M., Macari, F., Raulin, F., Chaput, D., Cottin, H. (2012). The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-Earth orbit. Astrobiology 12(5), 436-444.
Nogués, S. B. & Baker, N. R. (1995). Evaluation of the role of damage to photosystem II in the inhibition of CO2 assimilation in pea leaves on exposure to UV-B radiation. Plant, Cell & Environment 18(7), 781-787.
Nybakken, L., Solhaug, K. A., Bilger, W., Gauslaa, Y. (2004). The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140(2) 211-216.
Onofri, S., de la Torre, R., de Vera, J. P., Ott, S., Zucconi, L., Selbmann, L., Scalzi, G., Venkateswaran, K. J., Rabbow, E., Sánchez, F. J., Horneck, G. (2012). Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12 (5), 508-516.
Oró, J. & Kimball, A. P. (1961). Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Archives of Biochemistry and Biophysics 94(2) 217-227.
Oró, J. & Kimball, A. P. (1962). Synthesis of purines under possible primitive earth conditions. II. Purine intermediates from hydrogen cyanide. Archives of Biochemistry and Biophysics 96(2) 293-313.
Ott, S. (1987). Reproductive strategies in lichens. Progress and problems in lichenology in the eighties. Bibliotheca Lichenogica 25, 81-93.
Ott, S. & Lumbsch, H. (2001). Morphology and phylogeny of ascomycete lichens. Fungal Associations. Springer, Berlin, Heidelberg. 189-210.
Ott, S., Treiber, K., Jahns, M. (1993). The development of regenerative thallus structures in lichens. Botanical Journal of the Linnean Society 113(1), 61-67.
Otting, W. (1952). Der Raman-Effekt und seine analytische Anwendung. SpringerVerlag, Berlin, Göttingen, Heidelberg.
Øvstedal, D. O. & Smith, R. L. (2001). Lichens of Antarctica and South Georgia. Cambridge University Press, Cambridge, UK. 361-363.
Palumbo, A. M. & Head, J. W. (2018). Impact cratering as a cause of climate change, surface alteration, and resurfacing during the early history of Mars. Meteoritics & Planetary Science 53(4), 687-725.
Pasternack, R. F., Bustamante, C., Collings, P. J., Giannetto, A., Gibbs, E. J. (1993). Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. Journal of the American chemical society 115(13), 5393-5399.
Perez-Ortega, S., Ortiz-Álvarez, R., Green, T. A., de los Ríos, A. (2012). Lichen myco- and photobiont diversity and their relationships at the edge of life (MyMurdo Dry Valleys, Antarctica). FEMS Microbiology Ecology 82(2), 429-448.
Petersen, J. L., Lang, D. W., Small, G. D. (1999). Cloning and characterization of a class II DNA photolyase from Chlamydomonas. Plant Molecular Biology 40(6) 1063-1071.
Petty, J., Zheng, J., Hud, N., & Dickson, R. (2004). DNA-templated Ag nanocluster formation. Journal of the American Chemical Society 126(16), 5207-5212.
Piekarski, G. (2013). Lehrbuch der Parasitologie: unter besonderer Berücksichtigung der Parasiten des Menschen. Springer-Verlag, Berlin, Heidelberg.
Plemenitaš, A., Vaupotiĉ, T., Lenassi, M., Kogej, T., Grunde-Cimerman, N. (2008). Adaptation of extremely halotolerant black years Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Studies in Mycology 61, 67-75.
Poch, O., Kaci, S., Stalport, F., Szopa, C., Coll, P. (2014). Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions. Icarus 242, 50-63.
Poch, O., Noblet, A., Stalport, F., Correia, J. J., Grand, N., Szopa, C., Coll, P. (2013). Chemical evolution of organic molecules under Mars-like UV radiation conditions simulated in the laboratory with the "Mars organic molecule irradiation and evolution" (MOMIE) setup. Planet and Space Science 85, S. 188-197.
Postgate, J. R. (1969). Chapter XVII viable counts and viability. Methods in microbiology 1, 611-628.
Quilhot, W., Fernandez, E., Rubio, C., Cavieres, M. F., Hidalgo, M. E., Goddard, M., Galloway, D. (1996). Preliminary data on the accumulation of usnic acid relatec to ozone depletion in the Antarctic lichens. Seria Cientias INACH 46 105-111.
Rabbow, E., Huberth, S., Willnecker, R. (2016b). EXPOSE-R2 mission and mission ground reference report. ISS-MUSC-EXP-RP-0017, 53-75.
Rabbow, E., Parpart, A., Reitz, G. (2016a). The planetary and space simulation facilities at DLR Cologne. Microgravity Science and Technology 28(3) 215-229.
Rabbow, W:, Rettberg, P., Barczyk, S., Bohmeier, M., Parpart, A:, Panitz, C:, Horneck, G., von Heise-Rotenburg, R., Hoppenbrouwers, T:, Willnecker, R., Baglioni, P., Demets, R., Dettmann, J., Reitz, G. (2012). EXPOSE-E: an ESA astrobiology mission 1.5 years in space. Astrobiology 12(5), 374-386.
Rabbow, W., Rettberg, P., Parpart, A., Panitz, C., Schulte, W., Molter, F., Jaramillo, E., Demets, R., Weiß, P., Willnecker, R. (2017). EXPOSE-R2: The Astrobiological ESA Misison on Board of the International Space Station. Frontiers in Microbiology 8 1-14.
Raggio, J., Pintado, A., Ascaso, C., de la Torre, R., de los Ríos, A., Wierzchos, J., Horneck, G., Sancho, L. (2011). Whole lichen thalli survive exposure to space conditions: results of Lithopanspermia experiment with Aspicilia fruticulosa. Astrobiology 11(4) 281-292.
Rahimzadeh, P. H., Hosseini, S., Dilmaghani, K. (2011). Effects of UV-A and UV-C radiation on some morphological and physiological parameters in savory (Satureja hortensis L.). Annals of Biological Research 2(5),. 164-171
Rao, M. V., Paliyath, G., Ormrod, D. P. (1996). Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology 110(1) 125-136.
Rastogi, R. P., Kumar, A., Tyagi, M. B., Sinha, R. P. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of nucleic acids 2010 1-32.
Ravant, J. L., Douki, T., Cadet, J. (2001). Direct and indirect effects of UV radiation on DNA and its components. Journal of Photochemistry and Photobiology B: Biology 63(1), 88-102.
Reape, T. J., Molony, E. M., McCabe, P. F. (2008). Programmed cell death in plants: distinguishing between different modes. Journal of experimental botany 59(3), 435-444.
Rebecchi, L., Altiero, T., Guidetti, R. (2007). Anhydrobiosis: the extreme limit of desiccation tolerance. Invertebrate Survival Journal 4(2), 65-81.
Rikkinen, J. (1995). What's behind the pretty colours? A study on the photobiology of lichens. Bryobrothera 4 1-239.
Riley, P. A. (1994). Free radicals in biology: oxidative stress and the effects of ionizing radiation. International Journal of Radiation Biology 65(1) 27-33.
Roy, S. (2000). Strategies for the minimization of UV-induced damage. The effects of UV radiation in the marine environment. Cambridge Universiry Press 177-205.
Rozema, J., van de Staaij, J., Björn, L. O., Caldwell, M. (1997). UV-B as an environmental factor in plant life: stress and regulation. Trends in ecology & evolution 12(1) 22-28.
Rutherford, E. (1911). The Scattering of α and β Particles by Matter and the Structure of the Atom. Philosophical Magazine 6(21), 669-688.
Saarschmidt, S., Hause, B., Strack, D. (2009). Einladung ans Buffet-Wege zur Mykorrhiza. Biologie in unserer Zeit 2(39) 102-113.
Sadowsky, A. & Ott, S. (2012). Photosynthetic symbionts in Antarctic terrestrial ecosystems: the physiological response of lichen photobionts to drought and cold. Symbiosis 58(1-3), 81-90.
Sadowsky, A. & Ott, S. (2016). Symbiosis as a successful strategy in continental Antarctica: performance and protection of Trebouxia photosystem II in relation to lichen pigmentation. Polar Biology 39(1) 139-151.
Sánchez, F. J., Meeßen, J., Ruiz, M., Sancho, L., Ott, S., Vílchez, C., Horneck, G., Sadowsky, A., de la Torre, R. (2014). UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances. International Journal of Astrobiology 13 1-18.
Sánchez, F., Mateo-Martí, E., Raggio, J., Meeßen, J., Martínez-Frías, J., Sancho, L., Ott, S., de la Torre, R. (2012). The resistance of the lichen Circinaria gyorsa (nom. provis) towards simulated mars conditions - a model test for the survival capacity of a eukaryotic extremophile. Planetary and Space Science 72, pp. 102-110
Sancho, L. G., de la Torre, R., Pintado, A. (2008). Lichens, new and promising material from experiments in astrobiology. Fungal Biology Reviews 22(3) 103-109.
Sancho, L. G., de la Torre, R., Horneck, G., Ascaso, C., de los Ríos, A., Pintado, A., Wierzchos, J., Schuster, M. (2007). Lichens survive in space: results from 2005 LICHENS experiment. Astrobiology 7(3), 443-454.
Sarno-Smith, L. (2015). A Radiation Belt MeV Electron Flux Comparison Between RBE and GOES-15. Data-Model Comparison 1-10.
Sass, L., Spetea, C., Máté, Z., Nagy, F., Vass, I. (1997). Repair of UV-B induced damage of photosystem II via de novo synthesis of D1 and D2 reaction centre subunits in Synechocystis sp. PCC 6803. Photosynthesis Research 54(1), 55-62.
Scalzi, G., Selbmann, L., Zucconi, L., Rabbow, E., Horneck, G., Albertano, P., & Onofri, S. (2012). LIFE Experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the International Space Station. Origins of Life and Evolution of Biospheres 42(2-3) 253-262.
Schenk, G. (1964). Das Unsichtbare Universum. Safari Verlag.
Schirmack, J., Böhm, M., Brauer, C., Löhmannsröben, H. G., de Vera, J. P., Möhlmann, D., Wagner, D. (2014). Laser spectroscopic real time measurements of methanogenic activity under Martian subsurface analogue conditions. Planetary and Space Science 98, S. 198-204.
Schlensog, M. A. R. K., Schroeter, B., Pannewitz, S., Green, T. G. A. (2003). Adaptation of mosses and lichens to irradiance stress in maritime and continental Antarctic habitats. Antarctic Biology in a global context, Backhuyss Publishers,Leiden. 161-166.
Schöller, H. (1997). Flechten. Geschichte, Biologie, Systematik, Ökologie, Naturschutz, kulturelle Bedeutung. Kleine Senckenberg-Reihe (27).
Schreiber, U. B. W. N., Bilger, W., Neubauer, C. (1994). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiology of Photosynthesis, Springer, Berlin, Heidelberg, New York. 49-70.
Schroeter, B. & Scheidegger, C. (1995). Water relations in lichens at subzero temperatures: structural changes and carbon diocide exchange in the lichen Umbilicaria aprina from continental Antarctica. New Phytologist 131(2) 273-285.
Schubert, R. & Wagner, G. (1993). Botanisches Wörterbuch 11. Auflage. Eugen Ulmer Verlag, Stuttgart. 519.
Shields, L. M. & Rickard, W. H. (1961). A preliminary evaluation of radiation effects at the Nevada test site. Recent Advances in Botany, University of Toronto Press New York. 1387-1390.
Shkrob, I. A., Chemerisov, S. D., Marin, T. W. (2010). Photocatalytic decomposition of carboxylated molecules on light-exposed martian regolith and its relation to methane production on Mars. Astrobiology 10(4), 425-435.
Sinha, R. P. & Häder, D. P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences 1(4) 225-236.
Sojo. F., Romeike, J., Ott, S. (2003). Himantormia lugubris (Hue) M. Lamb - vegetative and reproductive habit: adaptations of an Antarctic endemic. Flora 198(2) 118-126.
Solhaug, K. A., Gauslaa, Y., Nybakken, L., Bilger, W. (2003). UV-induction of sun-screening pigments in lichens. New Phytologist 158(1), 91-100.
Solhaug, K. A. & Gauslaa, Y. (1996). Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108(3), 412-418.
Solhaug, K. A. & Gauslaa, Y. (2004). Photosyntates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina. Plant, Cell & Environment 27(2) 167-178.
Spagnuolo, V., Zampella, M., Giordano, S., Adamo, P. (2011). Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotoxicology and Environmental Safety 74(5) 1434-1443.
Spieß, G. & Klapötke, T. M. (1999). Eine einfache Einführung in die Raman-Spektroskopie. LMU München.
Sterflinger, K. (2006). Black yeasts and meristematic guni: ecology, diversity and identification. Biodiversity and ecophyiology of yeasts, Springer, Berlin. 501-514.
Stöffler, D., Horneck, G., Ott, S., Hornemann, U., Cockell, C. S., Moeller, R., Meyer, C., de Vera, J. P., Fritz, J., Artemieva, N. A. (2007). Experimental evidence for the potential impact ejection of viable microorganisms from Mars and Mars-like Planets. Icarus 189, pp. 585-588
Strid, A., Chow, W. S., Anderson, J. M. (1994). UV-B damage and protection at the molecular level in plants. Photosynthesis Research 39(3), 475-489.
Takeuchi, Y., Murakami, M., Nakajima, N., Kondo, N., Nikaido, O. (1996). Induction of repair and damage to DNA in cucumber cotyledons irradiated with UV-B. Plant and Cell Physiology 37(2) 181-187.
Teramura, A. H. & Sullivan, J. H. (1994). Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynthesis Research 39(3), 463-473.
Thierfelder, N. K. (2006). Untersuchung zur Apoptoseinduktion in lymphoblastoiden Zellen von Patienten mit Nijmegen-Brekage-Syndrom. Dissertation, Humboldt-Universität, Berlin.
Unal, D., Tuney, I., Esiz-Dereboylu, A., Sukatar, A. (2009). The effect of UV-A (352 nm) stress on chlorophyll fluorescence, chlorophyll a content, thickness of upper cortex and determinate DNA damage in Physcia semipinnata. Journal of Photochemistry and Photobiology B 94(1), 71-76.
Valladares, F., Sancho, L. G., Ascaso, C. (1998). Water storage in the lichen familiy Umbilicariaceae. Botanica Acta 111(2), 99-107.
Varela, M. M. (1964). Origins of terrestrial life. Philippine Studies 12(3), 460-472.
Vass, I., Sass, L., Spetea, C., Bakou, A., Ghanotakis, D. F., Petrouleas, V. (1996). UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Biochemistry 35(27), 8964-8973.
Vass, I., Szilárd, A:, Sicora, C. (2005). 43 adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. In Handbook of Photosynthesis, Francis and Tayloer publisher., New York. 43-63.
Völkle, H. (2010). Die kosmische Strahlung. Bulletin de la Société Sciences Nat 100.
Wagner, H. F. (2017). www.weltderphysik.de. Abgerufen am 21. 01 2019 von welt der physik: https://www.weltderphysik.de/index.php?id=142
Weisling, K., Nybom, H., Wolff, K., Meyer, W. (1994). DNA fingerprinting in plants and fungi. CRC Press.
Woodwell, G. M. & Gannutz, T. P. (1967). Effects of chronic gamma irradiation on lichen communities of a forest. American Journal of Botany 54(10) 1210-1215.
Wynn-Williams, D. D. & Edwards, H. G. (2002). Environmental UV radiation: biological strategies for protection and avoidance. Astrobiology, Springer, Berlin, Heidelberg. 245-260.
Yoshimura, I., Yamamoto, Y., Nakano, T., Finnie, J. (2002). Isolation and culture of lichen photobionts and mycobionts. Protocols in lichenology. Berlin, Heidelberg: Springer. 3-33
Zhdanova, N. N., Zakharchenko, V. A., Vember, V. V., Nakonechnaya, L. T. (2000). Fungi from chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Research 104(12) 1421-1426.
Zook, D. (2010). Tropical rainforests as dynamic symbiospheres of life. Symbiosis 51(1) 27-36.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:3 Jahre
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie » Botanik
Dokument erstellt am:26.06.2019
Dateien geändert am:26.06.2019
Promotionsantrag am:13.12.2016
Datum der Promotion:25.06.2019
english
Benutzer
Status: Gast
Aktionen