Dokument: Hochintensives Intervalltraining bei Typ 2 Diabetes mellitus
Titel: | Hochintensives Intervalltraining bei Typ 2 Diabetes mellitus | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=49035 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20190503-141933-8 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Bierwagen, Lukas [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | PD. Dr. PhD Szendrödi, Julia [Gutachter] Prof. Dr. Jung, Christian [Gutachter] | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibung: | Hochintensives Intervalltraining ist als Lebensstilintervention bei T2D geeignet. Die Effizienz dieser Therapieform lässt sich in einer Steigerung der maximalen Sauerstoffaufnahme und der maximalen Leistung nachweisen, welche bei Probanden mit T2D und glukosetoleranten Kontrollen vergleichbar ist. Verglichen mit Studien, die konventionelles Ausdauertraining einsetzten, ist HII-Training bei besserer Steigerung der kardiovaskulären Fitness weniger zeitaufwändig. Wir konnten nachweisen, dass diese Aussage auch auf Patienten mit T2D übertragbar ist. Eine Verbesserung der metabolischen Flexibilität nach einer HII-Trainingseinheit ließ sich nicht nachweisen. Von besonderer klinischer Relevanz ist die Beobachtung, dass sich durch HII-Training die Insulinsensitivität um mehr als 40% verbessern lässt und damit einem konventionellen Ausdauertraining mit mehr Zeitaufwand zumindest ebenbürtig ist. Zukünftige Trainingskonzepte für Patienten mit T2D sollten daher hochintensives Intervalltraining beinhalten. | |||||||
Quelle: | 1. Jens Hoebel, Lange DC, Müters S. Faktenblatt zu GEDA 2012.
2. Bamberg F, Hetterich H, Rospleszcz S, Lorbeer R, Auweter SD, Schlett CL, Schafnitzel A, Bayerl C, Schindler A, Saam T, Müller-Peltzer K, Sommer W, Zitzelsberger T, Machann J, Ingrisch M, Selder S, Rathmann W, Heier M, Linkohr B, Meisinger C, Weber C, Ertl-Wagner B, Massberg S, Reiser MF, Peters A. Subclinical Disease Burden as Assessed by Whole-Body MRI in Subjects With Prediabetes, Subjects With Diabetes, and Normal Control Subjects From the General Population: The KORA-MRI Study. Diabetes. 2017 Jan;66(1):158–69. 3. Tamayo T, Schipf S, Meisinger C, Schunk M, Maier W, Herder C, Roden M, Nauck M, Peters A, Völzke H, Rathmann W. Regional differences of undiagnosed type 2 diabetes and prediabetes prevalence are not explained by known risk factors. PloS One. 2014;9(11):e113154. 4. Lehnert T, Streltchenia P, Konnopka A, Riedel-Heller SG, König H-H. Health burden and costs of obesity and overweight in Germany: an update. Eur J Health Econ HEPAC Health Econ Prev Care. 2015 Dec;16(9):957–67. 5. Lehnert T, Streltchenia P, Konnopka A, Riedel-Heller SG, König H-H. Health burden and costs of obesity and overweight in Germany: an update. Eur J Health Econ HEPAC Health Econ Prev Care. 2015 Dec;16(9):957–67. 6. Szendrödi J. Insulinresistenz des Skelettmuskel und der Leber: die Rolle der Mitochondrienfunktion und der ektopen Lipidspeicherung. Spitzenforschung Diabetol. 2016;Inovationenen und Auszeichnungen 2016:76–86. 7. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai P-C, Ried JS, Zhang W, Yang Y, Tan S, Fiorito G, Franke L, Guarrera S, Kasela S, Kriebel J, Richmond RC, Adamo M, Afzal U, Ala-Korpela M, Albetti B, Ammerpohl O, Apperley JF, Beekman M, Bertazzi PA, Black SL, Blancher C, Bonder M-J, Brosch M, Carstensen-Kirberg M, de Craen AJM, de Lusignan S, Dehghan A, Elkalaawy M, Fischer K, Franco OH, Gaunt TR, Hampe J, Hashemi M, Isaacs A, Jenkinson A, Jha S, Kato N, Krogh V, Laffan M, Meisinger C, Meitinger T, Mok ZY, Motta V, Ng HK, Nikolakopoulou Z, Nteliopoulos G, Panico S, Pervjakova N, Prokisch H, Rathmann W, Roden M, Rota F, Rozario MA, Sandling JK, Schafmayer C, Schramm K, Siebert R, Slagboom PE, Soininen P, Stolk L, Strauch K, Tai E-S, Tarantini L, Thorand B, Tigchelaar EF, Tumino R, Uitterlinden AG, van Duijn C, van Meurs JBJ, Vineis P, Wickremasinghe AR, Wijmenga C, Yang T-P, Yuan W, Zhernakova A, Batterham RL, Smith GD, Deloukas P, Heijmans BT, Herder C, Hofman A, Lindgren CM, Milani L, van der Harst P, Peters A, Illig T, Relton CL, Waldenberger M, Järvelin M-R, Bollati V, Soong R, Spector TD, Scott J, McCarthy MI, Elliott P, Bell JT, Matullo G, Gieger C, Kooner JS, Grallert H, Chambers JC. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017 Jan 5;541(7635):81–6. 8. Janssen I. Heart disease risk among metabolically healthy obese men and metabolically unhealthy lean men. CMAJ Can Med Assoc J J Assoc Medicale Can. 2005 May 10;172(10):1315–6. 9. Roden M. Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes. 2005;29(S2):S111–5. 10. Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2011 Sep 13;8(2):92–103. 11. Koliaki C, Roden M. Alterations of Mitochondrial Function and Insulin Sensitivity in Human Obesity and Diabetes Mellitus. Annu Rev Nutr. 2016 Jul 17;36:337–67. 12. Krebs M, Roden M. Nutrient-induced insulin resistance in human skeletal muscle. Curr Med Chem. 2004 Apr;11(7):901–8. 13. Löffler G, Petrides PE, Heinrich PC. Biochemie und Pathobiochemie. 8., völlig neu bearb. Aufl. 2007. Heidelberg: Springer; 2006. 1266 p. 14. Fölsch UR, Kochsiek K, Schmidt RF. Pathophysiologie des Menschen. Springer-Verlag; 2000. 15. Roden M. Clinical Diabetes Research: Methods and Techniques. Wiley-Blackwell; 2007. 16. Kahn CR. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism. 1978 Dec;27(12 Suppl 2):1893–902. 17. Laakso M, Edelman SV, Brechtel G, Baron AD. JCI - Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990 Jun;(Volume 85):1844–52. 18. Reviriego J, Vázquez LA, Goday A, Cabrera M, García-Margallo MT, Calvo E. Prevalence of impaired fasting glucose and type 1 and 2 diabetes mellitus in a large nationwide working population in Spain. Endocrinol Nutr Organo Soc Espanola Endocrinol Nutr. 2016 Apr;63(4):157–63. 19. Ziegler D, Voss A, Rathmann W, Strom A, Perz S, Roden M, Peters A, Meisinger C, KORA Study Group. Increased prevalence of cardiac autonomic dysfunction at different degrees of glucose intolerance in the general population: the KORA S4 survey. Diabetologia. 2015 May;58(5):1118–28. 20. Tamayo T, Schunk M, Maier W, Schipf S, Völzke H, Meisinger C, Peters A, Rathmann W. Prävalenz des unentdeckten Typ-2-Diabetes, der abnormen Nüchternglukose und der gestörten Glukosetoleranz in zwei Regionen Deutschlands. Diabetol Stoffwechs. 2013 Apr;8(S 01):P112. 21. Paulweber B, Valensi P, Lindström J, Lalic NM, Greaves CJ, McKee M, Kissimova-Skarbek K, Liatis S, Cosson E, Szendroedi J, Sheppard KE, Charlesworth K, Felton A-M, Hall M, Rissanen A, Tuomilehto J, Schwarz PE, Roden M, Paulweber M, Stadlmayr A, Kedenko L, Katsilambros N, Makrilakis K, Kamenov Z, Evans P, Gilis-Januszewska A, Lalic K, Jotic A, Djordevic P, Dimitrijevic-Sreckovic V, Hühmer U, Kulzer B, Puhl S, Lee-Barkey YH, AlKerwi A, Abraham C, Hardeman W, Acosta T, Adler M, AlKerwi A, Barengo N, Barengo R, Boavida JM, Charlesworth K, Christov V, Claussen B, Cos X, Cosson E, Deceukelier S, Dimitrijevic-Sreckovic V, Djordjevic P, Evans P, Felton A-M, Fischer M, Gabriel-Sanchez R, Gilis-Januszewska A, Goldfracht M, Gomez JL, Greaves CJ, Hall M, Handke U, Hauner H, Herbst J, Hermanns N, Herrebrugh L, Huber C, Hühmer U, Huttunen J, Jotic A, Kamenov Z, Karadeniz S, Katsilambros N, Khalangot M, Kissimova-Skarbek K, Köhler D, Kopp V, Kronsbein P, Kulzer B, Kyne-Grzebalski D, Lalic K, Lalic N, Landgraf R, Lee-Barkey YH, Liatis S, Lindström J, Makrilakis K, McIntosh C, McKee M, Mesquita AC, Misina D, Muylle F, Neumann A, Paiva AC, Pajunen P, Paulweber B, Peltonen M, Perrenoud L, Pfeiffer A, Pölönen A, Puhl S, Raposo F, Reinehr T, Rissanen A, Robinson C, Roden M, Rothe U, Saaristo T, Scholl J, Schwarz PE, Sheppard KE, Spiers S, Stemper T, Stratmann B, Szendroedi J, Szybinski Z, Tankova T, Telle-Hjellset V, Terry G, Tolks D, Toti F, Tuomilehto J, Undeutsch A, Valadas C, Valensi P, Velickiene D, Vermunt P, Weiss R, Wens J, Yilmaz T. A European evidence-based guideline for the prevention of type 2 diabetes. Horm Metab Res Horm Stoffwechselforschung Horm Metab. 2010 Apr;42 Suppl 1:S3-36. 22. Gerstein HC, Santaguida P, Raina P, Morrison KM, Balion C, Hunt D, Yazdi H, Booker L. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract. 2007 Dec;78(3):305–12. 23. Santaguida PL, Balion C, Hunt D, Morrison K, Gerstein H, Raina P, Booker L, Yazdi H. Diagnosis, Prognosis, and Treatment of Impaired Glucose Tolerance and Impaired Fasting Glucose. Agency for Healthcare Research and Quality (US); 2005. 24. Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhäusl W, Roden M. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes. 2002 Mar;51(3):599–605. 25. Krebs M, Krssak M, Nowotny P, Weghuber D, Gruber S, Mlynarik V, Bischof M, Stingl H, Fürnsinn C, Waldhäusl W, Roden M. Free fatty acids inhibit the glucose-stimulated increase of intramuscular glucose-6-phosphate concentration in humans. J Clin Endocrinol Metab. 2001 May;86(5):2153–60. 26. Laufs A, Livingstone R, Nowotny B, Nowotny P, Wickrath F, Giani G, Bunke J, Roden M, Hwang J-H. Quantitative liver 31P magnetic resonance spectroscopy at 3T on a clinical scanner. Magn Reson Med. 2014 May;71(5):1670–5. 27. Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7996–8001. 28. Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010 Apr;12(4):537–77. 29. Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967 May 10;242(9):2278–82. 30. Sr C, Al A, Bj B, B B, L C-T, B F, Jg R, Rr R, Rj S. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Exercise and type 2 diabetes. Med Sci Sports Exerc. 2010 Dec;42(12):2282–303. 31. Röhling M, Strom A, Bönhof G, Püttgen S, Bódis K, Müssig K, Szendrödi J, Markgraf D, Lehr S, Roden M, Ziegler D, German Diabetes Study Group. Differential Patterns of Impaired Cardiorespiratory Fitness and Cardiac Autonomic Dysfunction in Recently Diagnosed Type 1 and Type 2 Diabetes. Diabetes Care. 2017 Feb;40(2):246–52. 32. Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007 Apr;39(4):665–71. 33. Hansen D, Dendale P, Jonkers RAM, Beelen M, Manders RJF, Corluy L, Mullens A, Berger J, Meeusen R, van Loon LJC. Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA1c in obese type 2 diabetes patients. Diabetologia. 2009 Sep;52(9):1789–97. 34. Nielsen J, Mogensen M, Vind BF, Sahlin K, Højlund K, Schrøder HD, Ortenblad N. Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am J Physiol Endocrinol Metab. 2010 Mar;298(3):E706-713. 35. Støa EM, Meling S, Nyhus L-K, Glenn Strømstad null, Mangerud KM, Helgerud J, Bratland-Sanda S, Støren Ø. High-intensity aerobic interval training improves aerobic fitness and HbA1c among persons diagnosed with type 2 diabetes. Eur J Appl Physiol. 2017 Feb 3; 36. Balducci S, Sacchetti M, Haxhi J, Orlando G, D’Errico V, Fallucca S, Menini S, Pugliese G. Physical exercise as therapy for type 2 diabetes mellitus. Diabetes Metab Res Rev. 2014 Mar;30 Suppl 1:13–23. 37. Ainsworth BE, Haskell W, Whitt M, Irwin M. Compendium of physical activities. Med Sci Sports Exerc. 2000;32(9):498–516. 38. Di Loreto C, Fanelli C, Lucidi P, Murdolo G, De Cicco A, Parlanti N, Ranchelli A, Fatone C, Taglioni C, Santeusanio F, De Feo P. Make your diabetic patients walk: long-term impact of different amounts of physical activity on type 2 diabetes. Diabetes Care. 2005 Jun;28(6):1295–302. 39. Menshikova EV, Ritov VB, Toledo FGS, Ferrell RE, Goodpaster BH, Kelley DE. Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am J Physiol Endocrinol Metab. 2005 Apr;288(4):E818-825. 40. Meex RCR, Schrauwen-Hinderling VB, Moonen-Kornips E, Schaart G, Mensink M, Phielix E, van de Weijer T, Sels J-P, Schrauwen P, Hesselink MKC. Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity. Diabetes. 2010 Mar;59(3):572–9. 41. Ruffino JS, Songsorn P, Haggett M, Edmonds D, Robinson AM, Thompson D, Vollaard NBJ. A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2017 Feb;42(2):202–8. 42. Murach KA, Walton RG, Fry CS, Michaelis SL, Groshong JS, Finlin BS, Kern PA, Peterson CA. Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise. Physiol Rep [Internet]. 2016 Sep 20 [cited 2017 Mar 5];4(18). Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037921/ 43. Dias KA, Ingul CB, Tjønna AE, Keating SE, Gomersall SR, Follestad T, Hosseini MS, Hollekim-Strand SM, Ro TB, Haram M, Huuse EM, Davies PSW, Cain PA, Leong GM, Coombes JS. Effect of High-Intensity Interval Training on Fitness, Fat Mass and Cardiometabolic Biomarkers in Children with Obesity: A Randomised Controlled Trial. Sports Med Auckl NZ. 2017 Aug 29; 44. Chodzko-Zajko WJ. The World Health Organization Issues Guidelines for Promoting Physical Activity among Older Persons. J Aging Phys Act. 1997 Jan 1;5(1):1–8. 45. Bloomgarden ZT. American Association of Clinical Endocrinologists (AACE) Consensus Conference on the Insulin Resistance Syndrome. Diabetes Care. 2003 Apr 1;26(4):1297–303. 46. Szendrödi J. Studienprotokoll HIT_final. 2014. 47. Studienteam am Deutschen Diabetes-Zentrum. Patienteninformation_204_10_10. 48. Phielix E, Jelenik T, Nowotny P, Szendroedi J, Roden M. Reduction of non-esterified fatty acids improves insulin sensitivity and lowers oxidative stress, but fails to restore oxidative capacity in type 2 diabetes: a randomised clinical trial. Diabetologia. 2014 Mar;57(3):572–81. 49. Nijs J, De Meirleir K. Prediction of peak oxygen uptake in patients fulfilling the 1994 CDC criteria for chronic fatigue syndrome. Clin Rehabil. 2004 Nov;18(7):785–92. 50. Zeppetzauer M. SOP zur Durchführung einer Spiroergometrie am Fahrrad (CPET-Cardiopulmonary exercise testing). 2011. 51. Trappe H-J, Löllgen H. Leitlinie zur Ergometrie. Z Kardiol. 2000;89:821–37. 52. Borg G. Anstrengungsempfinden und körperliche Aktivität. 2004 Apr; Deutsches Ärzteblatt (Jg.101; Heft 159). 53. Roden M. Diabetes mellitus: definition, classification and diagnosis. 2016. 54. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214-223. 55. Hürter P. Diabetes bei Kindern und Jugendlichen: Klinik, Therapie, Rehabilitation. Springer-Verlag; 2013. 341 p. 56. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol. 1983 Aug;55(2):628–34. 57. Farinatti P, Castinheiras Neto AG, Amorim PRS. Oxygen Consumption and Substrate Utilization During and After Resistance Exercises Performed with Different Muscle Mass. Int J Exerc Sci. 2016;9(1):77–88. 58. Weir JB de V. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949 Aug 1;109(1–2):1–9. 59. Atwater WO. Principles of nutrition and nutritive value of food. U.S. Dept. of Agriculture; 1910. 48 p. 60. Schadewaldt P, Nowotny B, Strassburger K, Kotzka J, Roden M. Indirect calorimetry in humans: a postcalorimetric evaluation procedure for correction of metabolic monitor variability. Am J Clin Nutr. 2013 Apr;97(4):763–73. 61. Tentolouris N, Pavlatos S, Kokkinos A, Perrea D, Pagoni S, Katsilambros N. Diet-induced thermogenesis and substrate oxidation are not different between lean and obese women after two different isocaloric meals, one rich in protein and one rich in fat. Metabolism. 2008 Mar;57(3):313–20. 62. Marées H de, Heck H, Bartmus U. Sportphysiologie. 9. korr. Nachdr. Köln: Sportverlag Strauß; 2003. 800 p. 63. Product Sheet Biosen C-line. 2013. 64. Herold G. Innere Medizin 2014. 65. Hoelzel W, Weykamp C, Jeppsson J-O, Miedema K, Barr JR, Goodall I, Hoshino T, John WG, Kobold U, Little R, Mosca A, Mauri P, Paroni R, Susanto F, Takei I, Thienpont L, Umemoto M, Wiedmeyer H-M, Standardization on behalf of the IWG on H. IFCC Reference System for Measurement of Hemoglobin A1c in Human Blood and the National Standardization Schemes in the United States, Japan, and Sweden: A Method-Comparison Study. Clin Chem. 2004 Jan 1;50(1):166–74. 66. Yumuk V, Tsigos C, Fried M. European Guidelines for Obesity Management in Adults. 2015. 67. 2. Classification and Diagnosis of Diabetes. 2016 Jan;Diabetes Care(Volume 39, Supplement 1):13–22. 68. Kowall B, Rathmann W, Stang A, Bongaerts B, Kuss O, Herder C, Roden M, Quante A, Holle R, Huth C, Peters A, Meisinger C. Perceived risk of diabetes seriously underestimates actual diabetes risk: The KORA FF4 study. PLoS ONE [Internet]. 2017 Jan 31 [cited 2017 May 5];12(1). Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5283734/ 69. Maier W, Holle R, Hunger M, Peters A, Meisinger C, Greiser KH, Kluttig A, Völzke H, Schipf S, Moebus S, Bokhof B, Berger K, Mueller G, Rathmann W, Tamayo T, Mielck A, DIAB-CORE Consortium. The impact of regional deprivation and individual socio-economic status on the prevalence of Type 2 diabetes in Germany. A pooled analysis of five population-based studies. Diabet Med J Br Diabet Assoc. 2013 Mar;30(3):e78-86. 70. Lukaschek K, Baumert J, Kruse J, Meisinger C, Ladwig KH. Sex differences in the association of social network satisfaction and the risk for type 2 diabetes. BMC Public Health. 2017 May 2;17(1):379. 71. Shalitin S, Abrahami M, Lilos P, Phillip M. Insulin resistance and impaired glucose tolerance in obese children and adolescents referred to a tertiary-care center in Israel. Int J Obes 2005. 2005 Jun;29(6):571–8. 72. Reeske A, Zeeb H, Razum O, Spallek J. Differences in the Incidence of Gestational Diabetes between Women of Turkish and German Origin: An Analysis of Health Insurance Data From a Statutory Health Insurance in Berlin, Germany (AOK), 2005-2007. Geburtshilfe Frauenheilkd. 2012 Apr;72(4):305–10. 73. Galgani JE, Moro C, Ravussin E. Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1009-1017. 74. Corpeleijn E, Saris WHM, Blaak EE. Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle. Obes Rev Off J Int Assoc Study Obes. 2009 Mar;10(2):178–93. 75. Reilly T, Ekblom B. The use of recovery methods post-exercise. J Sports Sci. 2005 Jun;23(6):619–27. 76. Wojtaszewski JFP, Hansen BF, Kiens B, Richter EA. Insulin Signaling in Human Skeletal Muscle: Time Course and Effect of Exercise. Diabetes. 1997 Nov 1;46(11):1775–81. 77. Kelly B, King JA, Goerlach J, Nimmo MA. The impact of high-intensity intermittent exercise on resting metabolic rate in healthy males. Eur J Appl Physiol. 2013 Dec;113(12):3039–47. 78. Giesen H. Ermittlung des metabolischen respiratorischen Quotienten anhand einer Korrektur des spirometrisch ermittelten Verhältnisses aus Kohlenstoffdioxidabgabe und Sauerstoffaufnahme bei proportionalem und integralem Stoffwechselverhalten. diplom.de; 2003. 179 p. 79. Van de Weijer T, Sparks LM, Phielix E, Meex R. Relationships between mitochondrial function and metabolic flexibility in type 2 diabetes mellitus. 2013 Feb 80. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes. 2000 May;49(5):677–83. 81. Chen L, Pei J-H, Kuang J, Chen H-M, Chen Z, Li Z-W, Yang H-Z. Effect of lifestyle intervention in patients with type 2 diabetes: a meta-analysis. Metabolism. 2015 Feb;64(2):338–47. 82. Lin X, Zhang X, Guo J, Roberts CK, McKenzie S, Wu W-C, Liu S, Song Y. Effects of Exercise Training on Cardiorespiratory Fitness and Biomarkers of Cardiometabolic Health: A Systematic Review and Meta‐Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2015 Jul 28;4(7):e002014. 83. Röhling M, Herder C, Roden M, Stemper T, Müssig K. Effects of Long-Term Exercise Interventions on Glycaemic Control in Type 1 and Type 2 Diabetes: a Systematic Review. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc. 2016 Sep;124(8):487–94. 84. Effects of Weight Loss and Physical Activity on Skeletal Muscle Mitochondrial Function in Obesity [Internet]. PubMed Journals. [cited 2017 Feb 25]. Available from: https://ncbi.nlm.nih.gov/labs/articles/15585590/ 85. van de Weijer T, Sparks LM, Phielix E, Meex RC, van Herpen NA, Hesselink MKC, Schrauwen P, Schrauwen-Hinderling VB. Relationships between mitochondrial function and metabolic flexibility in type 2 diabetes mellitus. PloS One. 2013;8(2):e51648 | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Bezug: | 2015 bis 2019 | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 03.05.2019 | |||||||
Dateien geändert am: | 03.05.2019 | |||||||
Promotionsantrag am: | 13.06.2018 | |||||||
Datum der Promotion: | 27.02.2019 |