Dokument: Die Funktionen von GLEPP1 im Podozyten und dessen Bedeutung für die Integrität der glomerulären Schlitzmembran

Titel:Die Funktionen von GLEPP1 im Podozyten und dessen Bedeutung für die Integrität der glomerulären Schlitzmembran
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=49432
URN (NBN):urn:nbn:de:hbz:061-20190429-110016-2
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Grabowski, Sarah [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]2,58 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 23.04.2019 / geändert 23.04.2019
Beitragende:Prof. Dr. med. Sellin, Lorenz [Gutachter]
Prof. Dr. MacKenzie, Colin [Gutachter]
Stichwörter:GLEPP1
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Proteinurische Nierenerkrankungen stellen seit Jahren eine zunehmende Herausforderung für die Medizin und die Gesundheitssysteme dar. Vergangene Studien zeigten, dass bei einigen proteinurischen Nierenerkrankungen die Expression von GLEPP1 stark herab gesetzt ist [1, 2]. GLEPP1 ist eine Rezeptor-Protein-Tyrosin-Phosphatase (RPTP), die sich am apikalen Pol des podozytären Fußfortsatzes befindet. Mäuse mit fehlerhafter Bildung von GLEPP1 zeigten unter Belastung und beim Altern eine renale Symptomatik [3].
Ziel der durchgeführten Experimente war es, die physiologische Funktion von GLEPP1 im Podozyten zu erforschen und die Bedeutung von GLEPP1 für die Integrität der glomerulären Schlitzmembran genauer zu untersuchen.
Dazu wurden Human Embryonale Kidney 293 T Zellen (HEK 293 T Zellen) in der Zellkultur mit GLEPP1 und den zu untersuchenden möglichen Interaktionspartner von GLEPP1 (z.B. verschiedene Src- Kinasen) transfiziert. Die Zellen wurden am nächsten Tag lysiert. Um eine Interaktion der über Nacht exprimierten Proteine nachzuweisen, wurde eine Co-Immunopräzipitation durchgeführt.
Es wurde gezeigt, dass GLEPP1 sowohl mit Nephrin, als auch Podocin, sowie mit den Src-Familien-Kinasen Fyn und Src interagiert. Des Weiteren zeigte sich, dass GLEPP1 Src und Fyn am Tyrosin 527 dephosphoryliert und somit aktiviert. Die Nephrin-Podocin-Interaktion wurde durch GLEPP1 verstärkt und die Nephrin-ß-arrestin2-Interaktion wurde durch GLEPP1 geschwächt. Abschließend wurde gezeigt, dass GLEPP1 die Endozytose von Nephrin reduziert.
Wir konnten mit dieser Studie dazu beitragen wichtige neue Erkenntnisse über die RPTP GLEPP1 zu gewinnen. Die Ergebnisse unserer Versuche passen zu der Theorie, dass GLEPP1 über seine Phosphatase-Aktivität SFK dephosphoryliert und somit aktiviert. Die SFKs können Nephrin vermehrt phosphorylieren und Podocin bindet und stabilisiert daraufhin Nephrin in der Schlitzmembran. Die Endozytose von Nephrin wird somit von GLEPP1 verringert. Die Bestätigung dieser Theorie durch unsere Ergebnisse hilft uns, ein genaueres Bild über die Funktionen und Aufgaben von GLEPP1 im Podozyten zu zeichnen. Es wird immer deutlicher, dass die Phosphatase-Aktivität von GLEPP1 essentiell an der physiologi-schen Regulation und Funktion des glomerulären Filters beteiligt ist. Deshalb gilt es die ge-wonnenen Ergebnisse dieser Arbeit durch weiterführende in vivo Versuche zu bestätigen und das beschriebene Bild von GLEPP1 zu vervollständigen.

Proteinuric kidney diseases have been an increasing challange for medical therapies and health care systems for years. Past studies have shown that in some proteinuric kidney dis-eases the expression of GLEPP1 is strongly reduced [1, 2]. GLEPP1 is a receptor protein tyrosine phosphatase (RPTP) located at the apical pole of the podocyte foot processes. Mice with lack of GLEPP1 expression showed renal symptoms if challenged or at advanced age [3].
The experiments in this study aimed to discover the molecular physiological functions of GLEPP1 in the podocyte and to investigate the further role of GLEPP1 for the integrity of the glomerular slit diaphragm.
Therefore, human embryonal kidney 293 T cells (HEK 293 T cells) were transfected with GLEPP1 and the potential interaction partners of GLEPP1 (i.e. Src kinases). The cells were lysed the following day, followed by a co-immunoprecipitation was to detect the interacting proteins.
We were able to show that GLEPP1 interacts with both nephrin and podocin, as well as with the Src family kinases (SFK) Fyn and Src. Furthermore, we demonstrated that GLEPP1 dephosphorylates and thus activates Src and Fyn at tyrosine 527. Nephrin-podocin-interaction was increased by GLEPP1 and the nephrin-ß-arrestin2-interaction was decreased by GLEPP1. Finally, as a result of the increased interaction with ß-arrestin2, GLEPP1 reduces the endocytosis of nephrin.
With this study, we contributed to new discoveries about the molecular function of the RPTP GLEPP1. The results of our experiments fit the theory that GLEPP1 dephosphorylates and thus activates SFKs through its phosphatase activity. The activated SFKs can therefore in-crease the phosphorylation of nephrin. Podocin binds to phosphorylated nephrin and stabilizes nephrin in the slit diaphragm. Thus, the endocytosis of nephrin is decreased by GLEPP1. By confirming this theory with our results, we gained better understanding of GLEPP1 functions in the podocyte. It is increasingly clear that the phosphatase activity of GLEPP1 is an essential part of the physiological regulation and function of the glomerular filter. Hopefully the results of this study will be confirmed and expanded through further in vivo experiments so we can reach a complete and detailed understanding of GLEPP1 in vivo.
Quelle:1. Sharif, K., et al., Podocyte phenotypes as defined by expression and distribution of GLEPP1 in the developing glomerulus and in nephrotic glomeruli from MCD, CNF, and FSGS. A dedifferentiation hypothesis for the nephrotic syndrome. Exp Nephrol, 1998. 6(3): p. 234-44.
2. Tian, J., et al., Reduced glomerular epithelial protein 1 expression and podocyte injury in immunoglobulin A nephropathy. J Int Med Res, 2007. 35(3): p. 338-45.
3. Wang, R., et al., Molecular cloning, expression, and distribution of glomerular epithelial protein 1 in developing mouse kidney. Kidney Int, 2000. 57(5): p. 1847-59.
4. Coresh, J., et al., Prevalence of chronic kidney disease in the United States. JAMA, 2007. 298(17): p. 2038-47.
5. Hallan, S.I., et al., International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol, 2006. 17(8): p. 2275-84.
6. Wen, C.P., et al., All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet, 2008. 371(9631): p. 2173-82.
7. Chadban, S.J., et al., Prevalence of kidney damage in Australian adults: The AusDiab kidney study. J Am Soc Nephrol, 2003. 14(7 Suppl 2): p. S131-8.
8. Lysaght, M.J., Maintenance dialysis population dynamics: current trends and long-term implications. J Am Soc Nephrol, 2002. 13 Suppl 1: p. S37-40.
9. Perneger, T.V., et al., End-stage renal disease attributable to diabetes mellitus. Ann Intern Med, 1994. 121(12): p. 912-8.
10. Go, A.S., et al., Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med, 2004. 351(13): p. 1296-305.
11. Mann, J.F., et al., Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med, 2001. 134(8): p. 629-36.
12. Abbate, M., et al., Nephrotoxicity of increased glomerular protein traffic. Nephrol Dial Transplant, 1999. 14(2): p. 304-12.
13. Wang, Y., et al., Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol, 1997. 8(10): p. 1537-45.
14. Tang, S., et al., Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. J Clin Invest, 2003. 111(4): p. 515-27.
15. Schreiner, G.F., Renal toxicity of albumin and other lipoproteins. Curr Opin Nephrol Hypertens, 1995. 4(4): p. 369-73.
16. Peruzzi, L., et al., Tubulointerstitial responses in the progression of glomerular diseases: albuminuria modulates alpha v beta 5 integrin. Kidney Int, 1996. 50(4): p. 1310-20.
17. Kees-Folts, D., J.L. Sadow, and G.F. Schreiner, Tubular catabolism of albumin is associated with the release of an inflammatory lipid. Kidney Int, 1994. 45(6): p. 1697-709.
18. Donadelli, R., et al., Protein overload induces fractalkine upregulation in proximal tubular cells through nuclear factor kappaB- and p38 mitogen-activated protein kinase-dependent pathways. J Am Soc Nephrol, 2003. 14(10): p. 2436-46.
19. Bakoush, O., et al., High proteinuria selectivity index based upon IgM is a strong predictor of poor renal survival in glomerular diseases. Nephrol Dial Transplant, 2001. 16(7): p. 1357-63.
20. Sandsmark, D.K., et al., Proteinuria, but Not eGFR, Predicts Stroke Risk in Chronic Kidney Disease: Chronic Renal Insufficiency Cohort Study. Stroke, 2015. 46(8): p. 2075-80.
21. Tryggvason, K., J. Patrakka, and J. Wartiovaara, Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med, 2006. 354(13): p. 1387-401.
22. Ballermann, B.J., Glomerular endothelial cell differentiation. Kidney Int, 2005. 67(5): p. 1668-71.
23. Avasthi, P.S. and V. Koshy, Glomerular endothelial glycocalyx. Contrib Nephrol, 1988. 68: p. 104-13.
24. Henry, C.B. and B.R. Duling, Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol, 1999. 277(2 Pt 2): p. H508-14.
25. Hudson, B.G., S.T. Reeders, and K. Tryggvason, Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem, 1993. 268(35): p. 26033-6.
26. Hudson, B.G., et al., Alport's syndrome, Goodpasture's syndrome, and type IV collagen. N Engl J Med, 2003. 348(25): p. 2543-56.
27. Zenker, M., et al., Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet, 2004. 13(21): p. 2625-32.
28. Noakes, P.G., et al., The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet, 1995. 10(4): p. 400-6.
29. Pavenstadt, H., W. Kriz, and M. Kretzler, Cell biology of the glomerular podocyte. Physiol Rev, 2003. 83(1): p. 253-307.
30. Rodewald, R. and M.J. Karnovsky, Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol, 1974. 60(2): p. 423-33.
31. Kestila, M., et al., Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell, 1998. 1(4): p. 575-82.
32. Tryggvason, K., Unraveling the mechanisms of glomerular ultrafiltration: nephrin, a key component of the slit diaphragm. J Am Soc Nephrol, 1999. 10(11): p. 2440-5.
33. Schnabel, E., J.M. Anderson, and M.G. Farquhar, The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J Cell Biol, 1990. 111(3): p. 1255-63.
34. Cho, E.A., et al., Differential expression and function of cadherin-6 during renal epithelium development. Development, 1998. 125(5): p. 803-12.
35. Inoue, T., et al., FAT is a component of glomerular slit diaphragms. Kidney Int, 2001. 59(3): p. 1003-12.
36. Donoviel, D.B., et al., Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol, 2001. 21(14): p. 4829-36.
37. Gerke, P., et al., Homodimerization and heterodimerization of the glomerular podocyte proteins nephrin and NEPH1. J Am Soc Nephrol, 2003. 14(4): p. 918-26.
38. Sellin, L., et al., NEPH1 defines a novel family of podocin interacting proteins. FASEB J, 2003. 17(1): p. 115-7.
39. Boute, N., et al., NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet, 2000. 24(4): p. 349-54.
40. Luttrell, L.M. and R.J. Lefkowitz, The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci, 2002. 115(Pt 3): p. 455-65.
41. Thomas, P.E., et al., GLEPP1, a renal glomerular epithelial cell (podocyte) membrane protein-tyrosine phosphatase. Identification, molecular cloning, and characterization in rabbit. J Biol Chem, 1994. 269(31): p. 19953-62.
42. Wartiovaara, J., et al., Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest, 2004. 114(10): p. 1475-83.
43. Lehtonen, S., et al., Nephrin forms a complex with adherens junction proteins and CASK in podocytes and in Madin-Darby canine kidney cells expressing nephrin. Am J Pathol, 2004. 165(3): p. 923-36.
44. Reiser, J., et al., The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol, 2000. 11(1): p. 1-8.
1. Sharif, K., et al., Podocyte phenotypes as defined by expression and distribution of GLEPP1 in the developing glomerulus and in nephrotic glomeruli from MCD, CNF, and FSGS. A dedifferentiation hypothesis for the nephrotic syndrome. Exp Nephrol, 1998. 6(3): p. 234-44.
2. Tian, J., et al., Reduced glomerular epithelial protein 1 expression and podocyte injury in immunoglobulin A nephropathy. J Int Med Res, 2007. 35(3): p. 338-45.
3. Wang, R., et al., Molecular cloning, expression, and distribution of glomerular epithelial protein 1 in developing mouse kidney. Kidney Int, 2000. 57(5): p. 1847-59.
4. Coresh, J., et al., Prevalence of chronic kidney disease in the United States. JAMA, 2007. 298(17): p. 2038-47.
5. Hallan, S.I., et al., International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol, 2006. 17(8): p. 2275-84.
6. Wen, C.P., et al., All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet, 2008. 371(9631): p. 2173-82.
7. Chadban, S.J., et al., Prevalence of kidney damage in Australian adults: The AusDiab kidney study. J Am Soc Nephrol, 2003. 14(7 Suppl 2): p. S131-8.
8. Lysaght, M.J., Maintenance dialysis population dynamics: current trends and long-term implications. J Am Soc Nephrol, 2002. 13 Suppl 1: p. S37-40.
9. Perneger, T.V., et al., End-stage renal disease attributable to diabetes mellitus. Ann Intern Med, 1994. 121(12): p. 912-8.
10. Go, A.S., et al., Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med, 2004. 351(13): p. 1296-305.
11. Mann, J.F., et al., Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med, 2001. 134(8): p. 629-36.
12. Abbate, M., et al., Nephrotoxicity of increased glomerular protein traffic. Nephrol Dial Transplant, 1999. 14(2): p. 304-12.
13. Wang, Y., et al., Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol, 1997. 8(10): p. 1537-45.
14. Tang, S., et al., Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. J Clin Invest, 2003. 111(4): p. 515-27.
15. Schreiner, G.F., Renal toxicity of albumin and other lipoproteins. Curr Opin Nephrol Hypertens, 1995. 4(4): p. 369-73.
16. Peruzzi, L., et al., Tubulointerstitial responses in the progression of glomerular diseases: albuminuria modulates alpha v beta 5 integrin. Kidney Int, 1996. 50(4): p. 1310-20.
17. Kees-Folts, D., J.L. Sadow, and G.F. Schreiner, Tubular catabolism of albumin is associated with the release of an inflammatory lipid. Kidney Int, 1994. 45(6): p. 1697-709.
18. Donadelli, R., et al., Protein overload induces fractalkine upregulation in proximal tubular cells through nuclear factor kappaB- and p38 mitogen-activated protein kinase-dependent pathways. J Am Soc Nephrol, 2003. 14(10): p. 2436-46.
19. Bakoush, O., et al., High proteinuria selectivity index based upon IgM is a strong predictor of poor renal survival in glomerular diseases. Nephrol Dial Transplant, 2001. 16(7): p. 1357-63.
20. Sandsmark, D.K., et al., Proteinuria, but Not eGFR, Predicts Stroke Risk in Chronic Kidney Disease: Chronic Renal Insufficiency Cohort Study. Stroke, 2015. 46(8): p. 2075-80.
21. Tryggvason, K., J. Patrakka, and J. Wartiovaara, Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med, 2006. 354(13): p. 1387-401.
22. Ballermann, B.J., Glomerular endothelial cell differentiation. Kidney Int, 2005. 67(5): p. 1668-71.
23. Avasthi, P.S. and V. Koshy, Glomerular endothelial glycocalyx. Contrib Nephrol, 1988. 68: p. 104-13.
24. Henry, C.B. and B.R. Duling, Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol, 1999. 277(2 Pt 2): p. H508-14.
25. Hudson, B.G., S.T. Reeders, and K. Tryggvason, Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem, 1993. 268(35): p. 26033-6.
26. Hudson, B.G., et al., Alport's syndrome, Goodpasture's syndrome, and type IV collagen. N Engl J Med, 2003. 348(25): p. 2543-56.
27. Zenker, M., et al., Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet, 2004. 13(21): p. 2625-32.
28. Noakes, P.G., et al., The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet, 1995. 10(4): p. 400-6.
29. Pavenstadt, H., W. Kriz, and M. Kretzler, Cell biology of the glomerular podocyte. Physiol Rev, 2003. 83(1): p. 253-307.
30. Rodewald, R. and M.J. Karnovsky, Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol, 1974. 60(2): p. 423-33.
31. Kestila, M., et al., Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell, 1998. 1(4): p. 575-82.
32. Tryggvason, K., Unraveling the mechanisms of glomerular ultrafiltration: nephrin, a key component of the slit diaphragm. J Am Soc Nephrol, 1999. 10(11): p. 2440-5.
33. Schnabel, E., J.M. Anderson, and M.G. Farquhar, The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J Cell Biol, 1990. 111(3): p. 1255-63.
34. Cho, E.A., et al., Differential expression and function of cadherin-6 during renal epithelium development. Development, 1998. 125(5): p. 803-12.
35. Inoue, T., et al., FAT is a component of glomerular slit diaphragms. Kidney Int, 2001. 59(3): p. 1003-12.
36. Donoviel, D.B., et al., Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol, 2001. 21(14): p. 4829-36.
37. Gerke, P., et al., Homodimerization and heterodimerization of the glomerular podocyte proteins nephrin and NEPH1. J Am Soc Nephrol, 2003. 14(4): p. 918-26.
38. Sellin, L., et al., NEPH1 defines a novel family of podocin interacting proteins. FASEB J, 2003. 17(1): p. 115-7.
39. Boute, N., et al., NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet, 2000. 24(4): p. 349-54.
40. Luttrell, L.M. and R.J. Lefkowitz, The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci, 2002. 115(Pt 3): p. 455-65.
41. Thomas, P.E., et al., GLEPP1, a renal glomerular epithelial cell (podocyte) membrane protein-tyrosine phosphatase. Identification, molecular cloning, and characterization in rabbit. J Biol Chem, 1994. 269(31): p. 19953-62.
42. Wartiovaara, J., et al., Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest, 2004. 114(10): p. 1475-83.
43. Lehtonen, S., et al., Nephrin forms a complex with adherens junction proteins and CASK in podocytes and in Madin-Darby canine kidney cells expressing nephrin. Am J Pathol, 2004. 165(3): p. 923-36.
44. Reiser, J., et al., The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol, 2000. 11(1): p. 1-8.
45. Huber, T.B., et al., The carboxyl terminus of Neph family members binds to the PDZ domain protein zonula occludens-1. J Biol Chem, 2003. 278(15): p. 13417-21.
46. Welsch, T., et al., CD2AP and p130Cas localize to different F-actin structures in podocytes. Am J Physiol Renal Physiol, 2001. 281(4): p. F769-77.
47. Liu, G., et al., Neph1 and nephrin interaction in the slit diaphragm is an important determinant of glomerular permeability. J Clin Invest, 2003. 112(2): p. 209-21.
48. Topham, P.S., et al., Nephritogenic mAb 5-1-6 is directed at the extracellular domain of rat nephrin. J Clin Invest, 1999. 104(11): p. 1559-66.49. Benzing, T., Signaling at the slit diaphragm. J Am Soc Nephrol, 2004. 15(6): p. 1382-91.
50. Li, H., et al., SRC-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin. J Am Soc Nephrol, 2004. 15(12): p. 3006-15.
51. Lahdenpera, J., et al., Clustering-induced tyrosine phosphorylation of nephrin by Src family kinases. Kidney Int, 2003. 64(2): p. 404-13.
52. Verma, R., et al., Fyn binds to and phosphorylates the kidney slit diaphragm component Nephrin. J Biol Chem, 2003. 278(23): p. 20716-23.
53. Schwarz, K., et al., Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest, 2001. 108(11): p. 1621-9.
54. Huber, T.B., et al., Interaction with podocin facilitates nephrin signaling. J Biol Chem, 2001. 276(45): p. 41543-6.
55. Huber, T.B., et al., Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum Mol Genet, 2003. 12(24): p. 3397-405.
56. Quack, I., et al., beta-Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity. Proc Natl Acad Sci U S A, 2006. 103(38): p. 14110-5.
57. Goodman, O.B., Jr., et al., Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature, 1996. 383(6599): p. 447-50.
58. Claing, A., et al., beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem, 2001. 276(45): p. 42509-13.
59. Dykstra, M., et al., Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol, 2003. 21: p. 457-81.
60. Thomas, S.M. and J.S. Brugge, Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol, 1997. 13: p. 513-609.
61. Brown, M.T. and J.A. Cooper, Regulation, substrates and functions of src. Biochim Biophys Acta, 1996. 1287(2-3): p. 121-49.
62. Juliano, R.L., Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol, 2002. 42: p. 283-323.
63. Crossin, K.L. and L.A. Krushel, Cellular signaling by neural cell adhesion molecules of the immunoglobulin superfamily. Dev Dyn, 2000. 218(2): p. 260-79.
64. Yu, C.C., et al., Lupus-like kidney disease in mice deficient in the Src family tyrosine kinases Lyn and Fyn. Curr Biol, 2001. 11(1): p. 34-8.
65. Wiggins, R.C., et al., Molecular cloning of cDNAs encoding human GLEPP1, a membrane protein tyrosine phosphatase: characterization of the GLEPP1 protein distribution in human kidney and assignment of the GLEPP1 gene to human chromosome 12p12-p13. Genomics, 1995. 27(1): p. 174-81.
66. Andersen, J.N., et al., Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol, 2001. 21(21): p. 7117-36.
67. Beltran, P.J., J.L. Bixby, and B.A. Masters, Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons. J Comp Neurol, 2003. 456(4): p. 384-95.
68. Aguiar, R.C., et al., PTPROt: an alternatively spliced and developmentally regulated B-lymphoid phosphatase that promotes G0/G1 arrest. Blood, 1999. 94(7): p. 2403-13.
69. Pixley, F.J., et al., A heteromorphic protein-tyrosine phosphatase, PTP phi, is regulated by CSF-1 in macrophages. J Biol Chem, 1995. 270(45): p. 27339-47.
70. Wu, L.W., D.J. Baylink, and K.H. Lau, Molecular cloning and expression of a unique rabbit osteoclastic phosphotyrosyl phosphatase. Biochem J, 1996. 316 ( Pt 2): p. 515-23.
71. Tagawa, M., et al., Identification of a receptor-type protein tyrosine phosphatase expressed in postmitotic maturing neurons: its structure and expression in the central nervous system. Biochem J, 1997. 321 ( Pt 3): p. 865-71.
72. Wharram, B.L., et al., Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate. J Clin Invest, 2000. 106(10): p. 1281-90.
73. Alonso, A., et al., Protein tyrosine phosphatases in the human genome. Cell, 2004. 117(6): p. 699-711.
74. Chabot, C., et al., New role for the protein tyrosine phosphatase DEP-1 in Akt activation and endothelial cell survival. Mol Cell Biol, 2009. 29(1): p. 241-53.
75. Murata, Y., et al., Tyrosine phosphorylation of R3 subtype receptor-type protein tyrosine phosphatases and their complex formations with Grb2 or Fyn. Genes Cells, 2010. 15(5): p. 513-24.
76. Mori, M., et al., Promotion of cell spreading and migration by vascular endothelial-protein tyrosine phosphatase (VE-PTP) in cooperation with integrins. J Cell Physiol, 2010. 224(1): p. 195-204.
77. Charba, D.S., et al., Antibodies to protein tyrosine phosphatase receptor type O (PTPro) increase glomerular albumin permeability (P(alb)). Am J Physiol Renal Physiol, 2009. 297(1): p. F138-44.
78. Ozaltin, F., et al., Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am J Hum Genet, 2011. 89(1): p. 139-47.
79. Delville, M., et al., A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med, 2014. 6(256): p. 256ra136.
80. Chen, C. and H. Okayama, High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol, 1987. 7(8): p. 2745-52.
81. Loyter, A., et al., Mechanisms of DNA entry into mammalian cells. II. Phagocytosis of calcium phosphate DNA co-precipitate visualized by electron microscopy. Exp Cell Res, 1982. 139(1): p. 223-34.
82. Gultekin, H. and K.H. Heermann, The use of polyvinylidenedifluoride membranes as a general blotting matrix. Anal Biochem, 1988. 172(2): p. 320-9.
83. Towbin, H., T. Staehelin, and J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A, 1979. 76(9): p. 4350-4.
84. Ruotsalainen, V., et al., Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci U S A, 1999. 96(14): p. 7962-7.
85. Simons, K. and D. Toomre, Lipid rafts and signal transduction. Nat Rev Mol Cell Biol, 2000. 1(1): p. 31-9.
86. Kurzchalia, T.V. and R.G. Parton, Membrane microdomains and caveolae. Curr Opin Cell Biol, 1999. 11(4): p. 424-31.
87. Simons, K. and E. Ikonen, Functional rafts in cell membranes. Nature, 1997. 387(6633): p. 569-72.
88. Collett, M.S. and R.L. Erikson, Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A, 1978. 75(4): p. 2021-4.
89. Ostman, A., Q. Yang, and N.K. Tonks, Expression of DEP-1, a receptor-like protein-tyrosine-phosphatase, is enhanced with increasing cell density. Proc Natl Acad Sci U S A, 1994. 91(21): p. 9680-4.
90. Kuramochi, S., et al., Molecular cloning and characterization of Byp, a murine receptor-type tyrosine phosphatase similar to human DEP-1. FEBS Lett, 1996. 378(1): p. 7-14.
91. Krueger, N.X., M. Streuli, and H. Saito, Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J, 1990. 9(10): p. 3241-52.
92. Fachinger, G., U. Deutsch, and W. Risau, Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2. Oncogene, 1999. 18(43): p. 5948-53.
93. Matozaki, T., et al., Expression, localization, and biological function of the R3 subtype of receptor-type protein tyrosine phosphatases in mammals. Cell Signal, 2010. 22(12): p. 1811-7.
94. Roskoski, R., Jr., Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun, 2004. 324(4): p. 1155-64.
95. Reiser, J., et al., Regulation of mouse podocyte process dynamics by protein tyrosine phosphatases rapid communication. Kidney Int, 2000. 57(5): p. 2035-42.
96. Takemoto, M., et al., Large-scale identification of genes implicated in kidney glomerulus development and function. EMBO J, 2006. 25(5): p. 1160-74.
97. QIAfilter Plasmid Purification Handbook von QIAgen, 2012 04: p. 15-19
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:Düsseldorf 2009-2019
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:29.04.2019
Dateien geändert am:29.04.2019
Promotionsantrag am:30.07.2018
Datum der Promotion:11.04.2019
english
Benutzer
Status: Gast
Aktionen