Dokument: Einfluss von myeloischen Blasten auf gesunde CD34+ hämatopoietische Stamm- und Progenitorzellen
Titel: | Einfluss von myeloischen Blasten auf gesunde CD34+ hämatopoietische Stamm- und Progenitorzellen | |||||||
Weiterer Titel: | Influence of myeloid blasts on healthy CD34+ hematopoietic Stem and progenitor cells | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=49489 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20190506-104410-7 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Jäger, Paul Sebastian [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Schroeder, Thomas Michael [Gutachter] PD Dr. med Laws, Hans-Jürgen [Gutachter] | |||||||
Stichwörter: | AML, Myelosuppression, Pathogenese, hämatopoietische Insuffizienz, hämatopoietische Stamm- und Progenitorzellen, CD34+, TGF-beta, Angiopoietin1 | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Die akute myeloische Leukämie (AML) ist eine heterogene Gruppe maligner Blutstammzellerkrankungen, bei der es zu einer Akkumulation leukämischer Vorläuferzellen im Knochenmark kommt. Die Hauptsymptome der AML sind einer unzureichenden Fähigkeit der gesunden HSPZ geschuldet, eine bedarfsgerechte Blutbildung aufrecht zu halten.
Ging man vor einigen Jahren noch von einer rein räumlichen „Verdrängung“ der gesunden Hämatopoiese durch die klonale Expansion maligner Vorläuferzellen im Knochenmark (KM) aus, weiß man heute, dass dieser Prozess der Myelosuppression deutlich komplexer ist und über verschiedene funktionelle Mechanismen im Knochenmarkmikromilieu abläuft. So konnte unsere Arbeitsgruppe gemeinsam mit anderen zeigen, dass der hämatopoietischen Insuffizienz zum einen eine funktionelle Hemmung sog. mesenchymaler Stromazellen (MSC) zugrunde liegt. Zum anderen legen einige Arbeiten nahe, dass die malignen Zellen auch einen direkten supprimierenden Einfluss auf die gesunden hämatopoietischen Stamm- und Progenitorzellen (HSPZ) ausüben könnten. Um dieser Hypothese in dieser Arbeit experimentell nachzugehen, haben wir die Situation der Knochenmarksinfiltration experimentell nachgestellt. Dazu wurde der Einfluss von mononukleären Zellen (MNC) und CD34+ leukämischen Vorläuferzellen aus dem Knochenmark von 24 neu diagnostizierten AML-Patienten sowie 3 etablierten AML-Zelllinien (HL-60, THP-1, MV4-11) auf gesunde CD34+ HSPZ mittels Zellkulturexperimenten mit konditionierten Medien (CM) untersucht. Hierbei konnten wir zeigen, dass eine Exposition gegenüber den Überständen von AML-Zelllinien und AML-Zellen von Patienten zu einer signifikanten Verringerung der Proliferation von gesunden CD34+ HSPZ und zu einem Zellzyklus-Arrest führten. Darüber hinaus führte eine vorangehende Exposition gegenüber den AML-Zelllinien oder den aus den Patienten gewonnenen AML-Zellen zu einer verminderten Kapazität der gesunden CD34+ HSPZ, Kolonien zu bilden und zu differenzieren. Durch einen Vergleich von 5 gepaarten AML-Patientenproben konnten wir nachweisen, dass diese supprimierende Wirkung auf die gesunde Hämatopoiese durch die CD34+ leukämische Zellpopulation und nicht durch die MNC-Fraktion ausgelöst wurde. Weiterführende qRT-PCR-Analysen zeigten eine signifikante Überexpression verschiedener negativer Regulatoren der Hämatopoiese, wie zum Beispiel TGF-β1 und ANGPT1 in der angereicherten CD34+ Blastenpopulation Zusammengefasst legen diese Daten einen direkten supprimierenden Einfluss der myeloischen Blastenpopulation auf die gesunde CD34+ HSPZ bei AML nahe und stellen somit einen weiteren Mechanismus der Myelosuppression bei der AML dar.Acute myeloid leukemia is a heterogeneous malignant bone marrow disease, which is considered to be clonal stem cell disorder arising from genetic alterations of hematopoietic stem- and progenitor cells (HSPC). Hematopoietic insufficiency is the hallmark of AML with cytopenia-related complications such as bleeding and infections representing the major causes of death. Albeit recent experiment evidence pointed towards an important role of the bone marrow (BM) microenvironment, the underlying mechanisms mediating hematopoietic insufficiency are still poorly understood and therefore often mechanistically summarized as marrow replacement by infiltrating leukemic blasts. Mesenchymal stem- and progenitor cells (MSPC) play an indispensable role for hematopoiesis by regulating and supporting HSPC. It has been reported that MSPC in patients with AML are structurally, genetically and functionally impaired and translated into a significantly diminished ability of those MSC to support CD34+ HSPC. Since the BM of patients with AML is dominated by a leukemic blast population accompanied by a reduction of normal CD34+ hematopoietic stem and progenitor cells (HSPC), we reasoned that leukemic cells might also directly suppress normal HSPC. To experimentally address this hypothesis we modelled the situation of BM infiltration in vitro by exposing healthy BM-derived CD34+ HSPC to supernatants derived from leukemic cells. Conditioned media (CM) were harvested from 3 AML cell lines (THP-1, HL-60, MV4-11) as well as from a total of 24 newly-diagnosed patients with AML covering all relevant WHO subtypes after 3 days of cultivation. Healthy CD34+ HSPC were incubated for 3 days in the presence of leukemic or control media. Subsequently, proliferation, cell cycle behaviour and differentiation of these CD34+ HSPC was investigated using cell counting, dye staining with Ki-67 and Hoechst 33342 as well as semisolid clonogenic assays. Exposure to conditioned media derived from AML cell lines and primary patient samples significantly inhibited proliferation as indicated by a profound reduction of viable healthy CD34+ HSPC. Complementary with this, we observed a clear shift of the cell cycle state of healthy CD34+ HSPC towards a resting phenotype when cultivated in AML-derived media with the majority of cells being in inactive G0 phase. Performing semisolid clonogenic assays demonstrated a strikingly lower colony-forming capacity of CD34+ HSPC following incubation with AML-derived supernatants. These inhibitory effects on healthy hematopoiesis were markedly related to the CD34+ leukemic cell population, but not to the MNC fraction as indicated by a comparison of paired MNC and immunomagnetically enriched CD34+ AML samples. PCR-screening of well-known negative regulators of hematopoiesis revealed a significant overexpression of TGF-β1 and ANGPT1 suggesting a potential role of this candidate molecule for suppression of healthy hematopoiesis by leukemic cells. Overall, these data indicate that leukemic cells mediate direct suppressive effects on important functions of healthy CD34+ HSPC thereby contributing to hematopoietic insufficiency in AML. | |||||||
Quelle: | Akashi K., et al., A clonogenic common myeloid progenitor that gives rise to all myeloid lineages.
Nature. 2000 Mar 9;404(6774):193-7. Akinduro O., et al., Proliferation dynamics of acute myeloid leukaemia and haematopoietic progenitors competing for bone marrow space. Nat Commun. 2018 Feb 6;9(1):519. Alter B. P., et al., Fanconi anemia and the development of leukemia. Best Pract Res Clin Haematol. 2014 Sep-Dec;27(3-4):214-21. Angelillo-Scherrer A., et al., Role of Gas6 in erythropoiesis and anemia in mice. J Clin Invest. 2008 Feb;118(2):583-96. Aoki K., et al., Death rates for malignant neoplasm for selected sites by sex and five-year age group in 33 countries. University of Nagoya Press 1992, 1953-57 to 1983-87. Arai F., et al., Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004 Jul 23;118(2):149-61. Arber D. A., et al., The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 May 19;127(20):2391-405. Arranz L. et al., Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014 Aug 7;512(7512):78-81. Batard P., et al., TGF-(beta)1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. J Cell Sci. 2000 Feb;113 ( Pt 3):383-90. Becker M. W., et al., Leukemia stem cells in 2010: current understanding and future directions. Blood Rev. 2011 Mar;25(2):75-81. Bennett J. M., et al., Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med. 1985 Sep;103(3):460-2. Bennett J. M., et al., Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO). Br J Haematol. 1991 Jul;78(3):325-9. Bennett J. M., et al., Proposals for the classification of the acute leukaemias. French-American- British (FAB) co-operative group. Br J Haematol. 1976 Aug;33(4):451-8. Bigas A., et al., Hematopoietic stem cells: to be or Notch to be. Blood. 2012 Apr 5;119(14):3226- 35. Binder S., et a., The cytokine network in acute myeloid leukemia (AML): A focus on pro- and antiinflammatory mediators. Cytokine Growth Factor Rev. 2018 Oct;43:8-15. Blank U., et al., Signaling pathways governing stem-cell fate. Blood. 2008 Jan 15;111(2):492- 503. Blank U., et al., TGF-β signaling in the control of hematopoietic stem cells. Blood. 2015 Jun 4;125(23):3542-50. Broudy V.C., et al., Stem cell factor and hematopoiesis. Blood. 1997 Aug 15;90(4):1345-64. Bruns I., et al., Multiple myeloma-related deregulation of bone marrow-derived CD34(+) hematopoietic stem and progenitor cells. Blood. 2012 Sep 27;120(13):2620-30. Bryder D., et al., Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol. 2006 Aug;169(2):338-46. Bullinger L., et al., Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. J Clin Oncol. 2017 Mar 20;35(9):934-946. Burnett A. K., et al., A comparison of low-dose cytarabine and hydroxyurea with or without alltrans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer. 2007 Mar 15;109(6):1114-24. Byrd J. C., et al., Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. J Clin Oncol. 1995 Jul;13(7):1800-16. Calvi L. M., et al., Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003 Oct 23;425(6960):841-6. Carey A., et al., Identification of Interleukin-1 by Functional Screening as a Key Mediator of Cellular Expansion and Disease Progression in Acute Myeloid Leukemia. Cell Rep. 2017 Mar 28;18(13):3204-3218. Cheng C.L., et al., High bone marrow angiopoietin-1 expression is an independent poor prognostic factor for survival in patients with myelodysplastic syndromes. Br J Cancer. 2011 Sep 27;105(7):975-82. Cheng H., et al., Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation. Blood. 2015 Sep 10;126(11):1302-13. Cheng H and Cheng T. 'Waterloo': when normal blood cells meet leukemia. Curr Opin Hematol. 2016 Jul;23(4):304-10. Civin C. I., et al., Antigenic analysis of hematopoiesis: a review. J Hematother. 1993 Summer;2(2):137-44. Colmone A., et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008 Dec 19;322(5909):1861-5. Conway O'Brien E., et al., The epigenetic landscape of acute myeloid leukemia. Adv Hematol. 2014; 2014: 103175. Dao M. A., et al., Molecular mechanism of transforming growth factor beta-mediated cell-cycle modulation in primary human CD34(+) progenitors. mBlood. 2002 Jan 15;99(2):499-506. Dinarello C. A., et al., Biologic basis for interleukin-1 in disease. Blood. 1996 Mar 15;87(6):2095- 147. Döhner H., et al., Acute Myeloid Leukemia. N Engl J Med. 2015 Sep 17;373(12):1136-52. Dombret H., et al., International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts.Blood. 2015 Jul 16;126(3):291-9. Dormady S. P., et al., Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6). Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12260-5. Dutcher J. P., et al., Hyperleukocytosis in adult acute nonlymphocytic leukemia: impact on remission rate and duration, and survival. J Clin Oncol. 1987 Sep;5(9):1364-72. Ehninger G., et al., Akute myeloische Leukämie: Pathophysiologie, Diagnostik, Therapie, Prognose Deutscher Ärzte Verlag 2008 Freeman S. D., et al., Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood. 1995 Apr 15;85(8):2005-12. Freifeld A. G., et al., Antibacterial prophylaxis in patients with cancer and neutropenia. N Engl J Med. 2006 Jan 5;354(1):90-4; author reply 90-4. Frenette P. S., et al., Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol. 2013;31:285-316. Frisch B. J., et al., Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood. 2012 Jan 12;119(2):540-50. Fujio Y., et al., Glycoprotein 130 cytokine signal as a therapeutic target against cardiovascular diseases. J Pharmacol Sci. 2011;117(4):213-22. Epub 2011 Nov 5. Geiger T. L., et al., Development and maturation of natural killer cells. Curr Opin Immunol. 2016 Apr;39:82-9. Geyh S., et al., Transforming growth factor β1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia. Haematologica. 2018 Sep;103(9):1462-1471. Geyh S., et al., Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia. 2016 Mar;30(3):683-9. Geyh S., et al., Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia. 2013 Sep;27(9):1841-51. Geyh S., Funktionale und molekulare Analysen von Mesenchymalen Stromazellen und deren Interaktionen mit CD34+ Stamm- und Progenitorzellen bei Patienten mit Myelodysplastischen Syndromen. Dissertation HHU 2013 Gilliland D. G., et al., Hematologic malignancies. Curr Opin Hematol. 2001 Jul;8(4):189-91. Graham G. J., et al., Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature. 1990 Mar 29;344(6265):442-4. Guidos C., et al., Thymus and T-lymphocyte development: what is new in the 21st century? Immunol Rev. 2006 Feb;209:5-9. Han Y., et al., GDF11 level in patients with myelodysplastic syndrome and its clinical significance. Zhonghua Yi Xue Za Zhi. 2016 Mar 1;96(8):620-4. Hanoun M., et al., Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell. 2014 Sep 4;15(3):365- 375. Hatfield K.J., et al., Release of angiopoietin-1 by primary human acute myelogenous leukemia cells is associated with mutations of nucleophosmin, increased by bone marrow stromal cells and possibly antagonized by high systemic angiopoietin-2 levels. Leukemia. 2008 Feb;22(2):287-93. Hatfield K., et al.,Primary human acute myeloid leukaemia cells increase the proliferation of microvascular endothelial cells through the release of soluble mediators. Br J Haematol. 2009 Jan;144(1):53-68. Hayes R. B., et al., Benzene and the dose-related incidence of hematologic neoplasms in China. Chinese Academy of Preventive Medicine--National Cancer Institute Benzene Study Group. J Natl Cancer Inst. 1997 Jul 16;89(14):1065-71. Heldin C. H., et al., Signaling Receptors for TGF-β Family Members. Cold Spring Harb Perspect Biol. 2016 Aug 1;8(8). Hilton D.J., et al., Specific binding of murine leukemia inhibitory factor to normal and leukemic monocytic cells. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5971-5. Horton S., et al., Recent advances in acute myeloid leukemia stem cell biology. Haematologica 2012 Jul;97(7):966-74. Hu X., et al., Kinetics of normal hematopoietic stem and progenitor cells in a Notch1-induced leukemia model. Blood. 2009 Oct 29;114(18):3783-92. Huan J., et al., Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes. Leukemia. 2015 Dec;29(12):2285-95. Huan J., et al., RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res. 2013 Jan 15;73(2):918-29. Ichihara E., et al., Angiopoietin1 contributes to the maintenance of cell quiescence in EVI1(high) leukemia cells. Biochem Biophys Res Commun. 2011 Dec 16;416(3-4):239-45. Ikuta K., et al., Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1502-6. Jaffe E.S., et al., World Health Organization Classi fi cation of Tu- mours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001 Juliusson G., et al., Acute myeloid leukemia in the real world: why population-based registries are needed. Blood. 2012 Apr 26;119(17):3890-9. Juliusson G., et al., Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood. 2009 Apr 30;113(18):4179-87. Kantarjian H.M., et al., Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012 Jul 20;30(21):2670-7 Kaushansky K., et al., Historical review: megakaryopoiesis and thrombopoiesis. Blood. 2008 Feb 1;111(3):981-6. Kelly L. M., et al., Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179- 98. Kent D., et al., Regulation of hematopoietic stem cells by the steel factor/KIT signaling pathway. Clin Cancer Res. 2008 Apr 1;14(7):1926-30. Kern W., et al., Akute myeloische Leukämie (AML) beim Erwachsenen. Manual Leukämien 2003, Myelodysplastische und Myeloproliferative Syndrome: 17-48 Kondo M., et al., Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997 Nov 28;91(5):661-72. Krause D. S., et al., The hematopoietic stem cell niche--home for friend and foe? Cytometry B Clin Cytom. 2013 Jan-Feb;84(1):7-20. Krug U., et al., Complete remission and early death after intensive chemotherapy in patients aged 60 years or older with acute myeloid leukaemia: a web-based application for prediction of outcomes. Lancet. 2010 Dec 11;376(9757):2000-8. Lai E.C., et al., Notch signaling: control of cell communication and cell fate. Development. 2004 Mar;131(5):965-73. Leone G., et al., The incidence of secondary leukemias. Haematologica. 1999 Oct;84(10):937- 45. Leone G., et al., Therapy-related leukemia and myelodysplasia: susceptibility and incidence. Haematologica. 2007 Oct;92(10):1389-98. Löwenberg B., et al., Acute myeloid leukemia. N Engl J Med. 1999 Sep 30;341(14):1051-62. Magalhães I. Q., et al., GATA1 mutations in acute leukemia in children with Down syndrome. Cancer Genet Cytogenet. 2006 Apr 15;166(2):112-6. Manz M. G., et al., Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11872-7. Massagué J., et al., TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753-91. Mies A., Platzbecker U.,Increasing the effectiveness of hematopoiesis in myelodysplastic syndromes: erythropoiesis-stimulating agents and transforming growth factor-β superfamily inhibitors.Semin Hematol. 2017 Jul;54(3):141-146. Milner L. A., et al., A human homologue of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors. Blood. 1994 Apr 15;83(8):2057-62. Miraki-Moud F., et al., Acute myeloid leukemia does not deplete normal hematopoietic stem cells but induces cytopenias by impeding their differentiation. Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13576-81 Moore K.A., et al., "Tie-ing" down the hematopoietic niche. Cell. 2004 Jul 23;118(2):139-40. Morrison S. J., et al., Identification of a lineage of multipotent hematopoietic progenitors. Development. 1997 May;124(10):1929-39. Mousset S., et al., Treatment of invasive fungal infections in cancer patients-updated recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol. 2014 Jan;93(1):13-32. Mrózek K., et al., Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J Clin Oncol. 2012 Dec 20;30(36):4515-23. Murati A., et al., Myeloid malignancies: mutations, models and management. BMC Cancer. 2012 Jul 23;12:304. Nachtkamp K., et al., Causes of death in 2877 patients with myelodysplastic syndromes. Ann Hematol. 2016 May;95(6):937-44. Nakamura-Ishizu A., et al., Hematopoietic stem cell niche: an interplay among a repertoire of multiple functional niches. Biochim Biophys Acta. 2013 Feb;1830(2):2404-9. Nishida C., et al., MT1-MMP plays a critical role in hematopoiesis by regulating HIF-mediated chemokine/cytokine gene transcription within niche cells. Blood. 2012 Jun 7;119(23):5405-16. O'Brien E., et al., The epigenetic landscape of acute myeloid leukemia. Adv Hematol. 2014; 2014: 103175. Oldershaw R. A., et al., Notch signaling during chondrogenesis of human bone marrow stem cells. Bone. 2010 Feb;46(2):286-93. Orkin S. H., et al., Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008 Feb 22;132(4):631-44. Osawa M., et al. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996 Jul 12;273(5272):242-5. Passegué E., et al., Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A. 2003 Sep 30;100 Suppl 1:11842-9. Paulson R. F., et al., Targeting a new regulator of erythropoiesis to alleviate anemia. Nat Med. 2014 Apr;20(4):334-5. Pietras E.M., et al., Cell cycle regulation in hematopoietic stem cells. J Cell Biol. 2011 Nov 28;195(5):709-20. Platzbecker U., et al., Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017 Oct;18(10):1338-1347. Polyak K., et al., p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev. 1994 Jan;8(1):9-22. Qian H., et al., Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell. 2007 Dec 13;1(6):671-84. Raaijmakers M. H., et al., Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010 Apr 8;464(7290):852-7. Ratajczak J., et al., Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006 May;20(5):847-56. Ries L.A.G., et al., SEER Cancer Statistics Review 1975-2003. National Cancer Institute, Bethesda 2006. Rochette L., et al., Growth and differentiation factor 11 (GDF11): Functions in the regulation of erythropoiesis and cardiac regeneration. Pharmacol Ther. 2015 Dec;156:26-33. Röllig C., et al., Long-term prognosis of acute myeloid leukemia according to the new genetic risk classification of the European LeukemiaNet recommendations: evaluation of the proposed reporting system. J Clin Oncol. 2011 Jul 10;29(20):2758-65. Roux-Lombard P., et al.,The interleukin-1 family. Eur Cytokine Netw. 1998 Dec;9(4):565-76. Rubnitz J. E., et al., Acute myeloid leukemia. Hematol Oncol Clin North Am. 2010 Feb;24(1):35- 63. Saller F., et al., Role of the growth arrest-specific gene 6 (gas6) product in thrombus stabilization. Blood Cells Mol Dis. 2006 May-Jun;36(3):373-8. Sato A., et al., Characterization of TEK receptor tyrosine kinase and its ligands, Angiopoietins, in human hematopoietic progenitor cells. Int Immunol. 1998 Aug;10(8):1217-27. Scandura J. M., et al., Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. roc Natl Acad Sci U S A. 2004 Oct 19;101(42):15231-6. Schepers K. et al., Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. 2013 Sep 5;13(3):285-99. Schepers K., et al., Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell. 2015 Mar 5;16(3):254-67. Schofield R., et al., The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1-2):7-25. Schroeder T., et al., Mesenchymal stromal cells in myeloid malignancies. Blood Res. 2016 Dec;51(4):225-232. Seita J., et al., Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2010 Nov-Dec;2(6):640-53. Shih A. H., et al., The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012 Sep;12(9):599-612. Sidney L.E., et al., Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells. 2014 Jun;32(6):1380-9. Simmons D. L., et al., Molecular cloning of a cDNA encoding CD34, a sialomucin of human hematopoietic stem cells. J Immunol. 1992 Jan 1;148(1):267-71. Smith M., et al., Adult acute myeloid leukaemia. Crit Rev Oncol Hematol. 2004 Jun;50(3):197- 222. Stalfelt A. M., et al., The final phase in acute myeloid leukaemia (AML): a study of cause of death, place of death and type of care during the last week of life. Leuk Res. 2001 Aug;25(8):673-80. Stitt T. N., et al., The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell. 1995 Feb 24;80(4):661-70. Suragani R.N., et al., Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014 Apr;20(4):408-14. Takakura N., et al., Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis. Immunity. 1998 Nov;9(5):677-86. TCGO-Cancer Genome Atlas Research Network, Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013 May 30;368(22):2059-74. Thorén L. A., et al., Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol. 2008 Feb 15;180(4):2045-53. Tomida M., et al., Purification of a factor inducing differentiation of mouse myeloid leukemic M1 cells from conditioned medium of mouse fibroblast L929 cells. J Biol Chem. 1984 Sep 10;259(17):10978-82. van Bekkum D.W., et al., Interaction of AML cells and normal hemopoietic cells: replacement or inhibition? Bibl Haematol. 1975 Oct;(43):10-2. van Bekkum D.W., et al., The mechanism of inhibition of haemopoiesis in acute leukaemia. Blood Cells. 1981;7(1):91-103. Vardiman J. W., et al., The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009 Jul 30;114(5):937-51. Virchow R., Weißes Blut N. Notiz. Ge. Nat. Heilk., 780 - Weimar, Landes-Industrie-Comptoir, 1845 und 1847, 4°, Sp.145-160 Wandt H., et al., Therapeutic platelet transfusion versus routine prophylactic transfusion in patients with haematological malignancies: an open-label, multicentre, randomised study. Lancet. 2012 Oct 13;380(9850):1309-16. Wang H., et al., Hierarchical organization and regulation of the hematopoietic stem cell osteoblastic niche. Crit Rev Oncol Hematol. 2013 Jan;85(1):1-8. Wang Y., et al., Leukemia cell infiltration causes defective erythropoiesis partially through MIP- 1α/CCL3. Leukemia. 2016 Sep;30(9):1897-908. Weissman I. L., et al., Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000 Jan 7;100(1):157-68. West A. H., et al., Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann N Y Acad Sci. 2014 Mar;1310:111-8. Wu Y., et al., Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007 Oct;25(10):2648-59. Yamazaki S., et al., Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011 Nov 23;147(5):1146-58. Yamazaki S., et al., TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood. 2009 Feb 5;113(6):1250-6. Yates J., et al., Cytosine arabinoside with daunorubicin or adriamycin for therapy of acute myelocytic leukemia: a CALGB study. Blood. 1982 Aug;60(2):454-62. Zambetti N. A. et al., Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia. Cell Stem Cell. 2016 Nov 3;19(5):613-627. Zhang B. et al., Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell. 2012 Apr 17;21(4):577-92. Zhang J., et al., Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003 Oct 23;425(6960):836-41. Zhou L., et al., Inhibition of the TGF-beta receptor I kinase promotes hematopoiesis in MDS. Blood. 2008 Oct 15;112(8):3434-43. Zimmermann R., et al., Indikation zur Erythrozytentransfusion. Med Welt 2004, 55, 49-53 | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 06.05.2019 | |||||||
Dateien geändert am: | 06.05.2019 | |||||||
Promotionsantrag am: | 11.01.2019 | |||||||
Datum der Promotion: | 25.04.2019 |