Dokument: Der Effekt der transkraniellen Gleichstromstimulation über dem primären motorischen Kortex auf nachfolgendes implizites motorisches Sequenzlernen

Titel:Der Effekt der transkraniellen Gleichstromstimulation über dem primären motorischen Kortex auf nachfolgendes implizites motorisches Sequenzlernen
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=49716
URN (NBN):urn:nbn:de:hbz:061-20190531-104246-7
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Kuntz, Thomas [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]3,96 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 27.05.2019 / geändert 27.05.2019
Beitragende:Prof. Dr. med. Pollok, Bettina [Gutachter]
Prof. Dr. med. Vesper, Jan [Gutachter]
Stichwörter:tDCS, M1, motorisches Sequenzlernen
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Gegenstand der vorliegenden Arbeit ist die Untersuchung des Effekts der transkraniel- len Gleichstromstimulation (engl. transcranial Direct Current Stimulation (tDCS)) über dem primären motorischen Kortex (M1) auf das unmittelbar nachfolgende implizite motorische Sequenzlernen. Der M1, als Teil eines komplexen zentralen Netzwerks, nimmt eine wichtige Rolle in der Akquisitionsphase des impliziten motorischen Se- quenzlernens ein. Die tDCS ermöglicht die non-invasive Modulation der Exzitabilität kortikaler Areale und erlaubt somit eine Abschätzung des kausalen Beitrags des stimu- lierten Areals für die Verhaltenssteuerung. Die anodale tDCS geht mit der Zunahme der Exzitabilität einher, die kathodale tDCS mit deren Abnahme.
Motorisches Lernen basiert auf synaptischer Plastizität des M1. Die anodale tDCS kann über die Erhöhung der Exzitabilität der Zielneurone additive neuroplastische Prozesse hervorrufen. Hieraus ergibt sich die Annahme, dass die anodale tDCS über M1 unmit- telbar vor dem Lernen einer Bewegungssequenz das nachfolgende Lernen durch eine Bahnung neuroplastischer Prozesse fazilitieren könnte. Zur Überprüfung dieser Frage wurden 18 gesunde Probanden unmittelbar vor der Akquisition einer impliziten motori- schen Sequenz anodal vs. kathodal vs. schein stimuliert. Aufgrund der Annahme, dass die tDCS neuronale Prozesse in M1 moduliert, welche relevant für das motorische Ler- nen sind, sollte die anodale tDCS das nachfolgende Lernen einer impliziten motorischen Sequenz fazilitieren. Um implizites motorisches Lernen zu induzieren wurde die serielle Reaktionszeitaufgabe (engl. Serial Reaction Time Task (SRTT)) genutzt. Zur Beurtei- lung des Lernerfolgs dienten die mittleren Reaktionszeiten unmittelbar am Ende des Trainings der SRTT im Vergleich zu denen vor Beginn des Trainings. Die Datenanalyse zeigte einen polaritätsspezifischen Effekt der tDCS: Die anodale tDCS ging mit signifi- kant schnelleren Reaktionszeiten zum Ende des Trainings im Vergleich zur kathodalen tDCS einher. Im Vergleich zur Schein-Stimulation zeigte sich ein Trend zu schnelleren Reaktionszeiten. Es zeigte sich kein signifikanter Effekt der tDCS auf die Reaktionszei- ten in einer randomisierten Kontrollbedingung – der Effekt war somit sequenzspezi- fisch. Diese Daten weisen somit auf einen fazilitierenden Effekt der anodalen tDCS auf die Akquisition einer impliziten motorischen Sequenz hin. Die Daten liefern Hinweise darauf, dass die anodale tDCS über M1 und nachfolgendes implizites motorisches Ler- nen synergistisch miteinander interagieren. Auch wenn die vorliegende Arbeit keine Aussagen zu den neurophysiologischen Prozessen des Verhaltenseffektes erlaubt, liefert sie Hinweise darauf, dass die anodale tDCS, die dem motorischen Lernen unmittelbar vorausgeht, neuroplastische Prozesse bahnen könnte, die das nachfolgende motorische Lernen fazilitieren.

In the present study we examined the effect of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) immediately prior to implicit motor se- quence learning. M1 plays an important role for the implicit acquisition of newly learned motor sequences. TDCS is a non-invasive brain stimulation technique that al- lows the modulation of the excitability of cortical areas. Anodal tDCS leads to an en- hanced excitability, while cathodal tDCS yields its reduction.
Motor learning is based on synaptic plasticity in M1. Anodal tDCS is able to facilitate such neuroplastic processes in the targeted neurons, due to enhanced excitability. Hence, tDCS applied to M1 potentially modulates subsequent motor learning. In order to test this hypothesis, 18 healthy subjects received anodal vs. cathodal vs. sham tDCS immediately prior to the acquisition of an implicit motor sequence. Based on the as- sumption that anodal tDCS may induce neuroplastic reorganization within M1, anodal tDCS should facilitate the acquisition of a subsequent implicit motor sequence. In order to initiate implicit motor sequence learning, we utilised the Serial Reaction Time Task (SRTT). Reaction times prior to training on the SRTT and at the end of acquisition served as outcome measures. The analysis showed a polarity-specific effect of tDCS: Anodal tDCS facilitated the acquisition of an implicit motor sequence as indicated by faster reaction times as compared to cathodal tDCS. Comparison with reaction times following sham stimulation revealed a trend towards superior learning. No significant effect of tDCS on reaction times in the random control condition was observed indicat- ing that the observed effect was sequence-specific. The present data suggest that preced- ing anodal tDCS and subsequent implicit motor sequence learning may interact syner- gistically. Anodal tDCS likely promoted neuroplastic changes in M1, facilitating subse- quent implicit motor sequence learning. Although the present data do not allow a con- clusion regarding the underlying brain processes due to a lack of neurophysiological recordings, the present findings nicely fit the hypothesis that preceding anodal tDCS over M1 may induce neuroplastic processes in M1 underlying successful motor learn- ing.
Quelle:Abraham, W. C. & Bear, M. F. 1996. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci, 19, 126-30.
Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Dang-Vu, T., Darsaud, A., Ruby, P., Luppi, P. H., Degueldre, C., Peigneux, P., Luxen, A. & Maquet, P. 2008. Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron, 58, 261-72.
Amadi, U., Allman, C., Johansen-Berg, H. & Stagg, C. J. 2015. The Homeostatic Interaction Between Anodal Transcranial Direct Current Stimulation and Motor Learning in Humans is Related to GABAA Activity. Brain Stimul, 8, 898-905.
Ambrus, G. G., Chaieb, L., Stilling, R., Rothkegel, H., Antal, A. & Paulus, W. 2016. Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task. Neuroscience Letters, 616, 98- 104.
Ammann, C., Spampinato, D. & Marquez-Ruiz, J. 2016. Modulating Motor Learning through Transcranial Direct-Current Stimulation: An Integrative View. Front Psychol, 7, 1981.
Bastani, A. & Jaberzadeh, S. 2013. a-tDCS differential modulation of corticospinal excitability: the effects of electrode size. Brain Stimul, 6, 932-7.
Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F. & Nitsche, M. A. 2013. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol, 591, 1987-2000.
Berger, T. W. 1984. Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning. Science, 224, 627-30.
Bienenstock, E. L., Cooper, L. N. & Munro, P. W. 1982. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci, 2, 32-48.
Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., Mourdoukoutas, A. P., Kronberg, G., Truong, D., Boggio, P., Brunoni, A. R., Charvet, L., Fregni, F., Fritsch, B., Gillick, B., Hamilton, R. H., Hampstead, B. M., Jankord, R., Kirton, A., Knotkova, H., Liebetanz, D., Liu, A., Loo, C., Nitsche, M. A., Reis, J., Richardson, J. D., Rotenberg, A., Turkeltaub, P. E. & Woods, A. J. 2016. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul, 9, 641-61.
Bindman, L. J., Lippold, O. C. J. & Redfearn, J. W. T. 1964. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol, 172, 369-82.
Bocci, T., Caleo, M., Tognazzi, S., Francini, N., Briscese, L., Maffei, L., Rossi, S., Priori, A. & Sartucci, F. 2014. Evidence for metaplasticity in the human visual cortex. J Neural Transm (Vienna), 121, 221-31.
Boros, K., Poreisz, C., Munchau, A., Paulus, W. & Nitsche, M. A. 2008. Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. Eur J Neurosci, 27, 1292-300.
Borragan, G., Urbain, C., Schmitz, R., Mary, A. & Peigneux, P. 2015. Sleep and memory consolidation: motor performance and proactive interference effects in sequence learning. Brain Cogn, 95, 54-61.
Boyd, L. A. & Linsdell, M. A. 2009. Excitatory repetitive transcranial magnetic stimulation to left dorsal premotor cortex enhances motor consolidation of new skills. BMC Neurosci, 10, 72.
Brunoni, A. R., Boggio, P. S., De Raedt, R., Bensenor, I. M., Lotufo, P. A., Namur, V., Valiengo, L. C. & Vanderhasselt, M. A. 2014. Cognitive control therapy and transcranial direct current stimulation for depression: a randomized, double- blinded, controlled trial. J Affect Disord, 162, 43-9.
Cerruti, C. & Schlaug, G. 2009. Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. J Cogn Neurosci, 21, 1980-7.
Citri, A. & Malenka, R. C. 2007. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology, 33, 18-41.
Citri, A. & Malenka, R. C. 2008. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33, 18-41.
Derkach, V. A., Oh, M. C., Guire, E. S. & Soderling, T. R. 2007. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci, 8, 101-13.
Destrebecqz, A., Peigneux, P., Laureys, S., Degueldre, C., Del Fiore, G., Aerts, J., Luxen, A., Van Der Linden, M., Cleeremans, A. & Maquet, P. 2005. The neural correlates of implicit and explicit sequence learning: Interacting networks revealed by the process dissociation procedure. Learn Mem, 12, 480-90.
Doyon, J. 2008. Motor sequence learning and movement disorders. Curr Opin Neurol, 21, 478-83.
Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehericy, S. & Benali, H. 2009. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioural brain research, 199, 61-75.
Doyon, J. & Ungerleider, L. G. 2002. Functional anatomy of motor skill learning. Neuropsychology of memory, 3rd ed. New York, NY, US: Guilford Press.
Dum, R. P. & Strick, P. L. 2002. Motor areas in the frontal lobe of the primate. Physiology & Behavior, 77, 677-682.
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. 1995. Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305- 7.
Ferrucci, R., Brunoni, A. R., Parazzini, M., Vergari, M., Rossi, E., Fumagalli, M., Mameli, F., Rosa, M., Giannicola, G., Zago, S. & Priori, A. 2013. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum, 12, 485-92.
Filmer, H. L., Dux, P. E. & Mattingley, J. B. 2014. Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci, 37, 742- 53.
Finniss, D. G., Kaptchuk, T. J., Miller, F. & Benedetti, F. 2010. Placebo Effects: Biological, Clinical and Ethical Advances. Lancet, 375, 686-695.
Floyer-Lea, A. & Matthews, P. M. 2005. Distinguishable brain activation networks for short- and long-term motor skill learning. Journal of neurophysiology, 94, 512- 8.
Focke, J., Kemmet, S., Krause, V., Keitel, A. & Pollok, B. 2017. Cathodal transcranial direct current stimulation (tDCS) applied to the left premotor cortex (PMC) stabilizes a newly learned motor sequence. Behav Brain Res, 316, 87-93.
Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G. & Lu, B. 2010. Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron, 66, 198-204.
Giacobbe, V., Krebs, H. I., Volpe, B. T., Pascual-Leone, A., Rykman, A., Zeiarati, G., Fregni, F., Dipietro, L., Thickbroom, G. W. & Edwards, D. J. 2013. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: the
dimension of timing. NeuroRehabilitation, 33, 49-56.
Gill, J., Shah-Basak, P. P. & Hamilton, R. 2015. It's the thought that counts: examining
the task-dependent effects of transcranial direct current stimulation on executive
function. Brain Stimul, 8, 253-9.
Grafton, S. T., Hazeltine, E. & Ivry, R. 1995. Functional mapping of sequence learning
in normal humans. J Cogn Neurosci, 7, 497-510.
Hardwick, R. M., Rottschy, C., Miall, R. C. & Eickhoff, S. B. 2013. A quantitative
meta-analysis and review of motor learning in the human brain. Neuroimage, 67,
283-97.
Hashemirad, F., Zoghi, M., Fitzgerald, P. B. & Jaberzadeh, S. 2016. The effect of
anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: A systematic review and meta-analysis. Brain Cogn, 102, 1- 12.
Hazeltine, E., Grafton, S. T. & Ivry, R. 1997. Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain, 120 ( Pt 1), 123-40.
Hess, G., Aizenman, C. D. & Donoghue, J. P. 1996. Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J Neurophysiol, 75, 1765-78.
Hirano, M., Kubota, S., Tanabe, S., Koizume, Y. & Funase, K. 2015. Interactions Among Learning Stage, Retention, and Primary Motor Cortex Excitability in Motor Skill Learning. Brain Stimul, 8, 1195-204.
Hodgson, R. A., Ji, Z., Standish, S., Boyd-Hodgson, T. E., Henderson, A. K. & Racine, R. J. 2005. Training-induced and electrically induced potentiation in the neocortex. Neurobiol Learn Mem, 83, 22-32.
Holm, S. 1979. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, 6, 65-70.
Honda, M., Deiber, M. P., Ibanez, V., Pascual-Leone, A., Zhuang, P. & Hallett, M. 1998. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain, 121 ( Pt 11), 2159-73.
Hoy, K. E., Arnold, S. L., Emonson, M. R., Daskalakis, Z. J. & Fitzgerald, P. B. 2014. An investigation into the effects of tDCS dose on cognitive performance over time in patients with schizophrenia. Schizophr Res, 155, 96-100.
Jackson, M. P., Rahman, A., Lafon, B., Kronberg, G., Ling, D., Parra, L. C. & Bikson, M. 2016. Animal models of transcranial direct current stimulation: Methods and mechanisms. Clin Neurophysiol, 127, 3425-3454.
Jeffery, K. J. & Morris, R. G. 1993. Cumulative long-term potentiation in the rat dentate gyrus correlates with, but does not modify, performance in the water maze. Hippocampus, 3, 133-40.
Jung, P. & Ziemann, U. 2009. Homeostatic and nonhomeostatic modulation of learning in human motor cortex. J Neurosci, 29, 5597-604.
Kang, E. K. & Paik, N. J. 2011. Effect of a tDCS electrode montage on implicit motor sequence learning in healthy subjects. Exp Transl Stroke Med, 3, 4.
Kantak, S. S., Mummidisetty, C. K. & Stinear, J. W. 2012. Primary motor and premotor cortex in implicit sequence learning – evidence for competition between implicit and explicit human motor memory systems. European Journal of Neuroscience, 36, 2710-2715.
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R. & Ungerleider, L. G. 1995. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377, 155-8.
Kim, S., Stephenson, M. C., Morris, P. G. & Jackson, S. R. 2014. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. Neuroimage, 99, 237-43.
Kleim, J. A., Lussnig, E., Schwarz, E. R., Comery, T. A. & Greenough, W. T. 1996. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci, 16, 4529-35.
Krause, V., Meier, A., Dinkelbach, L. & Pollok, B. 2016. Beta Band Transcranial Alternating (tACS) and Direct Current Stimulation (tDCS) Applied After Initial Learning Facilitate Retrieval of a Motor Sequence. Front Behav Neurosci, 10, 4.
Kuo, M. F., Unger, M., Liebetanz, D., Lang, N., Tergau, F., Paulus, W. & Nitsche, M. A. 2008. Limited impact of homeostatic plasticity on motor learning in humans. Neuropsychologia, 46, 2122-8.
Kwon, Y. H., Ko, M. H., Ahn, S. H., Kim, Y. H., Song, J. C., Lee, C. H., Chang, M. C. & Jang, S. H. 2008. Primary motor cortex activation by transcranial direct current stimulation in the human brain. Neurosci Lett, 435, 56-9.
Lang, N. 2005. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? 22, 495-504.
Lang, N., Siebner, H. R., Ernst, D., Nitsche, M. A., Paulus, W., Lemon, R. N. & Rothwell, J. C. 2004. Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol Psychiatry, 56, 634-9.
Lehericy, S., Benali, H., Van De Moortele, P. F., Pelegrini-Issac, M., Waechter, T., Ugurbil, K. & Doyon, J. 2005. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci U S A, 102, 12566-71.
Lidstone, S. C., Schulzer, M., Dinelle, K., Mak, E., Sossi, V., Ruth, T. J., De La Fuente- Fernandez, R., Phillips, A. G. & Stoessl, A. J. 2010. Effects of expectation on placebo-induced dopamine release in Parkinson disease. Arch Gen Psychiatry, 67, 857-65.
Liebetanz, D., Nitsche, M. A., Tergau, F. & Paulus, W. 2002. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after- effects of human motor cortex excitability. Brain, 125, 2238-47.
Loo, C. K., Alonzo, A., Martin, D., Mitchell, P. B., Galvez, V. & Sachdev, P. 2012. Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. Br J Psychiatry, 200, 52-9.
Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. 1988. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science, 242, 81-4.
Marquez, C. M. S., Zhang, X., Swinnen, S. P., Meesen, R. & Wenderoth, N. 2013. Task-specific effect of transcranial direct current stimulation on motor learning. Frontiers in Human Neuroscience, 7.
Medeiros, L. F., De Souza, I. C., Vidor, L. P., De Souza, A., Deitos, A., Volz, M. S., Fregni, F., Caumo, W. & Torres, I. L. 2012. Neurobiological effects of transcranial direct current stimulation: a review. Front Psychiatry, 3, 110.
Meinzer, M., Jahnigen, S., Copland, D. A., Darkow, R., Grittner, U., Avirame, K., Rodriguez, A. D., Lindenberg, R. & Floel, A. 2014. Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex, 50, 137-47.
Molyneaux, B. J., Arlotta, P., Menezes, J. R. & Macklis, J. D. 2007. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci, 8, 427-37.
Monte-Silva, K., Kuo, M. F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W. & Nitsche, M. A. 2013. Induction of Late LTP-Like Plasticity in the Human Motor Cortex by Repeated Non-Invasive Brain Stimulation. Brain Stimulation, 6, 424-432.
Monte-Silva, K., Kuo, M. F., Liebetanz, D., Paulus, W. & Nitsche, M. A. 2010. Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). J Neurophysiol, 103, 1735-40.
Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., Boroojerdi, B., Poewe, W. & Hallett, M. 2002. Early consolidation in human primary motor cortex. Nature, 415, 640-4.
Müller-Dahlhaus, F. & Ziemann, U. 2015. Metaplasticity in human cortex. Neuroscientist, 21, 185-202.
Nissen, M. J. & Bullemer, P. 1987. Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1-32.
Nitsche, M. A., Doemkes, S., Karakose, T., Antal, A., Liebetanz, D., Lang, N., Tergau, F. & Paulus, W. 2007a. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol, 97, 3109-17.
Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., Henning, S., Tergau, F. & Paulus, W. 2003a. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol, 553, 293-301.
Nitsche, M. A., Jakoubkova, M., Thirugnanasambandam, N., Schmalfuss, L., Hullemann, S., Sonka, K., Paulus, W., Trenkwalder, C. & Happe, S. 2010. Contribution of the premotor cortex to consolidation of motor sequence learning in humans during sleep. J Neurophysiol, 104, 2603-14.
Nitsche, M. A., Jaussi, W., Liebetanz, D., Lang, N., Tergau, F. & Paulus, W. 2004. Consolidation of Human Motor Cortical Neuroplasticity by D-Cycloserine. Neuropsychopharmacology, 29, 1573-1578.
Nitsche, M. A. & Paulus, W. 2001. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57, 1899-901.
Nitsche, M. A., Roth, A., Kuo, M. F., Fischer, A. K., Liebetanz, D., Lang, N., Tergau, F. & Paulus, W. 2007b. Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. J Neurosci, 27, 3807-12.
Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W. & Tergau, F. 2003b. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci, 15, 619-26.
Oldfield, R. C. 1971. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97-113.
Paquette, C., Sidel, M., Radinska, B. A., Soucy, J. P. & Thiel, A. 2011. Bilateral transcranial direct current stimulation modulates activation-induced regional blood flow changes during voluntary movement. J Cereb Blood Flow Metab, 31, 2086-95.
Peineau, S., Taghibiglou, C., Bradley, C., Wong, T. P., Liu, L., Lu, J., Lo, E., Wu, D., Saule, E., Bouschet, T., Matthews, P., Isaac, J. T., Bortolotto, Z. A., Wang, Y. T. & Collingridge, G. L. 2007. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron, 53, 703-17.
Peinemann, A., Reimer, B., Löer, C., Quartarone, A., Münchau, A., Conrad, B. & Roman Siebner, H. 2004. Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex.
Clinical Neurophysiology, 115, 1519-1526.
Pellicciari, M. C., Brignani, D. & Miniussi, C. 2013. Excitability modulation of the
motor system induced by transcranial direct current stimulation: a multimodal
approach. Neuroimage, 83, 569-80.
Pirulli, C., Fertonani, A. & Miniussi, C. 2013. The role of timing in the induction of
neuromodulation in perceptual learning by transcranial electric stimulation.
Brain Stimul, 6, 683-9.
Pope, P. A., Brenton, J. W. & Miall, R. C. 2015. Task-Specific Facilitation of Cognition
by Anodal Transcranial Direct Current Stimulation of the Prefrontal Cortex.
Cereb Cortex, 25, 4551-8.
Purpura, D. P. & Mcmurtry, J. G. 1965. Intracellular activities and evoked potential
changes during polarization of motor cortex. J Neurophysiol, 28, 166-85. Ranieri, F., Podda, M. V., Riccardi, E., Frisullo, G., Dileone, M., Profice, P., Pilato, F., Di Lazzaro, V. & Grassi, C. 2012. Modulation of LTP at rat hippocampal CA3-
CA1 synapses by direct current stimulation. J Neurophysiol, 107, 1868-80. Rauch, S. L., Savage, C. R., Brown, H. D., Curran, T., Alpert, N. M., Kendrick, A.,
Fischman, A. J. & Kosslyn, S. M. 1995. A PET investigation of implicit and
explicit sequence learning. Human Brain Mapping, 3, 271-286.
Reis, J. & Fritsch, B. 2011. Modulation of motor performance and motor learning by
transcranial direct current stimulation. Curr Opin Neurol, 24, 590-6.
Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., Celnik, P.
A. & Krakauer, J. W. 2009. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences, 106, 1590-1595.
Rioult-Pedotti, M. S., Friedman, D. & Donoghue, J. P. 2000. Learning-induced LTP in neocortex. Science, 290, 533-6.
Rioult-Pedotti, M. S., Friedman, D., Hess, G. & Donoghue, J. P. 1998. Strengthening of horizontal cortical connections following skill learning. Nat Neurosci, 1, 230-4.
Robertson, E. M. 2007. The serial reaction time task: implicit motor skill learning? J Neurosci, 27, 10073-5.
Robertson, E. M., Press, D. Z. & Pascual-Leone, A. 2005. Off-line learning and the primary motor cortex. J Neurosci, 25, 6372-8.
Rongo, C. 2002. A fresh look at the role of CaMKII in hippocampal synaptic plasticity and memory. BioEssays, 24, 223-233.
Rroji, O., Van Kuyck, K., Nuttin, B. & Wenderoth, N. 2015. Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity. PLoS One, 10, e0127270.
Santos, S. D., Carvalho, A. L., Caldeira, M. V. & Duarte, C. B. 2009. Regulation of AMPA receptors and synaptic plasticity. Neuroscience, 158, 105-25.
Savic, B. & Meier, B. 2016. How Transcranial Direct Current Stimulation Can Modulate Implicit Motor Sequence Learning and Consolidation: A Brief Review. Front Hum Neurosci, 10, 26.
Schendan, H. E., Searl, M. M., Melrose, R. J. & Stern, C. E. 2003. An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 1013-25.
Scholfield, C. N. 1990. Properties of K-currents in unmyelinated presynaptic axons of brain revealed revealed by extracellular polarisation. Brain Res, 507, 121-8.
Shin, Y. I., Foerster, A. & Nitsche, M. A. 2015. Transcranial direct current stimulation (tDCS) - application in neuropsychology. Neuropsychologia, 69, 154-75.
Siebner, H. R., Lang, N., Rizzo, V., Nitsche, M. A., Paulus, W., Lemon, R. N. & Rothwell, J. C. 2004. Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci, 24, 3379-85.
Stagg, C. J., Best, J. G., Stephenson, M. C., O'shea, J., Wylezinska, M., Kincses, Z. T., Morris, P. G., Matthews, P. M. & Johansen-Berg, H. 2009. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci, 29, 5202-6.
Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M. & Johansen-Berg, H. 2011. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49, 800-804.
Stagg, C. J. & Nitsche, M. A. 2011. Physiological basis of transcranial direct current stimulation. Neuroscientist, 17, 37-53.
Tanaka, H. 2016. Modeling the motor cortex: Optimality, recurrent neural networks, and spatial dynamics. Neurosci Res, 104, 64-71.
Teo, J. T., Swayne, O. B., Cheeran, B., Greenwood, R. J. & Rothwell, J. C. 2011. Human theta burst stimulation enhances subsequent motor learning and increases performance variability. Cereb Cortex, 21, 1627-38.
Tzvi, E., Munte, T. F. & Kramer, U. M. 2014. Delineating the cortico-striatal-cerebellar network in implicit motor sequence learning. Neuroimage, 94, 222-30.
Tzvi, E., Stoldt, A., Witt, K. & Krämer, U. M. 2015. Striatal–cerebellar networks mediate consolidation in a motor sequence learning task: An fMRI study using dynamic causal modelling. NeuroImage, 122, 52-64.
Vines, B. W., Nair, D. & Schlaug, G. 2008. Modulating activity in the motor cortex affects performance for the two hands differently depending upon which hemisphere is stimulated. Eur J Neurosci, 28, 1667-73.
Vingerhoets, G. 2014. Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Front Psychol, 5, 151.
Vollmann, H., Conde, V., Sewerin, S., Taubert, M., Sehm, B., Witte, O. W., Villringer, A. & Ragert, P. 2013. Anodal transcranial direct current stimulation (tDCS) over supplementary motor area (SMA) but not pre-SMA promotes short-term visuomotor learning. Brain Stimulation, 6, 101-107.
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:31.05.2019
Dateien geändert am:31.05.2019
Promotionsantrag am:19.09.2018
Datum der Promotion:09.05.2019
english
Benutzer
Status: Gast
Aktionen